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Abstract

Let ∅ �= T ⊂ R, (X,d,+) be an additive commutative semigroup with metric d satisfying d(x + z, y + z) = d(x, y) for all
x, y, z ∈ X, and XT the set of all functions from T into X. If n ∈ N and f,g ∈ XT , we set ν(n,f, g,T ) = sup

∑n
i=1 d(f (ti )+g(si),

g(ti ) + f (si)), where the supremum is taken over all numbers s1, . . . , sn, t1, . . . , tn from T such that s1 � t1 � s2 � t2 � · · · �
sn � tn. We prove the following pointwise selection theorem: If a sequence of functions {fj }j∈N ⊂ XT is such that the closure in
X of the set {fj (t)}j∈N is compact for each t ∈ T , and

lim
n→∞

(
1

n
lim

N→∞ sup
j,k�N,j �=k

ν(n,fj , fk, T )

)
= 0,

then it contains a subsequence which converges pointwise on T . We show by examples that this result is sharp and present two of
its variants.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction and main result

Given a nonempty subset T of the set R of real numbers and a metric space (X,d) with metric d , let XT be
the set of all functions f : T → X mapping T into X. We are interested in finding conditions on the sequence
of functions {fj } ≡ {fj }∞j=1 ⊂ XT , under which {fj } admits a pointwise convergent subsequence. Recall that {fj }
converges pointwise (or everywhere) on T to a function f ∈ XT provided d(fj (t), f (t)) → 0 as j → ∞ for all t ∈ T .
If T = [a, b] is an interval and X = R, the classical conditions on {fj } are given by the famous Helly Selection
Theorem [17]: {fj } is uniformly bounded and each fj is a monotone function.
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There is a number of generalizations of the Helly Theorem for functions of a real variable: [1,2,4–10], [13, Part III,
Section 2], [14,15,18,20,23–25] and references therein. The problem under consideration is motivated by the numer-
ous applications in Analysis of the Helly Theorem as well as its generalizations, e.g., [1,4–6,11–13]. Usually these
generalizations rely on the boundedness of certain types of variations for functions from the sequence {fj }, which
consists of regulated functions (i.e., those having finite left and right limits at all points). However, of interest are
conditions having nothing to do with the boundedness of variations or regulated functions as presented, e.g., in [8,18]
and [23]. In order to recall one of these conditions, to be generalized in the sequel, we need a definition.

Given n ∈ N, f ∈ XT and ∅ �= E ⊂ T , we set

ν(n,f,E) = sup
n∑

i=1

d
(
f (ti), f (si)

)
(1)

where the supremum is taken over all 2n numbers {si}ni=1, {ti}ni=1 ⊂ E such that s1 � t1 � s2 � t2 � · · · � sn−1 �
tn−1 � sn � tn. The sequence {ν(n,f,E)}∞n=1 ⊂ [0,∞] is called the modulus of variation of f on E—this notion was
introduced by Chanturiya in [3] for E = T = [a, b] and X = R (the general case was considered in [8]). We note that
ν(1, f,E) is just the diameter of the set f (E) (= the image of E under f ), also known as the oscillation of f on E.
Clearly, ν(n,f,E) is finite for all n ∈ N if and only if ν(1, f,E) < ∞ (i.e., when f is bounded on E) and, moreover,
ν(1, f,E) � ν(n,f,E) � nν(1, f,E) (for more properties of the modulus of variation see [7,8] and [10]).

A sequence {fj } ⊂ XT is said to be pointwise precompact (on T ) provided the sequence {fj (t)} ≡ {fj (t)}∞j=1 is
precompact (i.e., its closure in X is compact) for all t ∈ T . Given a sequence μ : N → R, the condition μ(n)/n → 0
as n → ∞ will be written as μ(n) = o(n) (in E. Landau’s notation).

The following is a pointwise selection principle for metric space valued functions of a real variable in terms of the
modulus of variation [8, Theorem 1].

Theorem A. Let ∅ �= T ⊂ R and (X,d) be a metric space. If {fj } ⊂ XT is a pointwise precompact sequence satisfying

μ(n) ≡ lim sup
j→∞

ν(n,fj , T ) = o(n), (2)

then it contains a subsequence which converges pointwise on T to a function f ∈ XT such that ν(n,f,T ) � μ(n),
n ∈ N.

It is shown in [7–10] that this theorem and its more general counterparts contain as particular cases many Helly-type
selection theorems—actually, all those from references above, except [14] (where functions between linearly ordered
sets were treated) and [18] and [23] (which were shown in [19] to be independent); for more details see Remark 4 in
Section 4.

The aim of this paper is to show that if the metric space (X,d) is equipped with an additional algebraic structure,
namely, the addition operation, then condition (2) in Theorem A can be weakened. In order to present our main result
in this direction (Theorem 1 below), we review some more definitions.

In what follows the triple (X,d,+) is a metric semigroup [6, Section 4], that is, (X,d) is a metric space with
metric d , (X,+) is an Abelian semigroup with the addition operation + and d is translation invariant in the sense that
d(x + z, y + z) = d(x, y) for all x, y, z ∈ X. Given x, y,u, v ∈ X, we have

d(x, y) � d(x + u,y + v) + d(u, v), (3)

d(x + u,y + v) � d(x, y) + d(u, v). (4)

In particular, (4) implies that the addition operation (x, y) 
→ x + y is a continuous mapping from X × X into X.
Given n ∈ N, f,g ∈ XT and ∅ �= E ⊂ T , we set

ν(n,f, g,E) = sup
n∑

i=1

d
(
f (ti) + g(si), g(ti) + f (si)

)
(5)

where the supremum is taken in the same manner as in (1). The sequence {ν(n,f, g,E)}∞n=1 ⊂ [0,∞] will be termed
the joint modulus of variation of f and g on E. We note that (5) is symmetric in f and g, it is equal to zero if
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f = g, and it is just ν(n,f − g,E) if (X,‖ · ‖) is a normed vector space with the generated metric d(x, y) = ‖x − y‖,
x, y ∈ X. Also, if f,g ∈ XT are bounded on E, then (5) is finite for all n ∈ N, for, by virtue of (4) and (5), we have

ν(n,f, g,E) � ν(n,f,E) + ν(n,g,E). (6)

More properties of the joint modulus of variation are presented in Lemma 1 below.
Throughout the paper we shall be concerned with double sequences αj,k ∈ R for j, k ∈ N having the property that

αj,j = 0 for all j ∈ N (see, e.g., condition (7)). Such a sequence is said to be convergent to a number l ∈ R, in symbols,
limj,k→∞ αj,k = l, provided for each ε > 0 there exists an N = N(ε) ∈ N such that αj,k ∈ [l − ε, l + ε] for all j � N

and k � N with j �= k. Also, we set

lim sup
j,k→∞

αj,k = lim
N→∞ sup{αj,k: j � N, k � N, j �= k}.

