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Abstract  

 

The paper proposes the thorough investigation of the in-sample and out-of-sample 

performance of four GARCH and two stochastic volatility models, which were estimated based on 

Russian financial data. The data includes Aeroflot and Gazprom’s stock prices, and the rouble against 

the US dollar exchange rates. In our analysis, we use the probability integral transform for the 

in-sample comparison, and a Mincer-Zarnowitz regression, along with classical forecast performance 

measures, for the out-of-sample comparison. Studying both the explanatory and the forecasting power 

of the models analyzed, we came to the conclusion that stochastic volatility models perform equally or 

in some cases better than GARCH models. 
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1 Introduction 

 

Predicting the volatility of financial assets is an important task for the purposes of asset 

pricing, portfolio allocation and risk management. There is a long-standing discussion on which 

volatility measures predict the future volatility more efficiently in different scenarios. GARCH 

models are usually compared with implied and historical volatility in option pricing, but as yet no 

consensus has been reached. For example, (Lamoureux and Lastrapes, 1993) argue that implied 

volatility outperforms historical volatility in predicting the future volatility for a option’s underlying 

assets. On the other hand (Ammann et al., 2009) came to the opposite conclusion after taking into 

account such factors as capitalization, beta, market-to-book ratio and price momentum. One possible 

explanation for these contradictory results is that the models considered do not capture some essential 

stylized facts of the financial time series, due to the absence of random term in the volatility process. 

Another fundamentally different way of using volatility modeling is developed in stochastic 

volatility models (SV). The main difference between them and the GARCH-type models is that the 

former contains an additional innovation term for volatility dynamics, which may or may not be 

related to the returns' innovations. Moreover, stochastic volatility models require more sophisticated 

estimation techniques based on simulations, since the closed-form solution rarely exists. Examples of 

comparisons of GARCH with SV models can be found in (Danielsson, 1994) and (Shephard, 1996). 

See also (Kim et al., 1998) for the thorough simulation-based investigation of the SV model, including 

estimation, filtering, hypothesis testing and prediction. 

In Chuang et al’s (2013) more recent study, the aforementioned volatility measures (aside 

from SV) are compared with the Markov switching multifractal model (MSM), which was introduced 

in Calvet and Fisher, 2004) Unlike GARCH or implied volatility, MSM’s multifractal structure is able 

to capture not only the clustering feature of volatility process, but also the outliers and long-memory 

behavior of volatility. As a result, the authors recognize that MSM does outperform the implied 

volatility in the out-of-sample performance. 

It is noteworthy that,as in the SV model, MSM also incorporates uncertainty into the volatility 

process but in a completely different way than SV (for details see Section 2). This meant that MSM, 

belonging to the class of stochastic volatility, has a closed-form likelihood function and can be 

estimated via the usual optimization procedure. 

Consequently, this paper aims to compare two stochastic volatility models which both model 

the volatility via a random process but which substantially differ in terms of their computational 
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efforts. However, GARCH models are used as traditional benchmarks in volatility estimations and 

forecasting. 

The paper is organized as follows. Section 2 describes the set of models to be compared. 

Section 3 presents the data and parameter estimates for the chosen models. Section 4 considers the 

goodness-of-fit and forecast performance issues and discusses the results. Section 5 concludes the 

paper. 

 

2 Model description 

  

Volatility models can be divided into three main groups: autoregressive conditional 

heteroskedasticity (ARCH or GARCH which is generalized ARCH (Bollerslev, 1986)), stochastic 

volatility and realized volatility. The latter is usually used for analyzing intra-day data, therefore in 

our research we have focused on GARCH and stochastic volatility models. 

From more than three hundred ARCH-type models (Hansen and Lunde, 2005) we chose four: 

the ordinary GARCH, exponential GARCH, Glosten-Jagannathan-Rünkle model (GJR) and threshold 

ARCH. For all these models, we estimated the simple specification with one ARCH and one GARCH 

term. The choice of the models is induced by the prevalence of this specification in the financial 

literature, particularly in the results’ practical applicability. Examples can be found in (Ding and 

Meade, 2010), (Pederzoli, 2006). 

We also chose two models from the second group: the original stochastic volatility model (or, 

as termed in the literature---the stochastic volatility) and the Markov switching multifractal model. 

