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result of Macias-Virgós and Sanmartín Carbón for Riemannian foliations. In particular, our result is valid for
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1. Introduction

Foliations with transverse linear connection are investigated. Works of Molino [9], Kamber and Tondeur [3], Bel’ko [1]are devoted to different aspects of this class of foliations.Let Fol be the category of foliations whose objects are foliations and morphisms are smooth maps between foliatedmanifolds mapping leaves to leaves. By smoothness (manifolds, mappings, bundles) we shall mean the smoothness ofthe class C∞. Let (M,F ) be an arbitrary smooth foliation with transverse linear connection. We investigate the group
D(M,F ) of diffeomorphisms of the manifold M whose elements are the automorphisms of the foliation (M,F ) in thecategory Fol .
∗ E-mail: n.i.zhukova@rambler.ru
† E-mail: dolgonosova@rambler.ru
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Palais [11] introduced a smooth structure on the set C∞(M,M ′) of smooth maps M → M ′ of smooth compact manifolds
M and M ′. He applied as model spaces inductive limits of Hilbert spaces. The diffeomorphism group Diff(M) of acompact manifold M was studied by Leslie, Omori and other authors. Leslie and Omori introduced structures of infinite-dimensional manifolds on Diff(M) modeled on Fréchet spaces and on inductive limits of Hilbert spaces respectively.When the manifold M is non-compact the application of FD-topology (see Section 4) allowed Michor [8] to introduce asmooth structure on Diff(M) modeled on LF-spaces, i.e., on inductive limits of Fréchet spaces.The objective of this paper is to introduce a structure of a smooth infinite-dimensional manifold modeled on LF-spaces inthe group of all automorphisms of a foliation with transverse linear connection in the category Fol . In order to introducethe structure of a smooth infinite-dimensional manifolds modeled on LF-spaces in the group of diffeomorphisms of asmooth manifold, Michor [8] used the construction of a local addition. Macias-Virgós and Sanmartín Carbón [7] adaptedthis method to foliations and applied it to Riemannian foliations. The goal of our work is to extend the result of Macias-Virgós and Sanmartín Carbón for Riemannian foliations [7] to foliations with transverse linear connection. The followingtheorem is the main result of this work.
Theorem 1.1.
Let (M,F ) be a foliation with transverse linear connection of an arbitrary codimension q on an n-dimensional manifoldM.
Then the automorphism group D(M,F ) of this foliation in the category Fol admits a structure of an infinite-dimensional
Lie group modeled on LF-spaces.

The results of Macias-Virgós and Sanmartín Carbón [7, Theorem 13, Corollary 14] allow us to reduce the proof of thistheorem to the construction of an adapted local addition for (M,F ). Let M be a smooth q-dimensional distributionon M which is transverse to (M,F ). For a foliation (M,F ) with transverse linear connection we construct (Theorem 4.1)a special linear connection ∇M on the foliated manifold M with respect to which M and the tangent distribution TFof the foliation (M,F ) are geodesic invariant in the sense of [6]. Due to the use of ∇M our construction of an adaptedlocal addition is simpler than Macias-Virgós and Sanmartín Carbón’s one for Riemannian foliations [7].As pseudo-Riemannian foliations and, in particular, Lorentzian foliations belong to the class of foliations with transverselinear connection, the following assertion is valid.
Corollary 1.2.
The statement of Theorem 1.1 is true for pseudo-Riemannian and Lorentzian foliations.

This article is organized as follows. First, we give basic concepts and notation (Section 2). Then we construct thefoliated bundle of transverse frames and prove Propositions 3.1 and 3.4 about its properties (Section 3). The foliatedbundle of transverse frames with the lifted foliation is applied for the construction of a special linear connection ∇Mfor the foliation (M,F ) (Section 4). We also recall the Macias-Virgós and Sanmartín Carbón results about the structureof the Lie group on the set of automorphisms of a foliation admitting an adapted local addition (Section 5). Section 6contains the proof of our main Theorem 1.1. Here, the above mentioned special linear connection ∇M is essentiallyused.
2. Basic concepts and notation

2.1. Notation

Let M be a Hausdorff, paracompact, connected smooth n-dimensional manifold. It is not necessarily compact. Algebraof smooth functions on M is denoted by F(M), and F(M)-module of vector fields on M is designated by X(M). Let Mbe a smooth distribution on M. Then XM(M) is the set of vector fields which are sections of M. Let TF be the tangentdistribution to the foliation (M,F ), then XTF (M) is also denoted by XF (M).
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2.2. Linear connections

Let M be a k-dimensional distribution n-dimensional manifold M, where 0 < k ≤ n. A linear connection on the vector
bundle M is the operator

∇ : X(M)×XM(M) → XM(M), (X, Y ) 7→ ∇XY ,

enjoying the following properties for all X, X1, X2 ∈ X(M), Y , Z ∈ XM(M) and f, h ∈ F(M):
(C1) ∇fX1+hX2Z = f∇X1Z + h∇X2Z ;
(C2) ∇X (fY ) = (Xf)Y + f∇XY ;
(C3) ∇X (Y +Z ) =∇XY +∇XZ .

If M = TM, then the operator ∇ is called a linear connection on M.Further the pair (M,∇) is called the manifold with linear connection. The bilinear skew-symmetric tensor on M of thetype (1, 2), which is defined by the equality
T (X, Y ) = ∇XY −∇YX − [X, Y ], X, Y ∈ X(M),

is called the torsion tensor or the torsion of the linear connection∇. A linear connection∇ on M is said to be symmetric,if the torsion tensor T vanishes.
2.3. Foliations with transverse linear connection

A diffeomorphism f : M(1) → M(2) is said to be an isomorphism of connections ∇(1) and ∇(2) if
f∗
(
∇(1)
X Y

) =∇(2)
f∗X f∗Y

for all vector fields X, Y ∈ X
(
M(1)), where f∗ is the differential of f . Let N be a q-dimensional manifold and M bea smooth n-dimensional manifold, where 0 < q < n. Unlike M the connectedness of the topological space N is notassumed. An N-cocycle is the set {Ui, fi, {kij}}i,j∈J such that:

1. The family {Ui : i ∈ J} forms an open cover of M.2. The mappings fi : Ui → N are submersions into N with connected fibers.3. If Ui ∩ Uj 6= ∅, i, j ∈ J, then a diffeomorphism kij : fj (Ui ∩ Uj ) → fi(Ui ∩ Uj ) is well defined and satisfies the equality
fi = kij ◦ fj .