The main result of the paper is the following pointwise selection principle for metric semigroup valued functions of a
real variable in terms of the joint modulus of variation.

Theorem 1. Let ∅ �= T ⊂ R and (X,d,+) be a metric semigroup. Suppose that {fj } ⊂ XT is a pointwise precompact
sequence of functions such that

lim sup
j,k→∞

ν(n,fj , fk, T ) = o(n). (7)

Then {fj } contains a subsequence which converges pointwise on T .

This theorem will be proved in the next two sections. Now we note that for functions with values in a metric
semigroup condition (2) implies condition (7): in fact, it follows from inequality (6) that

lim sup
j,k→∞

ν(n,fj , fk, T ) � 2 lim sup
j→∞

ν(n,fj , T ).

Therefore Theorem 1 extends the class of sequences having pointwise convergent subsequences, but we no longer
can infer that the pointwise limits f of these subsequences satisfy regularity conditions such as ν(n,f,T ) = o(n)

from Theorem A (see Examples 4 and 2 in Section 4). So, Theorem 1 may be considered as an “irregular” version of
Theorem A. In the proof of Theorem 1 we apply the technique similar to that used in the proof of Theorem A (cf. [8]);
however, there is a significant difference: instead of the Helly Selection Theorem (which is inapplicable) in Step 2 we
apply the Ramsey Theorem from formal logic to double sequences. In this respect Theorem 1 is not a consequence of
and is not equivalent to the Helly Theorem. The idea to apply Ramsey’s Theorem in the context of pointwise selection
principles has appeared in [23] and later on has been extended in [18]. Our application of Ramsey’s Theorem and the
resulting Theorem 1 are quite different from those exposed in both of these papers (see also Remark 4 in Section 4).

The paper is organized as follows. In Section 2 we prove Theorem 1, except Step 2, present two corollaries and
comment on the necessity of condition (7). Section 3 is devoted to the proof of Step 2. Since, at least at first sight,
condition (7) may look cumbersome and somewhat involved (especially as it is written in the Abstract), in Section 4
we show by several examples that condition (7) can be effectively verified and that all assumptions in Theorem 1 are
sharp. Finally, in Section 5 we give two variants of our selection principle for the almost everywhere convergence as
well as for functions with values in a reflexive separable Banach space.

2. Proof of the main result

The properties of the joint modulus of variation needed in the proof of Theorem 1 are gathered in the following
Lemma 1—they resemble the corresponding properties of the modulus of variation (1) presented in [7, Lemma 1] and
[8, Lemma 2], and so, their immediate proofs are omitted.

Lemma 1. Given n,m ∈ N, f,g ∈ XT and ∅ �= E ⊂ T , we have:

(a) ν(n + m,f,g,E) � ν(n,f, g,E) + ν(m,f,g,E);
(b) ν(n,f, g,E) � ν(n + 1, f, g,E);
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(c) ν(n,f, g,E′) � ν(n,f, g,E) if ∅ �= E′ ⊂ E;
(d) d(f (t) + g(s), g(t) + f (s)) + ν(n,f, g, (−∞, s] ∩ E) � ν(n + 1, f, g, (−∞, t] ∩ E) if s, t ∈ E and s � t;
(e) ν(n + 1, f, g,E) � ν(n,f, g,E) + ν(n+1,f,g,E)

n+1 .

We note that if f and g are bounded functions on E (or ν(1, f, g,E) < ∞), the inequality in Lemma 1(e) is
equivalent to

ν(n + 1, f, g,E)

n + 1
� ν(n,f, g,E)

n
(8)

where, by virtue of Lemma 1(a), the right-hand side is � ν(1, f, g,E) (cf. also (6)), and so, the limit
limn→∞ ν(n,f, g,E)/n exists in R+ = [0,∞).

Moreover, under the conditions of Theorem 1, if μ(n) designates the left-hand side of (7), then it is immediate
from (8) that {μ(n)/n}∞n=1 ⊂ R+ is a nonincreasing sequence, and so, assumption (7) in Theorem 1 is quite natural.

Now we are in a position to prove our main result.

Proof of Theorem 1. If there are only finitely many distinct functions in {fj }, we may choose a constant subsequence
of {fj }, and we are done. Otherwise, picking a subsequence of {fj } if necessary, we may assume that all functions in
{fj } are distinct. Also, if T is at most countable, then, since the set {fj (t)} is precompact in X for all t ∈ T , we may
apply the standard diagonal process to extract a subsequence of {fj } which converges pointwise on T . So we assume
that T is uncountable. The rest of the proof is divided into four steps for clarity.

Step 1. There exists a subsequence of {fj }, again denoted by {fj }, and a sequence γ : N → R+ such that

ν(n,fj , fk, T ) � γ (n) for all n, j, k ∈ N. (9)

In fact, condition (7) implies that its left-hand side, denoted by μ(n), is finite for all n ∈ N: for some n0 ∈ N we have
μ(n) � n if n � n0 and, by virtue of Lemma 1(b), μ(n) � n0 if 1 � n � n0. It follows that there is N0 ∈ N such
that if j � N0, k � N0 and j �= k, then ν(n,fj , fk, T ) � μ(n) + 1 � n + 1 for n � n0 and, again by Lemma 1(b),
ν(n,fj , fk, T ) � n0 + 1 for 1 � n � n0. In order to get (9), it suffices to denote the subsequence {fj+N0−1}∞j=1 of
{fj }∞j=1 again by {fj } (so that condition (7) is still satisfied for {fj }) and define γ by γ (n) = n + 1 if n � n0 and
γ (n) = n0 + 1 if 1 � n � n0.