  

2.1 GARCH 

All GARCH-type model have a similar set up, distinguished by the volatility equations. First, 

we have the time series tx  of T  daily log returns:  

 1= ( | ) , =1, , ,t t t tx E x y t T   (1) 

 where 1( | )t tE x   is a conditional mean of daily returns tx  at time t , which is conditional 

on all available at 1t   information 1tF , ty  are usually called innovations. Returns tx  are 

calculated as a logarithm of today’s price divided by yesterday’s price: 
1

= ( )t
t

t

P
x log

P

. Conditional 

mean 1( | )t tE x   is modelled by ARMA(p,q), see (2).  
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1

=1 =1

( | ) = ,
p q

t t i t i j t j

i j

E x x         (2) 

 where parameters i  and 
j  are the i th-order autoregressive (AR) and j th-order moving 

average (MA) terms. 

Consequently, innovations ty  have zero mean and time-dependent variance 2

t , which is 

modeled by (3) and (4).  

  2 2 2

=1 =1

= , (0,1)

= ,

t t t t

k m

t i t i j t j

i j

y N

c y

  

      
 (3)(4) 

 where parameter i  represents i th-order ARCH term, 
j ---the j th-order GARCH term, 

t  are standardized innovations or standardized residuals, which are normally distributed with zero 

mean and unit variance. ARCH term in (4) allows us to capture the effects of volatility clustering and 

the GARCH term is responsible for the volatility autocorrelation estimated by j . 

The exponential GARCH (Nelson, 1991) also allows us to capture the leverage effect (i. e. the 

asymmetric volatility response to negative and positive returns) and ensure the simpler evaluation of 

shock persistence (5).  

   2 2

=1 =1

ln( ) = | | (| |) ln( ),
k m

t i t i i t i t i j t j

i j

c E               (5) 

 where =t t ty   are standardized innovations, i  estimates the leverage effect. 

The GJR model (Glosten et al., 1993) solves the same problem of leverage effect modeling via 

the use of the indicator function ( )I   (6).  

  2 2 2 2

=1 =1

= ( ) ,
k m

t i t i i t i t i j t j

i j

c y I y y            (6) 

 where function I  takes the value of 1 if 0t iy    and 0 otherwise, i  again estimates the 

leverage effect. 

Unlike the others, the TARCH model (Zakoian, 1994) is formulated for standard deviations 

t  (7).  

  
=1 =1

= | | .
k m

t i t i i t i j t j

i j

c y y           (7) 

 This specific form allows to us observe the volatility’s different reactions to different signs of 

(3) 

(4) 
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the lagged innovations t iy  . 

In GARCH-type models, there is only one source of uncertainty, t , which drives the 

dynamics of both returns and volatility. It seems more natural to include another random term for 

volatility and state it as an autoregressive process. The next subsection describes this idea in detail. 

 

2.2 Stochastic volatility 

The set up for the basic stochastic volatility model (Taylor, 1994) (Tsyplakov 2007), is as 

follows: (8) and (9).  

 
1

= exp( / 2) ,

= ,

t t t

t t t

y



 

     
 (8)(9) 

 where t  is the logarithm of variance,   is its level,   estimates the persistence,   is 

the variance of log-variance, ty  and t  have the same meaning as before. The process t  is 

unobserved and usually interpreted as the latent time-varying volatility process. One of the main 

difficulties in estimating this model is the impossibility of obtaining the closed-form likelihood 

function. Parameters can be estimated by applying numerical methods such as the Markov Chain 

Monte Carlo simulations. For further details on MCMC see Brooks et al., (2011) and Jeliazkov and 

Lee (2010). 

 

2.3 Markov switching multifractal model 

In the Markov Switching Multifractal model (further MSM), introduced in (Calvet et al., 

1997), volatility also has its own source of uncertainty, and consists of several volatility components 

which follow a first-order Markov process. This means that, in each moment of time, the volatility 

component is equal to its previous value, or is drawn from a certain fixed distribution with a 

probability unique to  each volatility component. The main difficulty that a researcher is likely to 

encounter is the estimation of the transition probability matrix for the Markov process, e.g.  if a 

volatility component can take only two values, then k  volatility components generally needs to be 

parameterized by 
22 k

 variables. In MSM, this problem is solved by introducing model restrictions 

taken from the literature on multifractal models, which clarify that only five parameters need to be 

estimated. Moreover, the closed-form likelihood function exists and standard procedure of the 

maximum likelihood estimation may be carried out. 