Definition 2.1.Let a foliation (M,F ) be given by an N-cocycle {Ui, fi, {kij}}i,j∈J . If the manifold N admits a linear connection ∇N suchthat every local diffeomorphism kij is an isomorphism of the linear connections induced by∇N on open subsets fi(Ui∩Uj )and fj (Ui ∩ Uj ), then we refer to (M,F ) as a foliation with transverse linear connection defined by the (N,∇N )-cocycle{
Ui, fi, {kij}

}
i,j∈J .

We emphasize that vanishing of the torsion tensor of a linear connection ∇N on N is not assumed.
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2.4. Inducted connection on a submanifold

Let M be any n-dimensional manifold provided by a linear connection∇. Consider an arbitrary p-dimensional immersionsubmanifold L of M. The number q = n− p is the codimension of L. Suppose that at each point x ∈ L a q-dimensionalsubspace Mx of the tangent vector space TxM is given, and Mx is transverse to TxL and smoothly depends on x. Then
L is said to be an M-equipped submanifold. As TyM = TyL⊕My, y ∈ L, so each vector field X ∈ X(M)�L may berepresented in the form X = XF⊕XM, where XF ∈ X(L), XM ∈ ΓM is a section of M. Denote the canonical projection
X(M)�L → X(L), X 7→ XF by prF .Define a linear connection∇L,M on L in the following a way. Consider vector fields X, Y ∈ X(L) and any point x ∈ L. Asis well known [4], the covariant derivative of Y along X at x is defined by values of X�x and Y at any small neighborhoodof x in L. Let W and V be neighborhoods of x in L, with the closure ClW belonging to V and XV = X�V , YV = Y �V .There are prolongations X̃ , Ỹ ∈ X(M) of vector fields XClW and YClW . We have X�W = X̃�W and Y �W = Ỹ �W . As iswell known, the equality

∇L,M
X Y �x = prF (∇X̃ Ỹ )�x , x ∈ L,defines a linear connection ∇L,M on the M-equipped submanifold L of (M,∇). The connection ∇L,M is named the

M-induced connection.Recall that a submanifold L of the manifold of linear connection (M,∇) is called totally geodesic, if for each x ∈ L andevery vector X ∈ TxL the geodesic line γX (s) such that γX (0) = x and γ̇X (0) = X belongs to L.Generally speaking, the connection ∇L,M depends on the equipment M of the submanifold L. As it is known[12, Lecture 3], if ∇ is a symmetry connection on M, then the induced connection ∇L,M does not depend on theequipment M of the submanifold L if and only if L is the totally geodesic submanifold of (M,∇).
2.5. Geodesic invariant distributions and totally geodesic foliations

A smooth distribution N on the manifold of linear connection (M,∇) is called geodesic invariant [6], if for any x ∈ Mand each vector X ∈ Nx the geodesic line γX (s) such that γX (0) = x and γ̇X (0) = X , is an integral curve of N. A foliation(M,F ) of a manifold M with a linear connection ∇ is called totally geodesic, if its tangent distribution TF is geodesicinvariant or equivalent, if all its leaves are totally geodesic submanifolds.
3. The foliated bundle of transverse frames

3.1. Projectable connections [10]

We keep notation from [4]. By P(M,G) we mean a principal G-bundle. Let M be an n-dimensional smooth manifold and
π : P → M be the projection of P(M,G). A G-connection in P(M,G) is a G-invariant n-dimensional distribution Q on
P transverse to fibres of the submersion π : P → M. As known [4], the connection may be defined by g-valued 1-form ωon M satisfying some conditions. The form ω is named the connection form. If P = L(M) is the frame bundle of M, thenthe existence of the connection in P(M,G) is equivalent to the existence of a linear connection ∇ on M.Consider P(M,G) with a G-invariant foliation (P,F) such that images of its leaves form a foliation (M,F ) of the samedimension m, where 0 < m < n. A connection Q on P is said to be transverse, if TF ⊂ Q or equivalent, if iXω = 0,
X ∈ XF(P), where iX is the interior product by X . A transverse connection Q on P is called projectable with respect
to (P,F), if iX dω = 0 for all X ∈ XF(P).
3.2. Principal foliated bundles

Let (M,F ) be a smooth foliation of codimension q. A q-dimensional distribution M on M is said to be transverse to the
foliation (M,F ) if M satisfies the equality TxM = Mx⊕TxF , x ∈ M, where ⊕ is the symbol of the direct sum of vectorspaces.
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Let (M,F ) be a foliation of codimension q with transverse linear connection defined by an (N,∇N )-cocycle{
Ui, fi, {kij}

}
i,j∈J . For brevity let us denote H = GL(q, R). Let h be the Lie algebra of a Lie group H. Denotethe projection of the frame bundle of N by p : P → N, then P = P(N,H) is the principal H-bundle. Let Vi = fi(Ui),then Pi = p−1(Vi) is a sub-bundle of the H-bundle P. Let Ri = f∗i Pi = {(x, z) ∈ Ui×Pi : fi(x) = p(z)} be the pullbackbundle of Pi with respect to the submersion fi. We define the projections p̂i : Ri → Ui, (x, z) 7→ x, and f̂i : Ri → Pi,(x, z) 7→ z, where (x, z) ∈ Ri. Suppose that a q-dimensional distribution M on the manifold M is transverse to thefoliation (M,F ). Identify the vector quotient bundle TM/TF with the distribution M. We consider a point (x, z) ∈ Rias a basis {en−q+α} of the vector space Mx such that fi∗xen−q+α = εα , where α = 1, . . . , q, {εα} = z is the frame at

v = fi(x) ∈ N and fi∗x is the differential of fi at x. The pair (x, z) is named an M-frame at x.Introduce the following binary relation S in the disjoint sum Y = ⊔
i∈J Ri. Let (x, z) ∈ Ri, (x̃, z̃) ∈ Rj . Let us assume(x, z)S (x̃, z̃) if the following conditions hold:(i) x = x̃ ∈ Ui ∩ Uj ;(ii) z̃ = kji∗fi(x)◦z, where kji∗fi(x) is the differential of the local diffeomorphism kji at the point fi(x).