Step 2. There is a subsequence of {fj } satisfying (9), again denoted by {fj }, and for each n ∈ N there exists a
nondecreasing function νn : T → [0, γ (n)] such that

lim
j,k→∞ν

(
n,fj , fk, (−∞, t] ∩ T

) = νn(t) for all n ∈ N and t ∈ T . (10)

Since the proof of (10) is unexpectedly lengthy and uses certain ideas from formal logic [21], we postpone it until the
next section. Now, taking into account (10), we proceed as follows.

Step 3. Let Q denote an at most countable dense subset of T , and so, Q ⊂ T ⊂ Q where Q is the closure of Q in R.
We note that Q contains all points of T which are not limit points for T . By virtue of the monotonicity of each function
νn from Step 2, the set Qn ⊂ T of its points of discontinuity is at most countable, and so, the set S = Q ∪ ⋃∞

n=1 Qn

is an at most countable dense subset of T having the property:

for each n ∈ N the function νn is continuous on T \ S. (11)

Since the set {fj (t)} is precompact in X for all t ∈ T and S ⊂ T is at most countable, we may assume with no loss
of generality (applying the standard diagonal process and passing to a subsequence of {fj } if necessary) that, for all
s ∈ S, fj (s) converges in X as j → ∞ to a point of X denoted by f (s).

Step 4. Now we are going to show that, given t ∈ T \ S, the sequence {fj (t)} is Cauchy. If this is already done, the
precompactness of {fj (t)} would imply that it is convergent in X as j → ∞ to a point of X denoted by f (t). This,
the argument at the end of Step 3 and equality T = S ∪ (T \ S) would complete the proof of Theorem 1.

Let us fix ε > 0 arbitrarily. By the definition of μ(n) in Step 1 and condition (7), we choose and fix a number n =
n(ε) ∈ N, depending only on ε, such that μ(n+1) � ε(n+1). Because {fj } is a subsequence of the original sequence
{fj }, we get lim supj,k→∞ ν(n + 1, fj , fk, T ) � μ(n + 1), which implies the existence of a number J0 = J0(ε) ∈ N,
depending on ε and n and hence only on ε, such that ν(n + 1, fj , fk, T ) � μ(n + 1) + ε for all j � J0 and k � J0
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with j �= k. By the definition of S and (11), the point t is a limit point for T and a point of continuity of νn, and so, the
density of S in T yields a point s = s(ε) ∈ S, depending on ε, t and n, such that |νn(t) − νn(s)| � ε. Applying (10)
we find a number J1 = J1(ε) ∈ N, depending on ε, n, t and s, such that if j � J1, k � J1 and j �= k, then∣∣ν(

n,fj , fk, (−∞, t] ∩ T
) − νn(t)

∣∣ � ε and∣∣ν(
n,fj , fk, (−∞, s] ∩ T

) − νn(s)
∣∣ � ε.

Being convergent, the sequence {fj (s)} is Cauchy, and so, there exists a number J2 = J2(ε) ∈ N, depending on ε

and s, such that d(fj (s), fk(s)) � ε for all j � J2 and k � J2. Assuming that s < t (the case t < s is treated similarly),
applying (3) and items (d), (e) and (c) of Lemma 1 and noting that the number J = max{J0, J1, J2} depends only on ε,
we get, for all j � J and k � J with j �= k,

d
(
fj (t), fk(t)

)
� d

(
fj (t) + fk(s), fk(t) + fj (s)

) + d
(
fj (s), fk(s)

)
� ν

(
n + 1, fj , fk, (−∞, t] ∩ T

) − ν
(
n,fj , fk, (−∞, s] ∩ T

) + ε

� ν
(
n + 1, fj , fk, (−∞, t] ∩ T

) − ν
(
n,fj , fk, (−∞, t] ∩ T

)
+ ∣∣ν(

n,fj , fk, (−∞, t] ∩ T
) − νn(t)

∣∣ + ∣∣νn(t) − νn(s)
∣∣

+ ∣∣νn(s) − ν
(
n,fj , fk, (−∞, s] ∩ T

)∣∣ + ε

� ν(n + 1, fj , fk, (−∞, t] ∩ T )

n + 1
+ ε + ε + ε + ε

� ν(n + 1, fj , fk, T )

n + 1
+ 4ε

� μ(n + 1)

n + 1
+ ε

n + 1
+ 4ε � 6ε,

whence the Cauchy property of {fj (t)} follows. �
Remark 1. If (X,‖ · ‖) is a finite-dimensional normed vector space, the condition of precompactness of sets {fj (t)}
at all points t ∈ T in Theorem 1 can be lightened to the condition supj∈N ‖fj (t0)‖ = C0 < ∞ for some t0 ∈ T : in fact,
by virtue of (9) we have ν(1, fj , f1, T ) � γ (1), and so∥∥fj (t)

∥∥ �
∥∥(fj − f1)(t) − (fj − f1)(t0)

∥∥ + ∥∥f1(t)
∥∥ + ∥∥f1(t0)

∥∥ + ∥∥fj (t0)
∥∥

� γ (1) + ∥∥f1(t)
∥∥ + 2C0, t ∈ T , j ∈ N. (12)

If dimX = ∞, the precompactness of {fj (t)} at all t ∈ T cannot be replaced by the boundedness and closedness even
at a single point t0 (cf. [8, Section 3, Example 1]).

Remark 2. If a sequence {fj } ⊂ XT converges uniformly on T to a function f ∈ XT (i.e., supt∈T d(fj (t), f (t)) → 0
as j → ∞), then condition (7) is necessary, namely,

lim
j,k→∞ν(n,fj , fk, T ) = 0 for all n ∈ N. (13)

This is a consequence of the following straightforward inequality (cf. (4)):

ν(n,fj , fk, T ) � 2n
(

sup
t∈T

d
(
fj (t), f (t)

) + sup
s∈T

d
(
fk(s), f (s)

))
.

Condition (7) is not necessary for the pointwise convergence as is shown in Example 1 from Section 4; however, it is
“almost” necessary as can be seen from the next remark.