The dynamics of volatility is described in (10).  

(8) 

(9) 
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 2 2

,

=1

= ,
k

t k t

k

M 
 
 
 
  (10) 

 where   is a positive constant, 
,k tM  are non-negative, statistically independent volatility 

components, k  is the number of volatility components which is considered as the order of the MSM 

model. Due to their Markov chain nature, each component can be in its previous state with probability 

1 k  or switch with probability k , (11).  

 ,

, 1

with probability
= ,

with probability1

k

k t

k t k

M
M

M









 (11) 

 where =1, ,k k , M  should be non-negative and have a unit of mathematical expectation. 

In the simplest case, the distribution of M  is a sum of two Dirac delta functions ( )   (12).  

    0 1 1 0( ) = 0.5 0.5 , = 2 ,f M M m M m m m      (12) 

 Each component has its own switching probability k  defined by (13).  

 
1

1= 1 (1 ) ,
kb

k 


   (13) 

 where 1 (0,1), (1, )b    . This means that <1k  for all =1, ,k k  and all k  are 

ordered as follows: 1 2< < <
k

   . Hence component 1,tM  has the lowest switching probability 

and 
,k t

M --- has the highest. Components with low switching probabilities are called low-frequency 

components and capture the most persistent variations of volatility, while high-frequency components 

capture the volatility’s short-run dynamic. This feature distinguishes MSM from many other models 

where short-run and long-run variations of volatility are modeled separately. The inversed switching 

probability shows an average period of time, when the volatility component does not change its value 

and can be interpreted as a measure of the persistence of corresponding volatility shock. 

Therefore, to identify a MSM process five parameters are needed:   

    • 0m  for distribution of volatility components ,k tM , 0 (1,2)m  ;  

    • scaling parameter  , (1, )   ;  

    • b  for switching probabilities, (1, )b  ;  

    • switching probability of the most high-frequency component 
k

  (it is more convenient 

to estimate 
k

  rather than 1  because 
k

  has the same magnitude as the other parameters), 

(0,1)
k
  ;  
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    • number of volatility components k , (1, )k   .  

 The details of the MSM model’s estimation by the pseudo maximum likelihood method, the 

estimator’s small sample properties and simulation results are discussed in (Calvet and Fisher, 2004) 

and (Calvet and Fisher, 2008). 

 

3 Empirical results 

  

We apply MLE to the GARCH and MSM models and the MCMC estimator to the stochastic 

volatility model to obtain the preferred specifications for three financial time series---two stocks and 

an exchange rate. 

 

3.1 Data description 

The empirical analysis uses the daily prices of Aeroflot’s company stocks (AFLT), Gazprom’s 

company stocks (GAZP) and the rouble exchange rate against the US dollar (USD/RUB). The data 

covers the period from 01.01.06 to 16.05.12 and totals 5153 observations. Figure 1 shows the daily 

logarithmic returns of the three series. For each series, we calculated the mean, standard deviation, 

skewness and kurtosis coefficients and the minimum and maximum values, as shown in Table 1.  

 

Table 1: Descriptive statistics for three log returns 

Asset Sample 

size 

Mean Standard 

deviation 

Skewness Kurtosis Max Min 

AFLT 1581 -0.00010 0.0242 0.6067 12.7246 0.2104 -0.1662 

GAZP 1572 -0.00027 0.0294 -0.0327 15.8053 0.2526 -0.2236 

USD/RUB 2000 0.00004 0.0057 1.0285 22.2542 0.0639 -0.0567 

  

Table 1 reveals that all three series are highly leptokurtic, as a financial time series ought to be. 

Moreover, in contrast to GAZP, which has a longer left tail, AFLT and USD/RUB are positively 

skewed.  
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Fig. 1: Logarithmic returns of Aeroflot and Gazprom stock prices and USD/RUB exchange rate. 