Direct verification shows that S is an equivalence relation. Let R = Y /S be the quotient space and β : Y → R be thequotient mapping. Note that for every i ∈ J the restriction of β�Ri : Ri → Ũi = β(Ri) is a bijection. By requirement thatall restrictions β�Ri are diffeomorphisms we define the structure of a smooth manifold in R.We introduce the notation: f̃i = f̂i◦
(
β�Ri

)−1 : Ũi → Pi and Kij : f̃j (Ũi∩ Ũj ) → f̃i(Ũi∩ Ũj ), z 7→ kij∗fj (x) ◦z, where z ∈
f̃j (Ũi∩ Ũj ). It is not difficult to check that {Ũi, f̃i, {Kij}}i,j∈J is the P-cocycle defining a foliation of (R,F) of the samedimension as the foliation (M,F ). Remark, that for every x ∈ M and u ∈ π−1(x) the restriction π�L of π on the leaf
L = L(u) of (R,F) is a covering map onto a leaf L = L(x) of (M,F ).For any point u ∈ R there is a point (x, z) ∈ Ri such that u = β((x, z)). The equality π(u) = x defines a submersion
π : R→ M. The relation u ·a = β((x, z ·a)), where a ∈ H, defines the right free smooth action of the Lie group H on R.Thus, π : R→ M is the projection of the principal H-bundle R(M,H). The definitions of (R,F) and the action of H on Rimply the H-invariance of this foliation. Thus we have the following statement.
Proposition 3.1.
Let (M,F ) be a foliation of an arbitrary codimension q defined by N-cocycle

{
Ui, fi, {kij}

}
i,j∈J and H = GL(q, R). Then

there are:1) the principal H-bundle with the projection π : R→ M;2) an H-invariant foliation (R,F), whose leaves cover the leaves of the foliation (M,F ) via π.

Definition 3.2.The principal H-bundle π : R→ M satisfying Proposition 3.1 is called the foliated bundle of transverse frames (or M-
frames) of the foliation (M,F ). In this case (R,F) is named the lifted foliation.
Remark 3.3.Originally foliated bundles appeared in the works of Molino [9] and of Kamber–Tondeur [3]. Foliated bundles wereessentially used by the first author in [15, 16].
3.3. The projectable connection in the foliated bundle of transverse frames

Proposition 3.4.
Let (M,F ) be a foliation of an arbitrary codimension q with transverse linear connection defined by (N,∇N )-cocycle{
Ui, fi, {kij}

}
i,j∈J . Let R(M,H) be the foliated bundle of transverse frames over (M,F ) with lifted foliation (R,F) and

Q0 be the H-connection on P corresponding to ∇N . Then there exist:(i) the unique H-connection Q ⊃ TF on R locally projectable onto H-connection Q0 on P;(ii) an Rq-valued H-equivariant projectable 1-form θ on R.
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Moreover, (R,F) is an e-foliation.

Proof. The linear connection∇N defines the principal H-connection Q0 on the space P of the frame bundle P(N,H).Let ω0 be the h-valued 1-form of the connection Q0 and θ0 be the canonical Rq-valued 1-form of Q0 on the manifold P(see for example [4]).The direct verification shows that the equalities ω�Ũi = (̃fi)∗ω0 and θ�Ũi = (̃fi)∗(θ0), where i ∈ J, define the h-valued1-form ω and Rq-valued 1-form θ on the manifold R. The H-equivariance of the 1-forms ω0 and θ0 on P implies the
H-equivariance of the 1-forms ω and θ on R. Hence ω defines the principal H-connection Q = kerω on R.It follows from the definitions that ω and θ are projectable with respect to the foliation (R,F) and LXω = 0, LXθ = 0for any vector field X ∈ XF(R). Thus, Q is a projectable H-connection on R with respect to the foliation (R,F). Foreach fixed i ∈ J we have f̃i∗uQu = Q0�f̃i(u), u ∈ Ũi. Hence H-connection Q ⊃ TF on R is locally projectable onto
H-connection Q0 on P.Let u ∈ R and x = π(u). Consider Nu = {Zu ∈ TuR : π∗u(Zu) ∈ Mx} and Vu = {Zu ∈ TuR : πu∗(Zu) = 0}. Then
N = {Nu : u ∈ R}, V = {Vu : u ∈ R} and N ∩ Q are smooth distributions on R, with N = V⊕ (N ∩ Q). Fixbases {Eα}, α = 1, . . . , dim h, and {Eβ}, β = 1, . . . , q, of the vector spaces h and Rq. Then at any point u ∈ Rvectors Xα�u = (

ω�Vu

)−1(Eα ) and Xβ�u = (
θ�Nu∩Qu

)−1(Eβ) are defined. The vector fields {Xα , Xβ} form a transverseparallelization of the foliation (R,F). So (R,F) is an e-foliation.
4. The existence of special connections

Let (M,F ) be a smooth foliation. Recall that a vector field X ∈ X(M) is said to be foliate if for all Y ∈ XF (M) theLie bracket [X, Y ] also belongs to XF (M) [10]. Foliated vector fields are also named basic. The function h : M → R1 isnamed basic if it is constant on every leaf of the foliation.A linear connection ∇ on M is said to be projectable with respect to (M,F ), if each submersion f : U → V from(N,∇N )-cocycle {Ui, fi, {kij}}i,j∈J determinating (M,F ) satisfies the equality
f∗
(
∇XUYU

) = ∇N
f∗(XU )f∗(YU )

for any foliate vector fields X, Y on M. Remark that f∗X and f∗Y are also called f-connected vector fields with X and Yaccordingly. It is not difficult to show that ∇ on M is projectable with respect to (M,F ), iff every the above mentionedsubmersion f : U → V maps geodesics on (U,∇) to geodesics on (V ,∇N ).Let M be an arbitrary smooth q-dimensional distribution on a manifold M transverse to the foliation (M,F ). Thereforeany smooth vector field X on M can be written in the form X = XF + XM, where XF ∈ XF (M), XM ∈ XM(M). Thenthe canonical projections are defined in the following way:
pF: X(M)→ XF (M), X 7→ XF, pM: X(M)→ XM(M), X 7→ XM.

