
Practical Computing with Pattern Structures in
FCART Environment

Aleksey Buzmakov1,2 and Alexey Neznanov2

1 LORIA (CNRS – Inria NGE – U. de Lorraine), Vandœuvre-lès-Nancy, France
2 National Research University “Higher School of Economics”, Moscow, Russia

aleksey.buzmakov@inria.fr, aneznanov@hse.ru

Abstract. A new general and efficient architecture for working with
pattern structures, an extension of FCA for dealing with “complex” de-
scriptions, is introduced and implemented in a subsystem of Formal Con-
cept Analysis Research Toolbox (FCART). The architecture is universal
in terms of possible dataset structures and formats, techniques of pattern
structure manipulation.

Keywords: Formal Concept Analysis, Pattern Structures, Software

Introduction

FCART1 is a specialized software for data analysis by means of Formal Con-
cept Analysis (FCA) and related methods aiming at processing an arbitrary
dataset [1]. FCA processes a binary context to a concept lattice, which can be
very useful for “gold mining” – obtaining a new knowledge. However, datasets
are unlikely kept in the binary way where an object is described as a set of bi-
nary attributes it possesses. To deal with this problem different kinds of scalings
can be applied to a dataset, converting it to a binary context. In some cases
it can be slow or meaningless. Pattern structures (PSs) is an extension of FCA
dealing with “complex” data [2]. However, just a couple of applications of PSs
are available for the community and, moreover, neither of them are able to work
with an arbitrary PS. Thus, we introduce a generalized approach to PSs within
FCART.

The paper is organized as follows. Section 1 defines FCA and PSs. The next
section describes the overall PS processing within FCART, divided into logical
submodules of the approach. Finally, the paper is concluded before program
interfaces of different modules are given.

1 FCA and Pattern Structures

Formal concept analysis (FCA) [3] is a mathematical formalism having many
applications in data analysis. It process a binary context (a triple (G,M, I)

1 http://ami.hse.ru/issa/Proj_FCART



where G is a set of objects, M is a set of attributes and I ⊆ G×M is a relation
between them) into a concept lattice. Pattern structures (PSs) is a generalization
of FCA for dealing with complex structures, such as sequences or graphs [4]. As
it is a generalization it is enough to introduce only PSs.

Definition 1. A PS is a triple (G, (D,u), δ), where G is a set of objects, (D,u)
is a complete meet-semilattice of descriptions and δ : G→ D maps an object to
the description.

The lattice operation in the semilattice (u) corresponds to the similarity
between two descriptions d1 and d2, i.e. the description which is common between
d1 and d2. Standard FCA can be presented in terms of PSs in the following way.
The set of objects G remains, while the semilattice of descriptions is (℘(M),∩),
where ℘(M) is a powerset of M , and, thus, a description is a set of attributes.
The similarity operation corresponds to the set intersection, i.e. the similarity is
the set of common attributes. If x = {a, b, c} and y = {a, c, d} then xuy = x∩y =
{a, c}. The mapping δ : G→ ℘(M) is given by, δ(g) = {m ∈M | (g,m) ∈ I}.

The Galois connection for a PS (G, (D,u), δ) between the set of objects and
the semilattice of descriptions is defined as follows:

A� :=
l

g∈A
δ(g), for A ⊆ G

d� := {g ∈ G | d v δ(g)}, for d ∈ D,

where the partial order (or the subsumption order) on D is defined w.r.t. the
similarity operation u: c v d⇔ c u d = c, and c is subsumed by d.

Definition 2. A pattern concept of a PS (G, (D,u), δ) is a pair (A, d) where
A ⊆ G and d ∈ D such that A� = d and d� = A, A is called a concept extent
and d is called a concept intent.

As in the standard case of FCA, a pattern concept corresponds to the max-
imal set of objects A whose description subsumes the description d, while there
is no e ∈ D, subsuming d, i.e. d v e, describing every object in A. The set of all
concepts can be partially ordered w.r.t. partial order on the extents (dually, the
intents by v), within a concept lattice.