 

3.2 Estimation results 

 

GARCH The parameter estimates of the four GARCH-type models are presented in Tables 2, 
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3 and 4. The log returns conditional mean, see Equation (2), for all series is modeled as an 

autoregressive process of order 1. Each volatility equation includes one ARCH and one GARCH term, 

and a term for measuring the leverage effect, when it is available (see Equations 

Ошибка! Источник ссылки не найден., (5), (6) and (7)).  

 

Table 2: GARCH parameter estimates for Aeroflot  

    GARCH   EGARCH   GJR   TARCH  

     0.0004   0.0000   0.0000   -0.0001  

  (0.0008)   (0.0002)   (0.0008)   (0.0006)  

1    0.0926*   0.0990**   0.1012**   0.0806*  

  (0.0480)   (0.0435)   (0.0454)   (0.0419)  

c    0.0002**   -1.2932   0.0002**   0.0030  

  (0.0001)   (0.7995)   (0.0001)   (0.0040)  

1    0.4648***   -0.0675   0.3306*   0.2744**  

  (0.1368)   (0.0532)   (0.1871)   (0.1278)  

1    0.3582**   0.8222***   0.3869**   0.6864***  

  (0.1617)   (0.1070)   (0.1850)   (0.2515)  

1      0.5189***   0.2253   0.1212  

    (0.1178)   (0.1735)   (0.1375)  

 LL   2543.4536   2556.3991   2545.9232   2552.2372  

AIC   -5076.9072   -5100.7982   -5079.8464   -5092.4743  

BIC   -5051.9836   -5070.8899   -5049.9381   -5062.5660  

 
*** < 0.01p , 

** < 0.05p , 
* < 0.1p   
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Table 3: GARCH parameter estimates for Gazprom   

    GARCH   EGARCH   GJR   TARCH  

     0.0005   -0.0003   0.0000   -0.0005  

  (0.0007)   (0.0007)   (0.0007)   (0.0007)  

1    -0.0042   0.0007   0.0020   0.0005  

  (0.0310)   (0.0301)   (0.0301)   (0.0298)  

c    0.0000**   -0.1420   0.0000***   0.0007***  

  (0.0000)   (0.0269)   (0.0000)   (0.0002)  

1    0.1066***   -0.0546   0.0586***   0.1129***  

  (0.0261)   (0.0250)   (0.0185)   (0.0234)  

1    0.8784***   0.9794***   0.8719***   0.8902***  

  (0.0189)   (0.0037)   (0.0264)   (0.0218)  

1      0.2072***   0.0965**   0.2876**  

    (0.0377)   (0.0480)   (0.1276)  

 LL   2410.1991   2407.5094   2416.5774   2408.8917  

AIC   -4810.3982   -4803.0188   -4821.1548   -4805.7833  

BIC   -4785.5164   -4773.1607   -4791.2967   -4775.9252  

 
*** < 0.01p , 

** < 0.05p , 
* < 0.1p   
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Table 4: GARCH parameter estimates for USD/RUB   

    GARCH   EGARCH   GJR   TARCH  

     -0.0003   -0.0002   -0.0002   -0.0002  

  (0.0004)   (0.0001)   (0.0032)   (0.0000)  

1    0.0408   0.0371   0.0441   0.0367  

  (0.0640)   (0.0368)   (0.1839)   (0.0298)  

c    0.0000   -0.0473   0.0000   0.0000  

  (0.0000)   (0.0076)   (0.0001)   (0.0000)  

1    0.0760   0.0648***   0.0974   0.0616***  

  (0.4479)   (0.0187)   (2.1944)   (0.0134)  

1    0.9229**   0.9944***   0.9367   0.9498***  

  (0.4056)   (0.0006)   (1.8292)   (0.0133)  

1      0.1364***   -0.0729   -0.5741  

    (0.0214)   (0.1725)   (0.1852)  

 LL   6097.4303   6106.4104   6109.6509   6101.5368  

AIC   

-12184.8606  

 

-12200.8207  

 

-12207.3018  

 

-12191.0736  

BIC   

-12158.2978  

 

-12168.9454  

 

-12175.4264  

 

-12159.1983  

 
*** < 0.01p , 

** < 0.05p , 
* < 0.1p   

 