Let ∇ be a linear connection on M. A geodesic γ on (M,∇) is called M-geodesic, if it is an integral curve of adistribution M.
Theorem 4.1.
Let (M,F ) be a foliation with transverse linear connection of codimension q and M be a q-dimensional distribution
transverse to (M,F ). Then there is a linear connection ∇M on M such that(i) both M and TF are geodesic invariant distributions on

(
M,∇M

)
, and the connections induced via M on leaves

of (M,F ) are symmetric;(ii) the equality ∇0
XY = pM

(
∇M
X Y

)
, where X ∈ X(M), Y ∈ XM(M), defines a projectable connection on M;(iii) any submersion f : U → V from
(
N,∇N)-cocycle defining (M,F ) has the following properties:
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a) the projection σ = f ◦γ of any geodesic γ from U is a geodesic on V , i.e. ∇M is a projectable connection with
respect to (M,F );b) if σ : [0, 1] → V is a geodesic in V and x ∈ f−1(σ (0)), then there is ε ∈ (0, 1] and M-lift γ = γ(s), s ∈ [0, ε], of
σ�[0,ε] to the point x, and γ is M-geodesic.

Proof. According to Proposition 3.1 there is the foliated bundle R(M,H) of M-frames over (M,F ) with the projection
π : R→ M. There is an open covering {Vα} of manifold M with the set of transition functions ψβα : Vα ∩Vβ → GL(q, R)[4, Chapter 1, § 5]. Consider the embedding j : GL(q, R)→ GL(n, R),

A 7→
(
En−q 00 A

)
,

where A ∈ GL(q, R) and En−q is the unit (n−q)-dimensional matrix, of the Lie group GL(q, R) into the Lie groupGL(n, R). Then there are maps
φβα = j ◦ψβα : Vα ∩ Vβ → GL(n, R),

satisfying the equality φγα (x) = φγβ(x) ·φβα (x), x ∈ Vα ∩Vβ ∩Vγ , where the symbol · denotes the product of the elementsin the group GL(n, R). According to [4, Chapter 1, Proposition 5.2] there is the principal GL(n, R)-bundle π̂ : R̂ → Mwith the transition functions φβα . Identify GL(q, R) with the closed subgroup j (GL(q, R)) of the Lie group GL(n, R), then
R ⊂ R̂, moreover π̂�R = π. Thus, we consider R as the reduced sub-bundle of GL(n, R)-bundle R̂

(
M,GL(n, R)). Let Qbe the H-connection on R satisfying Proposition 3.4. Then

f̃i∗Qu = Q0�f̃i(u), u ∈ Ũi ⊂ R, i ∈ J. (1)
Connection Q is extended to the GL(n, R)-connection Q̂ on R̂ in the following way. Consider arbitrary z ∈ R̂. Let
x = π̂(z). Then there exist u ∈ π̂−1(x) ∩ R and a unique a ∈ GL(n, R) such that z = u ·a. Define Q̂z = Ra∗(Qu). Dueto GL(q, R)-invariance of Q the distribution Q̂ is really defined. Remark that Q̂ is GL(n, R)-invariant distribution on R̂and transverse to the fibers of the bundle π̂ : R̂→ M. Hence the connection Q̂ defines some linear connection ∇ on themanifold M. Let us show that M is a totally geodesic distribution on (M,∇).Since the property of M to be totally geodesic is local, it is sufficient to prove that it holds in a neighborhood of a point
x ∈ M. Let x ∈ U , where f : U → V is a submersion from the (N,∇N)-cocycle defining the foliation (M,F ). Consideran arbitrary vector X ∈Mx , let f∗x (X ) = Y , then Y ∈ TyN, where y = f(x). There is a geodesic σ = σ (s), s ∈ (−ε, ε), of(
N,∇N) satisfying the conditions σ (0) = y, σ̇ (0) = Y . Due to the theorem about existence and uniqueness of solutionsof ordinary differential equations, there is a number δ, 0 < δ ≤ ε, and a local M-lift γ = γ(s), s ∈ (−δ, δ), of σto the point x. It means that γ is a such integral curve of the distribution M that γ(0) = x and f ◦γ = σ�(−δ,δ). As
f∗x : Mx → TxN is an isomorphism of vector spaces, so γ̇(0) = X . Show that γ is geodesic on (M,∇).Let ω̂ be the connection form and θ̂ be the canonical Rn-value 1-form on R̂ defined by the connection ∇. Remind,that Bξ ∈ X(R̂) is called the standard horizontal vector field if ω̂(Bξ ) = 0 and θ̂(Bξ ) = ξ = const ∈ Rn. It is known[4, Chapter III, Proposition 6.3] that γ is geodesic in (M,∇) if and only if γ is the projection of an integral curve of somestandard horizontal vector field. Since σ is geodesic, with σ (0) = y, then for v ∈ p−1(y) there is the Q0-horizontal lift
σ0 = σ0(s), s ∈ (−ε, ε), of curve σ to the point v , moreover θ0(σ̇0(s)) = ξ = const ∈ Rq. Let f̃ : Ũ = π−1(U) → P bethe submersion defined by f and satisfying the equality p◦ f̃ = f ◦π. Take u ∈ f̃−1

i (v) ∩ π−1(x) ⊂ R. Then there is
Q̂-horizontal lift γ̂ = γ̂(s), s ∈ (−δ, δ), of curve γ to the point u. Therefore the equality π ◦ γ̂ = γ implies that γ̂ is anintegral curve of the distribution M̂ = {M̂u : u ∈ R̂}, where M̂u = {Z ∈ Q̂u : π̂∗u(Z ) ∈Mx , x = π̂(u)}. As θ̂�Ũ = ĵ ◦θ,where ĵ : Rq → Rn ∼= Rn−q×Rq, ξ 7→ (0n−q, ξ) and 0n−q is zero in Rn−q, then (1) implies the equality