Remark 3. Let ∅ �= T ⊂ R be a Lebesgue measurable set having finite measure. If {fj } ⊂ XT is a sequence of
measurable functions which converges pointwise (or almost everywhere) on T , then, by Egorov’s theorem, for each
ε > 0 there exists a Lebesgue measurable set E(ε) ⊂ T whose Lebesgue measure is � ε such that {fj } converges
uniformly on T \ E(ε). Applying the observation of Remark 2 with T replaced by T \ E(ε), we get:

lim
j,k→∞ν

(
n,fj , fk, T \ E(ε)

) = 0 for all n ∈ N.
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Under the assumptions of Theorem 1 we have the following corollary, which is established by applying the standard
diagonal process:

Corollary 1. If {fj } ⊂ XT is a sequence such that

lim sup
j,k→∞

ν(n,fj , fk, T \ E) = o(n) for an at most countable E ⊂ T

or

lim sup
j,k→∞

ν
(
n,fj , fk, T ∩ [s, t]) = o(n) for all s, t ∈ T , s � t,

then {fj } contains a subsequence which converges pointwise on T .

In order to formulate one more corollary (and a particular case) of Theorem 1, we introduce two notions related to
generalized variations: ϕ-variation in the sense of N. Wiener and L.C. Young (e.g., [20]) and Λ-variation in the sense
of D. Waterman [25].

Let ϕ : R+ → R+ be a nondecreasing continuous function vanishing only at zero and such that ϕ(ρ) → ∞
as ρ → ∞, and Λ = {λi}∞i=1 be a nondecreasing sequence of positive numbers such that

∑∞
i=1 1/λi = ∞. Given

f,g ∈ XT , we set

Vϕ(f,g,T ) = sup
n∑

i=1

ϕ
(
d
(
f (ti) + g(si), g(ti) + f (si)

))
,

where the supremum is taken over all n ∈ N and {si, ti}ni=1 ⊂ T such that s1 � t1 � s2 � t2 � · · · � sn � tn, and

VΛ(f,g,T ) = sup
n∑

i=1

d(f (ti) + g(si), g(ti) + f (si))

λω(i)

,

where the supremum is taken over all n and {si , ti}ni=1 as above and all permutations ω : {1, . . . , n} → {1, . . . , n}. If
g is a constant function, then the quantity Vϕ(f,g,T ) is the usual Wiener–Young ϕ-variation and VΛ(f,g,T ) is the
usual Waterman Λ-variation of f on T , and if ϕ(ρ) = ρ and λi ≡ 1, these quantities give the classical notion of the
Jordan variation (for more details in this context see, e.g., [8]).

If n ∈ N, the following estimates hold for the joint modulus of variation (5) in terms of the two quantities above
(their proofs are the same as the proofs of the corresponding estimates in [7, p. 27], [8, p. 612 and Example 7] and
[16, Theorem 11.17]): if ϕ is convex, then it admits the continuous inverse ϕ−1 and

ν(n,f, g,T ) � nϕ−1
(

1

n
Vϕ(f,g,T )

)
;

if ϕ is not necessarily convex, then

ν(n,f, g,T ) � sup

{
n∑

i=1

ϕ−1+ (ri): {ri}ni=1 ⊂ R+ and
n∑

i=1

ri � Vϕ(f,g,T )

}
,

where ϕ−1+ (r) = max{ρ ∈ R+: ϕ(ρ) = r} for r ∈ R+, and

ν(n,f, g,T ) � n∑n
i=1 1/λi

VΛ(f,g,T ).

Taking into account the above three estimates for the joint modulus of variation and noting that their right-hand sides
are o(n) provided the values Vϕ(f,g,T ) and VΛ(f,g,T ) are finite, under the assumptions of Theorem 1 we have the
following

Corollary 2. If a sequence {fj } ⊂ XT is such that

lim sup
j,k→∞

V∗(fj , fk, T ) < ∞ with ∗ = ϕ or Λ,

then condition (7) holds, and so, {fj } contains a subsequence which converges pointwise on T .
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Similar corollaries can be readily given when more general generalized variations are involved; for more details
we refer to [7, Section 6], [9] and [10, Section 6].

3. Proof of claim (10)

In order to prove assertion (10), we need Ramsey’s logical theorem [21, Theorem A] which, for the sake of conve-
nience, is recalled below as Theorem B.

Given a nonempty set Γ , n ∈ N and an injective function σ : {1, . . . , n} → Γ , the set {σ(1), . . . , σ (n)} is called an
n-combination of elements of Γ (note that an n-combination may be generated by n! different injective functions).
Let Γ ∗n denote the family of all n-combinations of elements of Γ .

Theorem B. Suppose Γ is an infinite set, n,m ∈ N, and Γ ∗n = ⋃m
i=1 Ci is a disjoint union of its m nonempty

subsets Ci . Then, under the Axiom of Choice, Γ contains an infinite subset Δ such that Δ∗n ⊂ Ci0 for some i0 ∈
{1, . . . ,m}.

This theorem will be applied several times with Γ a subsequence of {fj } and n = m = 2.

Proof of (10) will itself be subdivided into steps (i)–(iv).
(i) Let us show that given n ∈ N and t ∈ T , there exists a subsequence {f (n,t)

j } of {fj }, depending on n and t , such
that the limit

lim
j,k→∞ν

(
n,f

(n,t)
j , f

(n,t)
k , (−∞, t] ∩ T

)
exists in

[
0, γ (n)

]
. (14)

Let c0 be the middle point of the interval [0, γ (n)] and (cf. (9) and Lemma 1(c)) let C1
1 be the set of those pairs

{fj , fk} with j, k ∈ N, j �= k, for which

ν
(
n,fj , fk, (−∞, t] ∩ T

) ∈ [0, c0), (15)

and C1
2 —the set of those {fj , fk} with j, k ∈ N, j �= k, for which the quantity on the left in the inclusion (15)

belongs to the interval [c0, γ (n)]. If C1
1 and C1

2 are nonempty, they are disjoint, and so, by Theorem B, there exists
a subsequence {f 1

j } of {fj } such that either (i1) {f 1
j , f 1

k } ∈ C1
1 for all j, k ∈ N, j �= k, or (ii1) {f 1

j , f 1
k } ∈ C1

2 for all

j, k ∈ N, j �= k. If C1
1 �= ∅ and (i1) holds, or if C1

2 = ∅, we set [a1, b1] = [0, c0], while if C1
2 �= ∅ and (ii1) holds, or if

C1
1 = ∅, we set [a1, b1] = [c0, γ (n)].