We begin by examining the conditional mean equations. On the one hand, the lagged log 

returns coefficients are significant only for the Aeroflot data, meaning that Gazprom and the exchange 

rate exhibit a negligible autocorrelation in the conditional mean. On the other hand, the 

autocorrelation in volatility tends to be strongly significant (at 5% level or less) in all cases except the 

GJR model for USD/RUB. We also observed a substantial leverage effect in all three series, as 

estimated by the EGARCH model. According to the Schwarz information criterion reported in the last 

row of Tables 2--4, the GJR model provides the highest goodness of fit for Gazprom’s stocks and 

USD/RUB exchange rate,  and EGARCH provides the best fit for Aeroflot’s stocks. 
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Stochastic volatility The parameter estimates for the stochastic volatility model in   

Equation (9) are presented in Table 5. We use the MCMC sampler, which is described in detail in 

Kastner and Friihwirth-Schnatter (2014). Following recommendations which were outlined in 

Friihwirth-Schnatter and Wagner (2010), and Kim et al. (1998), we define the prior distribution of 

as a Gaussian distribution, with mean equal to     and variance equal to 1. The prior for persistence 

coefficient   is a beta distribution with parameters 20 and 1.1. 

 

Table 5: Stochastic volatility parameter estimates for three assets   

    AFLT   GAZP   USD/RUB  

     -8.2330   -7.9188   -11.0047  

  (0.1082)   (0.4202)   (0.2241)  

    0.8132***   0.9818***   0.9669***  

  (0.0304)   (0.0076)   (0.0124)  

    0.7278***   0.1906***   0.2981***  

  (0.0626)   (0.0276)   (0.0526)  

 
*** < 0.01p , 

** < 0.05p , 
* < 0.1p   

  

The latent volatility processes for the three series appear to be highly persistent, since the   

coefficient is significant and approaching one. The larger   the lower   is, meaning that near unit 

root volatility process has lower unconditional variance in the estimated model. 

 

Markov switching multifractal The estimation is conducted for eight different specifications 

of the MSM( k ) model with k  ranges from 1 to 8. Interestingly, if =1k ,  a usual Markov model is 

obtained, where volatility takes only two values: 0m  and 02 m . When >1k , the number of 

volatility states grows as 2k
and reaches 256, in our calculations. 

Table 6 contains the parameter estimates of the MSM(k ) model and the value of the log 

likelihood function, labeled as “LL”. 
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Table 6: Parameter estimates for the MSM model  

  k    1   2   3   4   5   6   7   8  

 AFLT  

 b    2.4990   1.0100   4.2670   4.8864   9.7742   5.7669   5.7971   5.8032  

k
    0.0164   0.1330   0.5683   0.6457   0.3381   0.7070   0.7093   0.7098  

0m    1.9994   1.7811   1.6553   1.6173   1.7119   1.6205   1.6205   1.6205  

    0.8760   0.0304   0.0250   0.0332   0.1546   0.0891   0.1448   0.2351  

LL   3719.38   3965.91   3973.23   3978.79   3971.78   3976.35   3975.64   3974.94  

 GAZP  

 b    2.5046   2.6766   2.9058   4.3465   3.5778   4.6400   4.3450   3.9919  

k
    0.0143   0.0225   0.0458   0.1349   0.0479   0.0612   0.0579   0.1545  

0m    1.9993   1.6481   1.6124   1.4933   1.6142   1.6153   1.6155   1.4618  

    0.8768   0.0469   0.0378   0.0409   0.0986   0.1622   0.1274   0.0195  

LL   3484.92   3708.28   3725.70   3729.22   3723.39   3722.79   3723.66   3727.51  

 USD/RUB  

 b    2.5093   1.0100   8.4035   3.5970   4.0528   3.7041   2.5883   4.3180  

k
    0.0131   0.3030   0.7893   0.8763   0.6887   0.9900   0.9557   0.9900  

0m    2.0000   1.8039   1.7021   1.6379   1.7258   1.7009   1.4798   1.5031  

    0.8763   0.0062   0.0064   0.0058   0.0140   0.0068   0.0054   0.0046  

LL   7638.10   8019.33   8102.25   8097.64   8084.44   8092.40   8117.16   8125.73  

  