θ̂
(˙̂γ(s)) = ĵ ◦θ

(˙̂γ(s)) = ĵ ◦θ0(f̃i∗ ˙̂γ(s)) = ĵ ◦θ0(σ̇0(s)), s ∈ (−δ, δ),
whence θ̂(˙̂γ(s)) = ĵ ◦θ(˙̂γ(s)) = (0n−q, ξ) = η ∈ Rn, if θ0(σ̇0(s)) = ξ ∈ Rq, s ∈ (−δ, δ). Therefore, γ̂(s), s ∈ (−δ, δ), isan integral curve of the horizontal vector field Bη on R̂. It means that γ(s) = π(γ̂(s)) is geodesic on (M,∇). Thus, thedistribution M is a geodesic invariant distribution on (M,∇).
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Now let us show that the linear connection ∇ is projectable with respect to (M,F ). Consider an arbitrary geodesic νon U . Let ν(0) = x and ν̇(0) = X ∈ TxM. Take u0 ∈ R ∩ π̂−1(x) and η = u−10 (X ) ∈ Rn. Let pr : Rn ∼= Rn−q×Rq → Rqbe the canonical projection and ζ = pr(η) ∈ Rq. There is an integral curve ν̂ of the standard vector field Bη through
ν̂(0) = u0 on R. Then ν = π̂ ◦ ν̂ and σ̂ = f̃ ◦ ν̂ is the integral curve of the standard vector field Bζ through v0 = f̃(u0)on P. Since f ◦ π̂ = p◦ f̃ , it is easy to see that σ = p◦ σ̂ is a geodesic on V , and f ◦ν = σ . This proves that ∇ is aprojectable connection with respect to (M,F ).According to results of Willmore [14] and Walker [13], there is a unique linear connection ∇(1) without torsion on Msuch that the foliation (M,F ) is parallel with respect to the connection ∇(1). Since each parallel distribution is geodesicinvariant, the foliation (M,F ) is totally geodesic on (M,∇(1)).Define a new connection ∇M on the manifold M by the equality

∇M
X Y =∇(1)

X Y F +∇XYM, X, Y ∈ X(M), (2)
where the linear connection ∇ is given above and Y F = pF(Y ), YM = pM(Y ). The direct verification shows that ∇M isreally a linear connection on M. In accordance with (2), pM(∇M

X Y ) = pM(∇XY ) for all X ∈ X(M), Y ∈ XM(M). Takinginto consideration that ∇ is a projectable connection with respect to (M,F ), we get the assertion (ii) of Theorem 4.1.The property of the distribution M to be geodesic invariant with respect to the connection ∇ and the definition of theconnection∇M by the equality (2) imply the property of M to be geodesic invariant on (M,∇M). Similarly, the propertyof TF to be geodesic invariant on (M,∇M) follows from the same property of TF with respect to the connection ∇(1)and the definition of ∇M.The distribution M plays the role of the equipment of a leaf L of the foliation (M,F ). Hence the connections ∇Mand ∇(1) induce through M the same connection without torsion on L. It finishes the proof of the statement (i) ofTheorem 4.1. The properties a) and b) follow from the corresponding properties of the connection ∇ proved above.
Remark 4.2.Using the proof of Theorem 4.1 it is easy to see that a linear connection ∇ on M is projectable with respect to thefoliation (M,F ) if and only if the respective induced GL(q, R)-connection Q in the foliated bundle of transverse frames
R
(
M,GL(q, R)) is projectable with respect to the lifted foliation (R,F) in the sense of subsection 3.1.

5. The Lie group of automorphisms of foliations with an adapted local addi-
tion

The goal of this section is to recall the results of Macias-Virgós and Sanmartín Carbón [7].
5.1. Michor’s topology

Let M and M ′ be two smooth manifolds. Consider the set C∞(M,M ′) of smooth maps from M to M ′. Recall some notionsand notation of different topologies on the set C∞(M,M ′) from [8] (see also [5]).Let 0 ≤ r ≤ ∞ and Jr(M,M ′) be the space of r-jets of smooth maps from C∞(M,M ′). Let COr be the compact Cr-topologyon C∞(M,M ′). It is the topology induced by the embedding jr : C∞(M,M ′) → C0(M, Jr(M,M ′)) from the compact opentopology.Let Cr-topology of Whitney or WOr-topology on the set C∞(M,M ′) be defined as the topology having the basis
W r(Ω) = {f ∈ C∞(M,M ′) : (jrf)(M) ⊆ Ω},

where Ω is any open set in Jr(M,M ′). The basis of D-topology on C∞(M,M ′) is given by the sets
D(L,Ω) = {

f ∈ C∞(M,M ′) : (jrf)(Lm) ⊆ Ωm for all m},
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where L = {Lm} is a locally finite countable collection of closed sets in M and Ω = {Ωm} is a family of open setsin J∞(M,M ′). If the manifold M is not compact, the space C∞(M,M ′) with D-topology is not locally path connected.This problem was solved by the addition of new open sets that are the equivalence classes of the relation: f ∼ g if
g coincides with f on the complement to some compact set in M ′. The resulting topology is called FD-topology or
Michor’s topology.We emphasize that WOr-topology is finer than both COr-topology and WOr′-topology for r ≥ r′. The D-topology isfiner than WO∞-topology. By the definition, Michor’s topology is finer than D-topology.
5.2. The adapted local addition

Denote the projection of the tangent bundle to the manifold M by τ : TM → M. Let s0 : M → TM, x 7→ 0x , be the zerosection of τ assigning to an arbitrary point x of M the zero vector 0x of TxM. Thus M0 = s0(M) is a submanifold of TMdiffeomorphic to M. A map E : S → M of some open neighborhood S of the submanifold M0 of TM is said to be a local
addition [8], if the following two conditions are satisfied:(D1) E(0x ) = x for every x ∈ M.(D2) The map (τ, E) : S → M×M, Xx 7→ (x, E(Xx )), Xx ∈ S, is a diffeomorphism onto some neighborhood W of thediagonal ∆ = {(y, y) : y ∈ M} in the product of manifolds M×M.
Suppose that a foliation (M,F ) of codimension q is given. There is a foliated chart (U,φ) at every point x ∈ M. Let
FU = F�U be the restriction of the foliation (M,F ) onto U . Then (U,F�U ) is a simple foliation, which is isomorphic (inthe category Fol ) to the standard foliation (Rn, Fst). Therefore the leaf space Û = U/FU is a smooth q-dimensionalmanifold diffeomorphic to Rq, and the canonical projection πU : U → Û is a submersion.A local addition E on a foliated manifold M is called adapted to the foliation (M,F ) [7], if for any foliated chart (U,φ)and the canonical projection πU : U → Û there is an open neighborhood SU ⊂ S of submanifold U0 = s0(U) in TU anda local addition EU : SU = (πU )∗(SU )→ Û , moreover E(SU ) ⊂ U , and the following diagram is commutative:

SU
E−−−−−→ Uy(πU )∗ yπU

SU
EU−−−−−→ Û.