Inductively, if p ∈ N, p � 2, and a subsequence {f p−1
j }∞j=1 of {fj } and an interval [ap−1, bp−1] ⊂ [0, γ (n)] are

already chosen, we let cp−1 be the middle point of [ap−1, bp−1] and C
p

1 be the set of those pairs {f p−1
j , f

p−1
k } with

j, k ∈ N, j �= k, for which

ν
(
n,f

p−1
j , f

p−1
k , (−∞, t] ∩ T

) ∈ [ap−1, cp−1), (16)

and C
p

2 —the set of those {f p−1
j , f

p−1
k } with j, k ∈ N, j �= k, for which the quantity on the left in the inclusion (16)

belongs to [cp−1, bp−1]. If the sets C
p

1 and C
p

2 are nonempty, they are disjoint, and so, applying Theorem B, we obtain

a subsequence {f p
j }∞j=1 of {f p−1

j } such that either (ip) {f p
j , f

p
k } ∈ C

p

1 for all j, k ∈ N, j �= k, or (iip) {f p
j , f

p
k } ∈ C

p

2

for all j, k ∈ N, j �= k. If C
p

1 �= ∅ and (ip) holds, or if C
p

2 = ∅, we set [ap, bp] = [ap−1, cp−1], while if C
p

2 �= ∅ and
(iip) holds, or if C

p

1 = ∅, we set [ap, bp] = [cp−1, bp−1].
In this way for each p ∈ N we have nested intervals [ap+1, bp+1] ⊂ [ap, bp] in [0, γ (n)] with bp − ap = γ (n)/2p

and a subsequence {f p
j }∞j=1 of {f p−1

j }∞j=1 (where {f 0
j }∞j=1 = {fj }) such that ν(n,f

p
j , f

p
k , (−∞, t] ∩ T ) ∈ [ap, bp]

for all j, k ∈ N, j �= k. Let l ∈ [0, γ (n)] be the common limit of ap and bp as p → ∞. Denoting the diagonal sequence

{f j
j }∞j=1 by {f (n,t)

j } we infer that the limit in (14) is equal to l: in fact, given ε > 0, there exists p(ε) ∈ N such that

ap(ε), bp(ε) ∈ [l − ε, l + ε] and, since {f (n,t)
j }∞

j=p(ε)
is a subsequence of {f p(ε)

j }∞j=1, we find, for all j, k � p(ε), j �= k,
that

ν
(
n,f

(n,t)
, f

(n,t)
, (−∞, t] ∩ T

) ∈ [ap(ε), bp(ε)] ⊂ [l − ε, l + ε].
j k
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(ii) Let Q be an at most countable dense subset of T (and so, Q ⊂ T ⊂ Q). The set LT = {t ∈ T :
(t − δ, t) ∩ T = ∅ for some δ > 0} of points from T isolated from the left for T is at most countable (possibly
empty), and the same is true for RT = {t ∈ T : (t, t + δ) ∩ T = ∅ for some δ > 0}. Moreover, LT ∩ RT ⊂ Q. Then the
set Z = Q ∪ LT ∪ RT is an at most countable dense subset of T .

We assert that, given n ∈ N, there exists a subsequence {f (n)
j } of {fj } satisfying (9) and a nondecreasing function

ϕn : Z → [0, γ (n)] such that

lim
j,k→∞ν

(
n,f

(n)
j , f

(n)
k , (−∞, s] ∩ T

) = ϕn(s) for all s ∈ Z. (17)

We may assume that Z = {sp}∞p=1. By step (i), there exists a subsequence {f (n,s1)
j } of {fj }, denoted by {f (n)1

j }, and
a number from [0, γ (n)], denoted by ϕn(s1), such that

lim
j,k→∞ν

(
n,f

(n)1
j , f

(n)1
k , (−∞, s1] ∩ T

) = ϕn(s1).

Inductively, if p ∈ N, p � 2, and a subsequence {f (n)p−1
j }∞j=1 of {fj } is already chosen, we apply step (i) to pick

a subsequence {f (n)p
j }∞j=1 of {f (n)p−1

j } and a number ϕn(sp) ∈ [0, γ (n)] such that

lim
j,k→∞ν

(
n,f

(n)p
j , f

(n)p
k , (−∞, sp] ∩ T

) = ϕn(sp).

Then (17) is satisfied for the diagonal sequence {f (n)j
j }∞j=1, denoted by {f (n)

j }. It is clear from Lemma 1(c) that the
function ϕn defined by the left-hand side in (17) is nondecreasing on Z.

The assertion (18) in the next step (iii) is, actually, a variant of Helly’s selection theorem for specific double
sequences.

(iii) Let us prove that, given n ∈ N, there is a subsequence of {fj } satisfying (9), denoted as in step (ii) by {f (n)
j },

and a bounded nondecreasing function νn : T → [0, γ (n)] such that

lim
j,k→∞ν

(
n,f

(n)
j , f

(n)
k , (−∞, t] ∩ T

) = νn(t) for all t ∈ T . (18)

We extend the function ϕn, given by (17), from the set Z to the whole R according to Saks’ idea [22, Chapter 7,
Section 4, Lemma (4.1)] as follows:

ϕ̃n(t) = sup
s∈Z, s�t

ϕn(s) if t ∈ R and (−∞, t] ∩ Z �= ∅

and ϕ̃n(t) = infs∈Z ϕn(s) otherwise. Clearly, the function ϕ̃n : R → R+ is nondecreasing and bounded; moreover,
ϕ̃n(R) ⊂ ϕn(Z) ⊂ [0, γ (n)]. Therefore, the set Pn ⊂ R of points of discontinuity of ϕ̃n is at most countable. Let us
show that

lim
j,k→∞ν

(
n,f

(n)
j , f

(n)
k , (−∞, t] ∩ T

) = ϕ̃n(t) for all t ∈ T \ Pn, (19)

where {f (n)
j } is the sequence constructed in (17) of step (ii). Taking into account (17), we may assume that t ∈