Example 1. PSs are successfully used for interval data [5]. For example, in gene
expression data every gene is described by its expression value in different sit-
uations. The meet-semilattice (Dips,uips) includes vectors of intervals. An ex-
ample of an interval PS is given by δ-function in Table 1. The description of g1
is g�1 = 〈[1, 3]; [3, 5]; [2, 4]〉. The description materializes the fact that the gene
expression in situations m1, m2, m3 are within the corresponding intervals. The
similarity operation (uips) between two interval descriptions g�1 and g�2 is the
component-wise convex hull of intervals. Thus, g�1 ug�2 = 〈[1, 7]; [3, 6]; [2, 5]〉. The
interval pattern concept lattice resulting from this PS is shown in Figure 1 (* is
a special description subsuming anything).



Example 2. Given a dataset with objects described by elements of poset P ,
e.g. sequences (w.r.t sequence-subsequence relation) or graphs (w.r.t. subgraph
isomorphism relation), a corresponding PS can be defined in the following way.
The semilattice (D,u) based on poset P is a subset of the powerset of P , D ⊆
℘(P ), such that if d ∈ D contains an element p ∈ P then all its “subelements” x
should be included into d, ∀p ∈ d, @x ≤ p : x /∈ d, and the semilattice operation
is the set intersection for two sets of elements. Given two patterns d1, d2 ∈ D,
the set intersection operation ensures that if an element p belongs to d1 u d2
then any subsequence of p belongs to d1 u d2 and, thus, (d1 u d2) ∈ D.

However, the set of all possible “subelements” for a given pattern can be
rather large. Thus, it is more efficient and representable to keep a pattern d ∈ D
as a set of all maximal elements d̃, d̃ = {p ∈ d | @x ∈ d : x ≥ p} . Note that
representing a pattern by the set of all maximal elements allows for an efficient
implementation of the intersection “u” of two patterns.

m1 m2 m3

g1 [1, 3] [3, 5] [2, 4]
g2 [5, 7] [4, 6] [2, 5]
g3 [1, 9] [2, 7] [6, 6]

Table 1: An Interval PS.

({g1} ; 〈[1, 3]; [3, 5]; [2, 4]〉) ({g2} ; 〈[5, 7], [4, 6], [2, 5]〉) ({g3} ; 〈[1, 9], [2, 7], [6, 6]〉)

({g1, g2} ; 〈[1, 7]; [3, 6]; [2, 5]〉)

({g1, g2, g3} ; 〈[1, 9], [2, 7], [2, 6]〉)

(∅; ∗)

Fig. 1: The concept lattice for the PS in Table 1.

PSs can be hard to process due to the usually large number of concepts in the
concept lattice and the complexity of the similarity operation (think for instance
of the graph isomorphism problem). Moreover, a pattern lattice can contain a
lot of irrelevant patterns for an expert. Projections of PSs “simplify” to some
degree the computation and allow one to work with a reduced description. In fact,
projections can be considered as constraints (or filters) on patterns respecting
certain mathematical properties, ensuring that the concepts in the projected
lattice have correspondence to the original ones [4].

A projection ψ : D → D is an operator, which is monotone (x v y ⇒ ψ(x) v
ψ(y)), contractive (ψ(x) v x) and idempotent (ψ(ψ(x)) = ψ(x)). A projection
preserves the semilattice operation u as follows. Under a projection ψ, a PS
(G, (D,u), δ) becomes the projected PS ψ((G, (D,u), δ)) = (G, (D,u), ψ ◦ δ).
The concepts of a projected pattern structure have a “similar” concept in the
initial pattern structure [4].