Macias-Virgós and Sanmartín Carbón proved that for any Riemannian foliation there is an adapted local addition [7].
5.3. The Lie group of automorphisms of foliations

Denote the group of all automorphisms of a foliation (M,F ) in the category of foliations Fol by D(M,F ). Let f be anarbitrary element of the group D(M,F ). Consider the pullback f∗TM of the tangent bundle τ : TM → M. A smooth map
X : M → TM satisfying the equality τ ◦X = f is named a vector field X along f . Let V be an open set in M. A vectorfield X along f is said to be foliated, if for any basic function h defined on V , the function Xh given by (Xh)x = Xxh,
x ∈ f−1(V ), is basic. The set of foliated vector fields along f is denoted by ΓF (f∗TM). Let ΓFc (f∗TM) be the set offoliated vector fields along f with compact support.Suppose that a foliation (M,F ) admits an adapted local addition. The application of Michor’s results [8] allowed Macias-Virgós and Sanmartín Carbón [7] to prove that ΓFc (f∗TM) with FD-topology is an LF-space, i.e., it is a complete locallypath connected vector space, which is an inductive limit of Fréchet spaces.Recall of the construction of an atlas on the automorphism group D(M,F ) in the category Fol of (M,F ) [7]. Twoelements g, f ∈ D(M,F ) are said to be equivalent f ∼ g if g coincides with f on the complement to some compact set.According to our assumption, for (M,F ) there is an adapted local addition E : S → M. Then W = (τ, E)(S) is anopen neighborhood of the diagonal of M×M. Let f be any automorphism from D(M,F ). The topology in D(M,F ) is
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defined as the induced topology from the LF-manifold Diff(M) introduced by Michor [8] (see also [5]). Then an openneighborhood Uf of f in D(M,F ) is given by
Uf = {

h ∈ D(M,F ) : h ∼ f, (f(x), h(x)) ∈ W, x ∈ M
}
.

The map φf : Uf → ΓFc (f∗TM) is defined by φf (h)(x) = Xx , where Xx is the unique vector in S ∩ Tf(x)M such that(τ, E)(Xx ) = (f(x), h(x)). It is proved in [7] that the map h ∈ Uf is a morphism of Fol if the vector field X = φ(h)along f is foliated. Moreover, for every f ∈ D(M,F ) the map φf : Uf → ΓFc (f∗TM) is a homeomorphism onto an openneighborhood of the zero section in the vector space ΓFc (f∗TM), and the last space is isomorphic to the vector space ofthe Lie algebra Xc(M,F ) of foliate vector fields with compact support.Thus the following statement is a corollary of [7, Theorem 13 and Corollary 14].
Theorem 5.1.
Let (M,F ) be a foliation that admits an adapted local addition. Then the group D(M,F ) of foliation preserving
diffeomorphisms is an infinite-dimensional Lie group modeled on the Lie algebra Xc(M,F ), which is an LF-space.

6. Proof of Theorem 1.1

Let (M,F ) be a foliation of an arbitrary codimension q with transverse linear connection defined by (N,∇N)-cocycle{
Ui, fi, {kij}

}
i,j∈J . Fix a q-dimension distribution M transverse to (M,F ). Denote the linear connection on M satisfyingTheorem 4.1 by ∇M. Further we consider open subsets of M and N with the linear connections inducted by ∇M andby ∇N , respectively.

6.1. Neighborhoods Ω(W,ε)
Consider a submersion f : U → V from the maximal (N,∇N)-cocycle determining (M,F ). Let gU and gV be Riemannianmetrics on U and V , respectively. Define a new Riemannian metric g on U by the following formula:

g(X, Y ) = gU
(
XF , Y F)+ gV

(
f∗
(
XM

)
, f∗
(
YM
))

for X = XF + XM and Y = Y F + YM in X(U).Remark that f : (U, g) → (V , gV ) is a Riemannian submersion, and MU is a horizontal distribution for f [2]. It is wellknown that for a Riemannian submersion f the length of a smooth horizontal curve µ is equal to the length of itsprojection f ◦µ. By the norms of vectors X ∈ TxU and Y ∈ TwV we shall mean the numbers ‖X‖x = √
gx (X, X ) and

‖Y‖Vw =√gVw (Y , Y ) .Let W and W V be open relatively compact subsets in U and V properly. Introduce for ε > 0 the following notation:
Ω(W,ε) = {X ∈ TxU : x ∈ W, ‖X‖x < ε}, Ω(W V, ε

) = {Y ∈ TwV : w ∈ W V, ‖X‖Vw < ε
}
.

Put Wε = exp(Ω(W,ε)), W V
ε = expV(Ω(W V, ε)), where exp and expV are exponential mappings with respect to theconnections ∇M and ∇N correspondingly, if these sets are defined. As was proved by Whitehead (for example, see[4, Chapter III, § 8], at every point of the manifold provided with a linear connection there is a normal convex neighborhood.Therefore without loss of generality we may assume ε to be so small that the restrictions exp�Ω(W,ε)∩TxU , x ∈ W , andexpV�Ω(WV ,ε)∩TwV ), w ∈ W V, are diffeomorphisms onto images belonging to U and V , respectively.
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Lemma 6.1.
Let f : U → V be any submersion from

(
N,∇N)-cocycle determining (M,F ). Then at each point z ∈ U there is an open

neighborhood W = W (z) ⊂ U and a number δ = δ(z) > 0 satisfying the following condition (in the notation introduced
above):

for any geodesic σ of ∇N from V (v) = f(Wδ ), v = f(z), such that ‖σ̇ (0)‖Vσ (0) < δ,
and for each point x ∈ f−1(σ (0)) ∩Wδ there is M-lift γ of σ to x, and γ is M-geodesic of ∇M in U .