We begin by examining the Aeroflot data. The multiplier parameter 0m  tends to decline with 

k  (with some exceptions), because when the number of volatility components increases, they are 

able to capture the fluctuations in volatility without much variability in themselves. The estimates of 

  vary across k  with no particular pattern. The switching probability’s 
k

  reciprocal 

characterizes the average length of the shortest volatility cycle. When =1k  the only ,1tM  has a 

duration of approximately two months. As k  increases, 
k

  tends to increase until the shortest 

volatility cycle declines to about a day and a half. The frequency parameter b  increases with k  but 

not monotonically, implying that the distance between switching probabilities becomes greater as the 
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number of volatility components grows. The other assets generate parameters with similar behavior. 

0m  tends to decrease with k  in all cases, and the magnitude of 0m  varies in approximately the 

same range for all assets. 

For stock log returns, the log likelihood function reaches its maximum if = 4k . For the 

currency rate, the log likelihood function tends to increase with k , which is compatible with the 

results found by Calvet and Fisher (2004). 

After estimating the MSM models of different orders, one must be chosen for each asset. The 

usual way to compare the models’ in-sample is by comparing them according to information criteria, 

but it is correct if the considered models are nested. The MSM with different k  are non-nested, 

therefore we implement the model selection procedure presented in Vuong (1989). Vuong’s test for 

the model selection resulted in final sets of parameters for all three financial assets. 

The null hypothesis of Vuong’s test is that two non-nested models, say F  and G , fit the data 

equally well. The alternative implies that G  outperforms F , so we concern ourselves with the 

left-sided criteria. The essence of Vuong’s test is that, to compare the goodness-of-fit of two models, 

one should check that the difference between their log likelihood functions is significant. Based on the 

assumption of data normality, the following equation can be used:  

  21 1
*

=1 1 1

( | , , )1
=  0, ,

( | , , )

T
t t

t t t

f x x x
V ln N

g x x xT




  (14) 

 where ( )f   and ( )g   are probability densities from models F  and G  respectively. The 

statistics are normally distributed, with zero mean and variance 2

* . The consistent estimator for 2

*  

can be obtained as sample variance of terms in (14). 

We take the MSM( k ) with the highest log likelihood as the alternative (G model). Table 7 

represents the results of the model selection procedure. 
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Table 7: Results of Vuong’s test    

k  1 2 3 4 5 6 7 8 

AFLT 

V -6.5241 -0.3239 -0.1396 - -0.1762 -0.0612 -0.0792 -0.0967 

p-value 0.0000 0.0499 0.1656 - 0.0542 0.0318 0.0201 0.0117 

GAZP 

V -6.1615 -0.5281 -0.0889 - -0.1471 -0.1621 -0.1401 -0.0432 

p-value 0.0000 0.0023 0.2380 - 0.1105 0.0711 0.1191 0.3126 

USD/RUB 

V -10.9038 -2.3792 -0.5251 -0.6282 -0.9233 -0.7452 -0.1916 - 

p-value 0.0000 0.0000 0.0045 0.0014 0.0000 0.0030 0.0371 - 

 

For AFLT’s stocks, the null hypothesis is rejected at a 5% level for models with 

=1,2,6,7 and 8k . It means that MSM(4), with the highest log likelihood, outperforms the above 

mentioned specifications. GAZP’s results are slightly different. Only the MSM with =1 and 2k  

reveal a poorer performance than the best performances from the GAZP MSM(4) model. In the case 

of the USD/RUB, the hypothesis of equal goodness of fit is rejected for all k , which leads us to 

conclude that the more volatility components there are in the model specification for currency rate, the 

better this model can explain the data. 

Hoping to decrease the computational costs, we choose the model with the minimum possible 

order for each asset, which does not perform any worse than the model with the maximum value of 

likelihood function. Therefore, the selected specifications are MSM(3) for Aeroflot and Gazprom and 

MSM(8) for the exchange rate. 

 

4 Model comparison 

 

4.1 In-sample analysis 

In the previous section, we estimated four GARCH models, a stochastic volatility model and 

pick out MSM model specifications by Vuong’s test. We cannot run the likelihood ratio test or similar 

tests to implement in-sample comparison, because these models are non-nested. It is possible however 

to use a probability integral transform (PIT), as used by Swanepoel and Van Graan (2002). 
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PIT is based on the simple idea that if 0U  is a uniformly distributed random variable (with 

values of [0,1]), then the random variable 
1= ( )X F U

 has the cumulative distribution function F . 