2 Pattern Structures Techniques

As a PS is an abstract mathematical object, any software aiming at the PS
realization should either prepare several different PSs, such as PSs based on
intervals or graphs, or give to a user an opportunity to add arbitrary PSs to the
software. Our goal is to process any PSs and in this case one should decide how
an arbitrary semilattice can be introduced by a user. It is not possible in some
cases to enumerate all elements of a semilattice. For example, the semilattice of



Function CloseByOne(Ext, Int)
Data: (G, (D,u), δ), extent Ext and intent Int of a concept.
Result: All canonical ancestor concepts of the concept (Ext, Int).
foreach S ⊆ G, S � Ext do

NewInt←−
ddd

g∈S

δ(g) ; /* u - intersection */

NewExt←− {g ∈ G | NewInt vvv δ(g)}; /* v - subsumption */

if IsCanonicExtension(Ext, NewExt) then
SaveConcept((NewExt,NewInt));
CloseByOne(NewExt,NewInt);

CloseByOne(∅, >); /* Find all concepts... */

Algorithm 1: The modified version of CbO for PS processing.

graphs is infinite and even if one would like to select a finite subset of it, the
subset should be significantly large in order to be useful in real-life applications.
Another option is the constructive way for defining a semilattice, i.e. one should
be able to keep any element of the given semilattice, to compute the semilattice
operation between two elements of the semilattice and to check equality of two
elements. Although the subsumption relation on a semilattice can be checked
as c v d ⇔ c u d = c, in many cases it can be more efficient to check the
subsumption relation directly. Later we discuss how semilattices are processed
more carefully.

But how can we build a concept lattice from a given PS? Many state-of-the-
art algorithms can be slightly modified in such a way that avoid enumeration of
attributes, i.e. performing only the set intersection operation and checking the
subset relation without naming the attributes. This modification allows to fur-
ther substitute the set intersection by the corresponding semilattice operations
and to compute the concept lattice from a PS. Algorithm 1 shows the listing of
the modified CbO [6] algorithm. Moreover, modified algorithms can easily process
standard FCA by introducing the described above powerset semilattice. Since
PSs can be processed with a number of different algorithms, we should allow to
a user to introduce any algorithms he wants.

The following parts, called plugins, are introduced in FCART:

– A constructive semilattice description;
– Extent and Intent storages, managing extents and intents of a lattice;
– A concept lattice builder working with any available semilattices.

Now we can build a concept lattice from any PSs, but we still do not know
how to process the different element nature of a semilattice, i.g. how to load or
save it. These problems are discussed in the following subsection as well as the
processing of projections of PSs.

2.1 Input and Output Data Formats

For the purposes of keeping and exchanging of patterns format JSON is chosen
because it allows to serialize nearly any kind of data, is standardized 1, has low

1 http://www.json.org/



{
“Count”: 3,
“Inds”:[2, 5, 8]

}

(a) Indices array.
{

“Count”: 3,
“Inds”::[2.3, 5.5, 8.1]

}

(b) Real numbers array.

{[
{ “NodesCount” : 2 },
{ “Nodes” : [
{ “Int” : 0, “Ext” : 0 },
{ “Int” : 1, “Ext” : 1 }

]},
{ “ArcsCount” : 1 },
{ “Arcs” : [
{ “S” : 0, “D” : 1 },

]},
]}

(c) Concept Lattice.

Fig. 2: JSON formats for object and semilattice element descriptions.

parsing overhead, and is more compact than XML. We introduce the following
general datatypes: primitives (numbers, strings), sets, ordered sets, rooted trees
and general structures, i.e. graphs. But what kind of data we need to process?
First a dataset from an external source should be converted to JSON and put
into an internal collection. This imported dataset corresponds to a δ-function
for a PS. Since the target semilattice can be a projection, the descriptions in
this semilattice can be different from the descriptions in the imported dataset.
For example, an object description can be a graph, while the projection can be a
chain which can be kept in more efficient and tractable structure than a general
graph. Thus we have two datatypes, one is used for a δ-function and the second
is for a semilattice object. To allow for a plugin work with only the descriptions
this plugin can work, the plugin specifies the external and internal datatypes
by unique ID of that datatype. Figure 2 exemplifies indexes array, which can be
used to keep sets, and numbers array, which can be used as the initial description
of interval PS.