T \ (Pn ∪ Z). Let ε > 0 be arbitrarily fixed. Since t is a point of continuity of ϕ̃n, there exists a δ = δ(n, ε, t) > 0 such
that

ϕ̃n(s) ∈ [
ϕ̃n(t) − ε, ϕ̃n(t) + ε

]
for all s ∈ R with |s − t | � δ. (20)

Since t /∈ LT and T ⊂ Z, we have ∅ �= (t −δ, t)∩T ⊂ (t −δ, t)∩Z, and so, there is an s1 = s1(n, ε, t) ∈ (t −δ, t)∩Z;
similarly, t /∈ RT implies the existence of an s2 = s2(n, ε, t) ∈ Z with t < s2 < t + δ. Denoting, for the sake of brevity,
the quantity under the limit sign in (19) by νn,j,k(t), by (17) we find a number N = N(n, ε) ∈ N such that, for all
j � N and k � N with j �= k, we have

νn,j,k(s1) ∈ [
ϕn(s1) − ε,ϕn(s1) + ε

]
and νn,j,k(s2) ∈ [

ϕn(s2) − ε,ϕn(s2) + ε
]
.
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In view of Lemma 1(c), νn,j,k(s1) � νn,j,k(t) � νn,j,k(s2), and so, (20) together with equalities ϕ̃n(s1) = ϕn(s1) and
ϕ̃n(s2) = ϕn(s2) yield

νn,j,k(t) ∈ [
ϕn(s1) − ε,ϕn(s2) + ε

] ⊂ [
ϕ̃n(t) − 2ε, ϕ̃n(t) + 2ε

]
for all j, k � N , j �= k, which establishes (19).

In order to obtain (18), we note that T = (T \Pn)∪ (T ∩Pn) where the set T ∩Pn is at most countable. Arguing as
in step (ii) with Z replaced by T ∩Pn, we find a subsequence of {f (n)

j }, again denoted by {f (n)
j }, and a nondecreasing

function ψn : T ∩ Pn → [0, γ (n)] such that the limit on the left in (19) is equal to ψn(t) for all t ∈ T ∩ Pn. Defining
νn : T → [0, γ (n)] by νn(t) = ϕ̃n(t) if t ∈ T \ Pn and νn(t) = ψn(t) if t ∈ T ∩ Pn, we arrive at (18) where, in view of
Lemma 1(c), the function νn is nondecreasing on T .

(iv) Here we complete the proof of assertion (10). By step (iii), there is a subsequence {f (1)
j } of the sequence {fj }

satisfying (9) and a nondecreasing function ν1 : T → [0, γ (1)] such that

lim
j,k→∞ν

(
1, f

(1)
j , f

(1)
k , (−∞, t] ∩ T

) = ν1(t) for all t ∈ T .

If n ∈ N, n � 2, and a subsequence {f (n−1)
j } of {fj } is already chosen, by virtue of step (iii) applied to the sequence

{f (n−1)
j } (instead of {fj } from (iii)), we find a subsequence {f (n)

j } of {f (n−1)
j } and a nondecreasing bounded function

νn : T → [0, γ (n)] such that condition (18) holds. It follows that the diagonal subsequence {f (j)
j }∞j=1 of {fj }, again

denoted by {fj }, satisfies property (10). �
4. Examples illustrating the sharpness of Theorem 1

Example 1. Condition (7) is not necessary even if ν(n,fj , T ) = o(n) for all j ∈ N. Let D : R → {0,1} be the Dirichlet
function, i.e., the indicator function of the set Q of all rational numbers: D(t) = 1 if t ∈ Q and D(t) = 0 if t ∈ R \ Q.
Given t ∈ R and j ∈ N, we set fj (t) = 1 if j !t is integer and fj (t) = 0 otherwise. Clearly, fj converges pointwise on
R to D. If T = [0,1], we have ν(n,fj , T ) = o(n) for each j ∈ N and ν(n,D, T ) = n (cf. [8, Section 3, Example 5]),
and a straightforward calculation shows that

ν(n,fj , fk, T ) =
{

n if n � 2|j ! − k!|,
2|j ! − k!| if n > 2|j ! − k!|, n, j, k ∈ N.

Thus, lim supj,k→∞ ν(n,fj , fk, T ) = n �= o(n).

Example 2. Under the assumptions of Theorem 1 we cannot infer, for the limit function f , that ν(n,f,T ) = o(n). In
fact, setting fj (t) = (1 + (1/j))D(t), t ∈ T = [0,1], we find that fj converges uniformly on T to D, condition (7) is
satisfied and ν(n,D, [0,1]) = n �= o(n). This example shows also that Theorem 1 can be applied to the sequence {fj }
while Theorem A is inapplicable; see also Example 4 below.

Theorem 1 cannot be applied to sequences of the form fj (t) = (−1)jD(t) or fj (t) = ((−1)j + (1/j))D(t),
t ∈ [0,1]. However, noting that the restriction of D to [0,1] \ Q is the zero function, Theorem 1 can be applied
to these sequences in the form of Corollary 1. Now we construct a sequence {fj } having a pointwise convergent
subsequence, but {fj } does not satisfy the assumptions of Corollary 1.

Let [0,1] = A ∪ B be a disjoint union of two uncountable dense subsets of [0,1] (e.g., if C ⊂ [0,1] is the usual
Cantor ternary set, we may put A = ([0,1] ∩ Q) ∪ C and B = [0,1] \ A = [0,1] \ (Q ∪ C)), and let E : [0,1] → R

be given by E(t) = 1 if t ∈ A and E(t) = −1 if t ∈ B . Set fj (t) = (−1)jE(t), t ∈ [0,1]. If E ⊂ [0,1] is at most
countable, n ∈ N, {ti}ni=1 ⊂ A \ E and {si}ni=1 ⊂ B \ E are such that 0 < s1 < t1 < s2 < t2 < · · · < sn < tn � 1,
then for j even and k odd or vice versa we have |(fj − fk)(ti) − (fj − fk)(si)| = 4 for all i ∈ {1, . . . , n}, and so,
ν(n,fj , fk, [0,1] \ E) � 4n.