Conversely, if X  has the cumulative distribution function F , random variable ( )F X  is uniformly 

distributed on the interval [0,1]: ( ) (0,1)F X U . 

A common assumption in all the models in our paper is that the log returns are normally 

distributed, with zero mean and some time-dependent variance. According to PIT, applying the 

Gaussian cumulative distribution function with a zero mean and estimated variance to the log returns, 

we should obtain the uniformly distributed random variable. Using the Kolmogorov-Smirnov test, we 

checked how close the obtained random variable is to the uniform distribution. Table 8 presents the 

results. 

 

Table 8: Kolmogorov-Smirnov test for probability integral transform   

    stand   exp   gjr   thresh   msm   stochvol  

 AFLT  

 KS   0.9910   0.9878   0.9904   0.9857   0.1216   0.0320  

p-value   0.0000   0.0000   0.0000   0.0000   0.0000   0.2177  

 GAZP  

 KS   0.9856   0.9795   0.9817   0.9790   0.0970   0.0250  

p-value   0.0000   0.0000   0.0000   0.0000   0.0000   0.5154  

 USD/RUB  

 KS   0.9637   0.9631   0.9642   0.9877   0.0898   0.0889  

p-value   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000  

  

The first row contains the name of the volatility model (the first four are GARCH models, the 

last two are stochastic volatility models). The second and the third rows present the 

Kolmogorov-Smirnov test statistics and its p-value respectively. Evidently, GARCH models fail to fit 

the assumption of normally distributed log returns. However, stochastic volatility models exhibit a 

much better performance according to KS statistics and the null is not rejected for the stocks’ log 

returns in the basic stochastic volatility model. 
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4.2 Out-of-sample analysis 

We now investigate the competing models’ out-of-sample performance over a 1-day 

forecasting horizon. For each asset, we estimate six models and leave 500 observations (or about one 

third of the sample) for an out-of-sample comparison. The comparison is conducted in two ways. The 

first one uses classical forecast performance measures of log returns and the second uses the 

Mincer-Zarnowitz regression, in order to directly evaluate the volatility forecast’s accuracy. 

4.2.1 Forecast performance measures 

 The out-of-sample comparison is conducted using measures such as the mean squared error 

(MSE), mean absolute error (MAE) and the directional accuracy (DA) of log returns. The latter is 

calculated as a percentage of cases when the signs of real and predicted log returns match:   

=1
=1/ ( ( ) = ( ))

T

t tt
T I sgn y sgn yDA  . Evidently, better models reveal lower MSE and MAD and higher 

DA. 

 

Table 9: Comparing forecast accuracy  

    stand   exp   gjr   thresh   msm   stochvol  

 AFLT  

 MSE   0.6631   0.6159   0.6515   0.6225   0.3167   0.3311  

MAD   0.5005   0.4882   0.4977   0.4838   0.4009   0.2772  

DA   0.3106   0.3186   0.3267   0.3166   0.9238   0.7555  

 GAZP  

 MSE   0.5950   0.5748   0.5752   0.5720   0.5463   0.5039  

MAD   0.4344   0.4303   0.4329   0.4304   0.5787   0.3541  

DA   0.2966   0.2926   0.3287   0.2946   0.8116   0.5912  

 USD/RUB  

 MSE   0.0062   0.0061   0.0061   0.0061   0.0046   0.0049  

MAD   0.0421   0.0432   0.0423   0.0419   0.0262   0.0354  

DA   0.3046   0.3046   0.3146   0.3206   0.9038   0.6192  

  

According to Table 9, MSE is substantially lower for stochastic volatility than for the GARCH 

models. MAD shows similar results, aside from Gazprom’s stock returns forecast, where MSM 

demonstrates higher MAD than in the GARCH models. For directional accuracy, the GARCH models 
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match the actual sign of returns in about 30% of cases, which is essentially lower than approximately 

65% and 87% for the original stochastic volatility and MSM respectively. 