The next entity for exchanging between FCART and a plugin is a concept
lattice. In our case it is a set of concepts with several edges. The concepts extents
and intents are referred by special indexes, which come from extent and intent
storages. The simple lattice is exemplified in Figure 2c.

Finally, a plugin can have its own running settings, which are given in an
arbitrary JSON. For example, this properties allows us to realize a class of pro-
jections rather than a given projection, i.g. the projections of a graph to all its
subgraphs of no more then k vertices, where k is a parameter of the plugin.

2.2 Pattern Manager Plugin

A semilattice (D,u) is given in the constructive way by a plugin called “Pattern
Manager”. The main operations which should be performed by this plugin are
listed in Table 2. The first two properties are description types the plugin can
load from a dataset or process as patterns. Patterns here refers to an internal data
format of patterns known only by this pattern manager. Loading patterns from
a given JSONs, patterns can be intersected or compared. This allows to give a
semilattice in the constructive way without enumerating all possible elements of a



lattice. Any patterns can be saved in a JSON of a ‘GetPatternType()’ type. And,
finally, there are three functions which can creates patterns. To remove a pattern
and clear the memory of this pattern, function ‘FreePattern’ is introduced.

2.3 Extent and Intent Storage Plugins

Although Pattern Manager can create a lot of patterns by the intersection or
the loading operations, it is not responsible for memory it creates. Plugin ‘Intent
Storage’ is a special layer which separates the raw representation of a pattern (an
output of a Pattern Manager) and the IDs of intents, which are used in a lattice
builder. Moreover, all patterns should pass through an Intent Storage and thus
it controls memory for patterns. Intent Storage is responsible for the indexes it
creates and, thus, it can be (de)serialized in a unified way in order to preserve
the intents between sessions. Finally, as Intent Storage translates some of its call
to Pattern Manager, we should initialize Intent Storage by the required Pattern
Manager. The functions of Intent Storage are the same as for Pattern Manager
but it should be initialized with a Pattern Manager and can be (de)serialized.

Plugin ‘Extent Storage’ is an analog of Intent Storage but for the extents. We
know exactly what an extent is, and, thus, the additional layer ‘Extent Manager’
is not necessary. To work with extents in the bottom to top strategy we usually
do not require any intersection operations and just add objects to this set. The
interface functions of Extent Storage plugin are shown in Table 3.

2.4 Lattice Builder Plugin

Finally, to build a pattern concept lattice, a special plugin “Lattice Builder” is
introduced. Lattice Builder takes as an arguments Extent and Intent storages
and the path where the result lattice in the describing above format should
be saved. It has three functions: ‘Initialize()’ taking Extent and Intent Storage
plugins; ‘AddObject(ObjID, IntentID)’ taking a unique ID of an object which
should be added to the context with the corresponding description given by its
ID; and finally ‘Build()’ building or postprocessing a lattice and writing it to
the required file. We should remember that there are two types of algorithms for
building a concept lattice: incremental such as AddIntent [7], where after each
addition of an object the new lattice is constructed, and non-incremental such
as CbO [6], where the lattice is constructed for all objects at once. The function
AddObject can be used to construct a lattice in an incremental way by the first
algorithms or to collect a context by the algorithms from the second group.

2.5 Organization of Plugins

To allow the efficient implementation of any plugins, they are kept in a dynamic
link library with a special API, which is called “Plugin System API”. This library
should contain at least three functions listed in Table 4. Function ’GetDescrip-
tion’ return a JSON array 2, with description of every plugin that can be found

2 JSON is selected for plugin data representation by the previously mentioned reasons.



in the plugin system. The description contains unique ID of a plugin, type of
the plugin, i.e. Patten Manager, Extent or Intent storage, or LatticeBuilder. Ac-
cording to the type of the plugin it contains the map from a plugin functions to
the functions realized in the library.

Every plugin in a system should implement the functions listed in Table 5.
Which allows to use them in a generalized way. The plugin can describe its
parameters, for example the size of graph in a projection, and then load them
and save them in a described JSON format. Finally, as some plugins can be
initialized by other plugins, a plugin can request another plugin in its description.
The initializing plugin is given to the requester as an ID and FCART has API
for requesting an address of a plugin be the plugin ID and the function name.