Example 3. Condition (7) in Theorem 1 is essential: the sequence fj (t) = sin(j t), t ∈ [0,2π], j ∈ N, has no pointwise
convergent subsequence and does not satisfy (7). To see the latter, given n ∈ N and k � 3n−1, we set

sk
i = π (

2 · 3i−1 − 1
)

and tki = π (
2 · 3i−1 − 1

)
, i = 1, . . . , n.
2k k
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Clearly, 0 < sk
1 < tk1 < sk

2 < tk2 < · · · < sk
n < tkn < 2π and, if j = 2k, then∣∣(fj − fk)

(
tki

) − (fj − fk)
(
sk
i

)∣∣ = 1 for all i ∈ {1, . . . , n}.
Thus, ν(n,f2k, fk, [0,2π]) � n, and so, lim supj,k→∞ ν(n,fj , fk, [0,2π]) � n.

Example 4. Here we show that if fj ∈ R[0,1], j ∈ N, is given by

fj (t) = D(t) + (−1)m+j

j
+

m∑
i=1

(−1)i

i
if t ∈ Im =

[
m − 1

m
,

m

m + 1

)
, m ∈ N,

and fj (1) = 1 − log 2, then the assumptions of Theorem 1 are fulfilled for {fj } (because {fj } is uniformly bounded
and uniformly convergent on [0,1]), while those of Theorem A are not (see also Remark 4 below). Indeed, in order
to see that (2) is not satisfied, we let 0 � s1 < t1 < · · · < sn < tn < 1 be such that sk ∈ I2k−1 \ Q and tk ∈ I2k ∩ Q,
k = 1, . . . , n. For such k’s we get:

∣∣fj (tk) − fj (sk)
∣∣ =

∣∣∣∣∣1 + (−1)2k+j

j
+

2k∑
i=1

(−1)i

i
− (−1)2k−1+j

j
−

2k−1∑
i=1

(−1)i

i

∣∣∣∣∣
=

∣∣∣∣1 + 1

2k
+ 2

(−1)j

j

∣∣∣∣ � 1

3
for all j ∈ N.

This gives ν(n,fj , [0,1]) � n/3 for all n, j ∈ N.

Remark 4. The last example and the observation at the end of Section 1 show that if X is a metric semigroup
then Theorem 1 is more general than Theorem A. Since Theorem A implies many selection theorems based on certain
notions of generalized variations (see [7–10]), Theorem 1 does as well. Another types of pointwise selection theorems,
based on notions of oscillations, were presented in [23] and [18], and it was proved in [19] that Theorem A has no
relationship neither with Theorem 1.2 from [23] nor with Theorem 2.1 from [18]. In this respect we note that, along
with Example 4, all functional sequences constructed in [19] satisfy the assumptions of Theorem 1. However, the
sequence {fj } from Example 4 does not satisfy the assumptions of [23, Theorem 1.2] and [18, Theorem 2.1]: the
proof of this is analogous to Step II in the proof of Theorem 3.1 from [19].

Example 5. Here we construct two sequences {fj } ⊂ RT with T = [0,1], for which condition (7) holds in its full
generality with o(n) at the right-hand side as compared with (13) and Example 4 where o(n) = 0 at the right in (7).

Let fj (t) = 0 if 0 � t < 1 and fj (1) = (−1)j . Then ν(n,fj , fk, T ) = |(−1)j − (−1)k|, and so

lim sup
j,k→∞

ν(n,fj , fk, T ) = 2 for all n ∈ N.

Now, define fj as follows: if j is odd, then fj = 0 on T , and if j = 2p is even, then fj (1) = − log 2 and

f2p(t) = (−1)p+m

pm
+

m∑
i=1

(−1)i

i
if t ∈ Im =

[
m − 1

m
,

m

m + 1

)
, m ∈ N.

We are going to show that, for all n ∈ N,

1

4

n∑
i=1

1

i
� lim sup

j,k→∞
ν(n,fj , fk, T ) � 4

n∑
i=1

1

i
, (21)

where
∑n

i=1 1/i = γ + logn + αn = o(n), γ = 0.57721566490 . . . is the Euler constant and αn → 0 as n → ∞. Let
0 � t1 � t2 � · · · � t2n−1 � t2n � 1 and mi ∈ N be such that ti ∈ Imi

, i ∈ {1, . . . ,2n} if t2n < 1 and i ∈ {1, . . . ,2n − 1}
if t2n = 1. It is clear for such i’s that mi � mi+1, and with no loss of generality we suppose that m2i−1 < m2i for all
i = 1, . . . , n. In order to prove the right-hand side inequality in (21), we consider three cases (i)–(iii).

(i) If j and k are odd, then ν(n,fj , fk, T ) = 0.
(ii) Let j = 2p and k = 2q for some p,q ∈ N. If t2n < 1 and i ∈ {1, . . . , n}, we have:
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∣∣(fj − fk)(t2i ) − (fj − fk)(t2i−1)
∣∣ =

∣∣∣∣∣ (−1)p+m2i

pm2i

+
m2i∑
l=1

(−1)l

l
− (−1)q+m2i

qm2i

−
m2i∑
l=1

(−1)l

l
− (−1)p+m2i−1

pm2i−1

−
m2i−1∑
l=1

(−1)l

l
+ (−1)q+m2i−1

qm2i−1
+

m2i−1∑
l=1

(−1)l

l

∣∣∣∣∣
�

(
1

m2i

+ 1

m2i−1

)(
1

p
+ 1

q

)
� 4

m2i−1
. (22)

If t2n = 1, then along with (22) for i ∈ {1, . . . , n − 1}, we have:

∣∣(fj − fk)(t2n) − (fj − fk)(t2n−1)
∣∣ =

∣∣∣∣∣− (−1)p+m2n−1

pm2n−1
−

m2n−1∑
l=1

(−1)l

l
+ (−1)q+m2n−1

qm2n−1
+

m2n−1∑
l=1

(−1)l

l

∣∣∣∣∣
� 1

m2n−1

(
1

p
+ 1

q

)
� 2

m2n−1
. (23)

It follows from (22) and (23) that

n∑
i=1

∣∣(fj − fk)(t2i ) − (fj − fk)(t2i−1)
∣∣ �

n∑
i=1

4

m2i−1
� 4

n∑
i=1

1

i
. (24)