4.2.2 Mincer-Zarnowitz regression 

The idea of Mincer-Zarnowitz regression is simple; using ordinary least squares we estimate 

the linear projection of squared log returns on the constant and one-day forecasts, shown in Equation 

(15). 

 2 2=t ty    (15) 

Here, squared log returns 2

ty  are proxies for volatility. Unbiased forecasts yield = 0  and 

=1 . As suggested in West and McCracken, (1998) standard errors of   and   are corrected by 

the HAC variance estimator (Newey and West, 1987). 

Table 10 reports the results. For all assets,   is either statistically insignificant or 

approaching zero, which provides evidence of unbiased forecasts. However, the slope coefficient   

is significant in all cases and does not equal one. Interestingly, GARCH models tend to overestimate 

volatility due to <1  for all GARCH specifications. Conversely, stochastic volatility models give 

understated forecasts. Therefore, it might be more appropriate to use GARCH when estimating the 

upper boundary of “tomorrow’s” volatility and stochastic volatility. 
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Table 10: Mincer-Zarnowitz regression   

    stand   exp   gjr   thresh   msm   stochvol  

 AFLT  

     0.0002***   0.0001*   0.0002***   0.0001**   -0.0006***   -0.0003***  

  (0.0001)   (0.0001)   (0.0001)   (0.0001)   (0.0000)   (0.0000)  

    0.3582***   0.4931***   0.3988***   0.4493***   1.4419***   1.9981***  

  (0.0844)   (0.0944)   (0.0817)   (0.1011)   (0.0472)   (0.0742)  

 R
2
   0.0349   0.0520   0.0456   0.0381   0.6517   0.5926  

Adj. R
2
   0.0330   0.0501   0.0437   0.0362   0.6510   0.5918  

 GAZP  

     0.0001   0.0000   0.0000   0.0000   -0.0008***   -0.0002***  

  (0.0001)   (0.0001)   (0.0001)   (0.0001)   (0.0001)   (0.0001)  

    0.5762***   0.7294***   0.7420***   0.7803***   1.5348***   1.7679***  

  (0.1429)   (0.1325)   (0.1353)   (0.1391)   (0.0817)   (0.1607)  

 R
2
   0.0316   0.0574   0.0570   0.0595   0.4149   0.1954  

Adj. R
2
   0.0297   0.0555   0.0551   0.0576   0.4137   0.1938  

 USD/RUB  

     0.0000**   0.0000   0.0000**   0.0000   -0.0001***   0.0000***  

  (0.0000)   (0.0000)   (0.0000)   (0.0000)   (0.0000)   (0.0000)  

    0.6267***   0.6692***   0.6436***   0.7196***   4.3389***   1.9082***  

  (0.1448)   (0.1449)   (0.1341)   (0.1569)   (0.1198)   (0.1311)  

 R
2
   0.0362   0.0411   0.0442   0.0405   0.7248   0.2985  

Adj. R
2
   0.0343   0.0392   0.0423   0.0386   0.7242   0.2971  

 
*** < 0.01p , 

** < 0.05p , 
* < 0.1p   
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5 Conclusion 

  

The article proposed the thorough investigation of the in-sample and out-of-sample 

performance of four GARCH and two stochastic volatility models. We applied the maximum 

likelihood method and Markov Chain Monte Carlo simulation to estimate the parameters and obtain 

one-day forecasts of ordinary GARCH, exponential GARCH, the Glosten-Jagannathan-Rünkle 

model, threshold ARCH, Markov switching multifractal and the stochastic volatility models. Using 

the probability integral transform, traditional forecast performance measures (MSE, MAD and DA) 

and a Mincer-Zarnowitz regression, we compared the aforementioned models and concluded that, in 

most cases, stochastic volatility models outperform GARCH, both in terms of explanation and 

prediction. One of the most important results was that the original stochastic volatility model is the 

only model where the log returns normality assumption was not rejected. We also demonstrated that 

GARCH models tend to overestimate the volatility forecasts, in contrast to stochastic volatility, where 

the forecasts are understated. The results of this research imply that it is more useful to involve 

multi-step forecasts in evaluating the out-of-sample performance of volatility models, and expanding 

the set of assets under consideration. 
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