Proof. Take an arbitrary point z ∈ U . Let ε be a small positive number and W be an open relatively compactneighborhood of z in U such that Wε ⊂ U . Any submersion is an open map, hence W V = f(W ) is an open relativelycompact neighborhood of v = f(z) in V .In conformity with (iii) of Theorem 4.1 any geodesic µ from (
U,∇M

) projects onto a geodesic f ◦µ from (
V ,∇N). As

f : U → V is a Riemannian submersion, so ‖(µ̇(0))‖ ≥ ‖( ˙f ◦µ)(0)‖V , with ‖(µ̇(0))‖ = ‖( ˙f ◦µ)(0)‖V for any M-geodesic µ on(
U,∇M

). Therefore the set W V
ε is defined, and the inclusions W V

ε ⊂ f(Wε) ⊂ V are valid. Let γX (s) = exp sX , where
s ∈ [0, 1]. Thanks to the following property of geodesics γλX (s) = γX (λs), λ ∈ [0, 1], 1-parametric family of neighborhoods
{Wλε} exists in U and continuously depends on λ. This family may be considered as a compression from Wε , λ = 1,to W , λ = 0. Due to the continuity of the exponential mapping it implies the existence of a number δ0 > 0 such thatfor every δ, 0 < δ < δ0, we have exp(Ω(Wδ , δ)) ⊂ Wε and f(Wδ ) ⊂ W V

ε . Take one of such δ and show that W (z) and δsatisfy Lemma 6.1.Consider an arbitrary geodesic σ from V (v) = f(Wδ ) of (V ,∇N ) such that ‖Ẏ‖Vw < δ, where w = σ (0) and Y = σ̇ (0).For every x ∈ f−1(w) ∩ Wδ the restriction f∗�Mx : Mx → TwV is an isometry of Euclidean vector spaces (Mx , gx )and (TwV , gVw). Hence there is a unique vector X ∈ Mx such that f∗x (X ) = Y , with ‖X‖x = ‖Y‖Vw < δ. Therefore
X ∈ Ω(W, δ) and there exists a geodesic γX (s) = expx sX , s ∈ [0, 1], moreover γX (s) ∈ Wδ ⊂ U . Because M isa geodesic invariant distribution by (i) of Theorem 4.1, γX is an M-geodesic on (U,∇M

). In accordance with thestatement (iii) of Theorem 4.1 the projection ν = f ◦γX is a geodesic in (V ,∇N). Note that ν = σ as geodesics in(
V ,∇N) having the same tangent vector Y at common point w. Thus γX is M-lift of σ into point x.

6.2. The map EW : Ω(W, δ)→ U

Suppose that the submersion f : U → V , the number δ and Ω(W, δ) satisfy Lemma 6.1. Define a map EW : Ω(W, δ)→ Uin the following way. For X ∈ Ω(W, δ) ∩ TxM and y = expx pF (X ) let us put
EW (X ) = expy ◦(f∗y�My

)−1 ◦ f∗x ◦pM(X ).
In other words, for any X ∈ Ω(W, δ)∩TxM and y = expx XF the geodesic σ (s) = f ◦ exp sXM, s ∈ [0, 1], is defined, and
v = σ (0) = f(x) ∈ V . Then EW (X ) = γ(1), where γ is the M-lift of σ to the point y.The definition of the Riemannian metric g implies the inequality ‖XF‖x ≤ ‖X‖x , hence for X ∈ Ω(W, δ) ∩ TxM it isnecessary XF ∈ Ω(W, δ) ∩ TxM and y = expx XF ∈ Wδ . According to Lemma 6.1 the lift γ exists and belongs to U .Therefore, the map EW : Ω(W, δ)→ U is really defined. It is clear that the map EW : Ω(W, δ)→ U is smooth. It is notdifficult to show the validity of the following assertion.
Lemma 6.2.
At each u ∈ W there is such neighborhood D ⊂ Ω(W, δ) of 0u in TuM that the restriction EW �D : D → U is a
diffeomorphism onto the image EW (D).
6.3. The set SU and the map EU : SU → U

Take any z ∈ U . Consider a neighborhood W = W (z) and Ω(W, δ), δ = δ(z), satisfying Lemma 6.1. Remark that
U = ⋃

z∈UW (z). Let SU = ⋃
z∈U Ω(W (z), δ(z)) and X ∈ SU . Then there is a set Ω(W, δ) containing X . Let
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EW : Ω(W, δ) → U be the map given above. The equality EU (X ) = EW (X ) defines a map EU : SU → U . Indeed,for X ∈ SU ∩ TxW and y = expXF we have EW (X ) = γ(1), where γ is the M-lift of the geodesic σ (s) = f ◦ exp sXM,
s ∈ [0, 1], to the point y. Hence EW (X ) does not depend on the choice of z, W = W (z) and δ = δ(z). Therefore the map
EU : SU → U is well defined and smooth.Each submersion is an open map, hence f(W (z)) = V (v) is an open neighborhood of v = f(z) in V , and V = ⋃v∈V V (v).For the set SV = {f∗x (X ) : X ∈ SU ∩ TxU, x ∈ U} the following diagram is commutative:

SU
EU−−−−−→ Uyf∗ yf

SV
exp−−−−−→ V .

(3)

6.4. The map (τ, EU) : SU → U×U

Let τ : TM → M be the projection of the tangent bundle. Remark that the proof of the following lemma is similar to theproof of [7, Proposition 19] and it is given here for the completeness of the description. Let n = dimM.
Lemma 6.3.
The map (τ, EU ) : Ω(W, δ)→ U×U , X 7→

(
τ(X ), EU (X )), is a diffeomorphism onto an open neighborhood of the diagonal∆W = {(x, x) : x ∈ W} in the product U×U .