(iii) Let j = 2p and k be odd (the case when j is odd and k = 2p is considered similarly). Since
∑∞

l=1(−1)l/ l =
−log 2 and fk = 0, in the case t2n < 1 we have, for all i ∈ {1, . . . , n},

∣∣(fj − fk)(t2i ) − (fj − fk)(t2i−1)
∣∣ =

∣∣∣∣∣ (−1)p+m2i

pm2i

+
m2i∑
l=1

(−1)l

l
− (−1)p+m2i−1

pm2i−1
−

m2i−1∑
l=1

(−1)l

l

∣∣∣∣∣
�

(
1

m2i

+ 1

m2i−1

)
1

p
+

∣∣∣∣∣
m2i∑
l=1

(−1)l

l
+ log 2

∣∣∣∣∣ +
∣∣∣∣∣− log 2 −

m2i−1∑
l=1

(−1)l

l

∣∣∣∣∣
� 2

m2i−1
+ 1

m2i + 1
+ 1

m2i−1 + 1
� 4

m2i−1
.

Analogously, this estimate can be established if t2n = 1 and i ∈ {1, . . . , n}, yielding (24). In this way the right-hand
side inequality in (21) follows.

To obtain the left-hand side inequality in (21), we pick arbitrarily ti ∈ Ii , i = 1, . . . ,2n. If j = 2p with p � 6 and
k is odd, we have:

∣∣(fj − fk)(t2i ) − (fj − fk)(t2i−1)
∣∣ =

∣∣∣∣∣ (−1)p+2i

2pi
+

2i∑
l=1

(−1)l

l
− (−1)p+2i−1

p(2i − 1)
−

2i−1∑
l=1

(−1)l

l

∣∣∣∣∣
=

∣∣∣∣ (−1)p

p

(
1

2i
+ 1

2i − 1

)
+ 1

2i

∣∣∣∣
� 1

2i
− 1

p

(
1

2i
+ 1

2i − 1

)
� 1

4i
,

which, after summing over i = 1, . . . , n, implies (21).

5. Variants of the selection principle

Suppose that in Corollary 1 (p. 618) E ⊂ T is a set of Lebesgue measure zero. Then, according to Theorem 1,
a subsequence of {fj } converges pointwise on T \ E, that is almost everywhere on T . The following theorem is
a selection principle for the almost everywhere convergence in terms of the joint modulus of variation and may be
considered as a converse to the observation in Remark 3 from Section 2.
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Theorem 2. Let ∅ �= T ⊂ R, (X,d,+) be a metric semigroup and {fj } ⊂ XT a sequence of functions which is
pointwise precompact almost everywhere on T and satisfies the condition: for each p ∈ N there exists a measurable
set Ep ⊂ T of Lebesgue measure � 1/p such that

lim sup
j,k→∞

ν(n,fj , fk, T \ Ep) = o(n).

Then {fj } contains a subsequence which converges almost everywhere on T .

Taking into account Theorem 1 and the diagonal process, the proof of Theorem 2 follows the same lines as that of
Theorem 6 from [8] with obvious modifications, and so, is omitted.

In order to present one more variant of Theorem 1, let (X,‖ · ‖) be a normed linear space over the field K =
(R or C). The notion of the joint modulus of variation (5) is introduced with respect to the usual induced metric
d(x, y) = ‖x − y‖, x, y ∈ X.

A certain geometrical interpretation of ν(n,f, g,T ) can be gained if we note that the value ‖f (ti) + g(si) −
g(ti) − f (si)‖ from (5) is equal to the two times the distance between the “middle” points (f (ti) + g(si))/2 and
(g(ti) + f (si))/2.

Let (X∗,‖ · ‖) be the dual of X where ‖x∗‖ = sup{|x∗(x)|: x ∈ X, ‖x‖ � 1}, x∗ ∈ X∗. If the bilinear functional
〈·,·〉 : X × X∗ → K is defined by 〈x, x∗〉 = x∗(x) for all x ∈ X and x∗ ∈ X∗, then it determines the natural duality
between X and X∗. Recall that a sequence {xj } ⊂ X is said to converge weakly in X to an x ∈ X provided 〈xj , x

∗〉 →
〈x, x∗〉 in K as j → ∞ for all x∗ ∈ X∗, which will be written as xj

w→ x in X.

Theorem 3. Let ∅ �= T ⊂ R and (X,‖ · ‖) be a reflexive separable Banach space with separable dual (X∗,‖ · ‖).
Suppose that {fj } ⊂ XT is such that supj∈N ‖fj (t0)‖ = C0 < ∞ for some t0 ∈ T and condition (7) is satisfied. Then
{fj } contains a subsequence, again denoted by {fj }, such that fj (t)

w→ f (t) in X for all t ∈ T and some function
f ∈ XT .

Due to the separability of X∗, the proof again relies on the diagonal process and Theorem 1 applied to the sequence
of K-valued functions T � t 
→ 〈fj (t), x

∗〉 ∈ K, j ∈ N, x∗ ∈ X∗, and can be easily adapted to the case under consider-
ation from the proof of Theorem 7 from [8]—we note only that, by virtue of (12), the quantity C(t) = supj∈N ‖fj (t)‖
is finite for all t ∈ T and, given x∗ ∈ X∗, we have∣∣〈fj (t), x

∗〉∣∣ �
∥∥fj (t)

∥∥ · ∥∥x∗∥∥ � C(t)
∥∥x∗∥∥, t ∈ T , j ∈ N,

and

lim sup
j,k→∞

ν
(
n,

〈
(fj − fk)(·), x∗〉, T )

�
∥∥x∗∥∥ lim sup

j,k→∞
ν(n,fj , fk, T ).

As a simple example (cf. Example 3), let xj (t) = sin(j t), t ∈ [0,2π], and fj : [0,1] → X = L2[0,2π] be given
by fj (s) = xj for all s ∈ [0,1] (i.e., each fj is a constant function), j ∈ N. Then, by Theorem 3 applied to {fj },
a subsequence of {xj } converges weakly in X and, since {xj } is weakly Cauchy, {xj } converges weakly in X; clearly,
the weak limit of {xj } is zero, which is the well-known classical result.
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