Conclusion

Pattern structures is a very general and powerful technique for knowledge ex-
traction form complex object descriptions with perspectives for working with Big
Data. We implemented PSs within an original framework in an efficient and uni-
versal way. Current prototype is presented in FCART software and justifies the
approach. The project is improving taking into account benchmark and profiling
results and requirements of researches.

Acknowledgements: this research received funding from the Basic Research
Program at the National Research University Higher School of Economics (Rus-
sia) and from the BioIntelligence project (France).

References

1. Neznanov, A.A., Ilvovsky, D.A., Kuznetsov, S.O.: FCART: A New FCA-based
System for Data Analysis and Knowledge Discovery. In: Proc. of workshop for FCA
Tools and Applications (at ICFCA’2013). (2013)

2. Kuznetsov, S.: Fitting Pattern Structures to Knowledge Discovery in Big Data. In
Cellier, P., Distel, F., Ganter, B., eds.: Formal Concept Analysis SE - 17. Volume
7880 of Lecture Notes in Computer Science. Springer (2013) 254–266

3. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. 1st
edn. Springer, Secaucus, NJ, USA (1997)

4. Ganter, B., Kuznetsov, S.O.: Pattern Structures and Their Projections. In Delugach,
H., Stumme, G., eds.: Conceptual Structures: Broadening the Base SE - 10. Volume
2120 of Lecture Notes in Computer Science. Springer Berlin Heidelberg (2001)
129–142

5. Kaytoue, M., Kuznetsov, S.O., Napoli, A., Duplessis, S.: Mining gene expres-
sion data with pattern structures in formal concept analysis. Information Sciences
181(10) (2011) 1989 – 2001

6. Kuznetsov, S.O.: A fast algorithm for computing all intersections of objects in a
finite semi-lattice. Automatic documentation and Mathematical linguistics 27(5)
(1993) 11–21

7. Merwe, D.V.D., Obiedkov, S., Kourie, D.: AddIntent: A new incremental algorithm
for constructing concept lattices. In Goos, G., Hartmanis, J., Leeuwen, J., Eklund,
P., eds.: Concept Lattices. Volume 2961. Springer (2004) 372–385



Appendix

Function Description

ID=GetObjectType() Returns the JSON type of an object

ID=GetPatternType() Returns the JSON type of the patterns it works with

Pttrn=Preprocess(JSON) Loads JSON description of an object and converts it to the
internal pattern type

Pttrn = a u b Computes semilattice operation between patterns a and b.

{True, False}=a v b Checks if pattern a is subsumed by pattern b.

{True, False}=(a == b) Checks if one pattern is equal to another pattern.

Pttrn=LoadPattern()
JSON=SavePattern(a)

Convert the internal pattern to/from the JSON with type
GetPatternType().

FreePattern(a) Free memory allocated for pattern a

Table 2: Main functions of Pattern Manager plugin API.

Function Description

ID=Clone(ID) Clones the extent with ID. ID==-1 is a special empty extent

AddObject(ID, objID) Add the object objID to the extent ID

Size=Size(ID) Returns the number of objects in the extent ID

ObjID=
LastAddedObject(ID)

Returns the last added object to the extent ID.

ID=LoadExtent(JSON)
JSON=SaveExtent(ID)

Loads and saves the extent ID form/to JSON.

Table 3: Main functions of Extent Storage plugin API.

Function Description

Init() Initialization of a library

Done() Deinitialization of a library

JSON=GetDescription() Returns the description of all the plugins that the given plu-
gin system support

Table 4: Functions of Plugin System API.

Function Description

Create() Creation of a plugin object

Destroy() Destruction of a plugin object

DescribeParams() Describes what kind of params the plugin can have in both
human-readable and machine readable forms

Load/Save Params() Load or save params in the form described by ‘De-
scribeParams’

Table 5: Main functions of common plugin API.