Proof. It is sufficient to show that for each point x ∈ W there is an open neighborhood W ′ ⊂ W and a positivenumber r < δ such that (τ, EU ) is a diffeomorphism between Ω(W ′, r) and an open neighborhood (τ, EU )(Ω(W ′, r)) of(x, x) in U×U . It is a trivializing open set of the tangent bundle, because U is a contractible set. Therefore
(τ, EU )∗0x : TxW ×Rn → TxU×TxU, n(X, ν) 7→ (

X, X + (Ex )∗0x (ν)).
It follows from Lemma 6.2 that the map (Ex )∗0x : Rn ∼= T0xM → TxU is also an isomorphism of the indicated vector space,so (τ, EU )∗0x : T0xΩ(W, δ) → T(x,x)(U×U)
is an isomorphism. Hence there is an open neighborhood Ω′ of 0x in Ω(W, δ) such that (τ, EU ) : Ω′ → U×U is adiffeomorphism onto some open neighborhood W ′ of (x, x) in U×U . Since Ω′ contains some open neighborhood Ω(W ′, r)satisfying Lemma 6.2, the statement is proved.
6.5. Proof of Theorem 1.1

Let S be the union of SU for the maximal (N,∇N)-cocycle determining the foliation (M,F ). Let E : S → M be defined bythe equality E(X ) = EU (X ), X ∈ SU . Show that this map E : S → M is an adapted local addition to the foliation (M,F ).At first, we check that E : S → M is well defined, i.e. EU (X ) = EŨ (X ) when X ∈ SU ∩ SŨ . Denote the correspondingsubmersions by f : U → V and f̃ : Ũ → Ṽ . Let γ(s) = exp sXM, s ∈ [0, 1]. Let X = XF + XM ∈ S ∩ TuM, then
y = expx XF ∈ U ∩ Ũ . According to the definition, SU (X ) = γ(1), where γ is the M-lift to y of the geodesic σ = f ◦γfrom V . By analogy, SŨ (X ) = γ̃(1), where γ̃ is the M-lift to y of the geodesic σ̃ = f̃ ◦γ from Ṽ . Note that byTheorem 4.1, γ and γ̃ are M-geodesics in M. Since (M,F ) is a foliation with transverse linear connection, there is alocal isomorphism of the induced linear connections k : f̃ (U ∩ Ũ) → f (U ∩ Ũ) satisfying the equality f = k ◦ f̃ . Hence
σ = f ◦γ = (k ◦ f̃)◦γ = k ◦ (̃f ◦γ) = k ◦ σ̃ and σ̇ (0) = k∗ṽ

(˙̃σ (0)), where ṽ = f̃(u). Therefore σ̇ (0) = k∗ṽ
(˙̃σ (0)) =

k∗ṽ
(
f̃∗y
(˙̃γ(0))) = (

k∗ṽ ◦ f̃∗y
)(˙̃γ(0)) = f∗y

(˙̃γ(0)). On the other hand, σ̇ (0) = f∗y(γ̇(0)) and we have σ̇ (0) = f∗y(γ̇(0)) =
f∗y
(˙̃γ(0)).
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As the map f∗y : My → TvV , v = f(y), is an isomorphism of the corresponding vector spaces, it is necessary that
γ̇(0) = ˙̃γ(0). Thus, M-geodesics γ and γ̃ have the properties: γ(0) = γ̃(0) = y and γ̇(0) = ˙̃γ(0). Therefore γ = γ̃ and
EU (X ) = EŨ (X ).The commutative diagram (3) and Lemma 6.3 imply that the map E : S → M is an adapted local addition to the foliation(M,F ). Therefore, as it was shown by Macias-Virgós and Sanmartín Carbón (Theorem 5.1), the full automorphism group
D(M,F ) of this foliation (M,F ) is an infinite-dimensional Lie group whose manifold is modeled on the LF-spaces. �
Acknowledgements

This work was supported by the Federal Target Program Scientific and Scientific-Pedagogical Personnel, ProjectNo. 14.B37.21.0361, and the Russian Federation Ministry of Education and Science, Project No. 1.1907.2011.

References

[1] Bel’ko I.V., Affine transformations of a transversal projectable connection of a manifold with a foliation, Math. USSR-Sb., 1983, 45, 191–204[2] Besse A.L., Einstein Manifolds, Classics Math., Springer, Berlin, 2008[3] Kamber F.W., Tondeur P., G-foliations and their characteristic classes, Bull. Amer. Math. Soc., 1978, 84(6), 1086–1124[4] Kobayashi S., Nomizu K., Foundations of Differential Geometry I, Interscience, New York–London, 1963[5] Kriegl A., Michor P.W., Aspects of the theory of infinite-dimensional manifolds, Differential Geom. Appl., 1991, 1(2),159–176[6] Lewis A.D., Affine connections and distributions with applications to nonholonomic mechanics, In: Pacific Instituteof Mathematical Sciences Workshop on Nonholonomic Constraints in Dynamics, Calgary, August 26–30, 1997, Rep.Math. Phys., 1998, 42(1-2), 135–164[7] Macias-Virgós E., Sanmartín Carbón E., Manifolds of maps in Riemannian foliations, Geom. Dedicata, 2000, 79(2),143–156[8] Michor P.W., Manifolds of Differentiable Mappings, Shiva Math. Ser., 3, Shiva, Nantwich, 1980[9] Molino P., Propriétés cohomologiques et propriétés topologiques des feuilletages à connexion transverse projetable,Topology, 1973, 12, 317–325[10] Molino P., Riemannian Foliations, Progr. Math., 73, Birkhäuser, Boston, 1988[11] Palais R.S., Foundations of Global Non-Linear Analysis, Benjamin, New York–Amsterdam, 1968[12] Postnikov M.M., Lectures in Geometry V, Factorial, Moscow, 1998 (in Russian)[13] Walker A.G., Connexions for parallel distributions in the large, Quart. J. Math. Oxford Ser., 1955, 6, 301–308[14] Willmore T.J., Connexions for systems of parallel distributions, Quart. J. Math. Oxford Ser., 1956, 7, 269–276[15] Zhukova N.I., Minimal sets of Cartan foliations, Proc. Steklov Inst. Math., 2007, 256(1), 105–135[16] Zhukova N.I., Global attractors of complete conformal foliations, Sb. Math., 2012, 203(3-4), 380–405

2088

Author c
opy


	Introduction
	Basic concepts and notation
	The foliated bundle of transverse frames
	The existence of special connections
	The Lie group of automorphisms of foliations with an adapted local addition
	Proof of Theorem 1.1
	Acknowledgements
	References

