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Kobayashi pseudometric on hyperkähler manifolds

Ljudmila Kamenova, Steven Lu and Misha Verbitsky

Abstract

The Kobayashi pseudometric on a complex manifold is the maximal pseudometric such that
any holomorphic map from the Poincaré disk to the manifold is distance-decreasing. Kobayashi
has conjectured that this pseudometric vanishes on Calabi–Yau manifolds. Using ergodicity
of complex structures, we prove this for all hyperkähler manifold with b2 � 7 that admits a
deformation with a Lagrangian fibration and whose Picard rank is not maximal. The Strominger-
Yau-Zaslow (SYZ) conjecture claims that parabolic nef line bundles on hyperkähler manifolds are
semi-ample. We prove that the Kobayashi pseudometric vanishes for any hyperkähler manifold
with b2 � 7 if the SYZ conjecture holds for all its deformations. This proves the Kobayashi
conjecture for all K3 surfaces and their Hilbert schemes.

1. Introduction

The Kobayashi pseudometric on a complex manifold M is the maximal pseudometric such that
any holomorphic map from the Poincaré disk to M is distance-decreasing (see Section 1.3 for
more details and references). Kobayashi conjectured that the Kobayashi pseudometric vanishes
for all projective varieties with trivial canonical bundle (see [20, Problems C.1 and F.3]). The
conjecture was proved for projective K3 surfaces via the non-trivial theorem in [30] that all
projective K3 surfaces are swept out by elliptic curves (see [38, Lemma 1.51]). We prove the
conjecture for all K3 surfaces as well as for many classes of hyperkähler manifolds. For an
extensive survey on problems of Kobayashi and Lang, we recommend the beautiful survey
papers by Voisin [38] and by Demailly [11].

Using density arguments and the existence of Lagrangian fibrations, it was proved in [18]
that all known hyperkähler manifolds are Kobayashi non-hyperbolic. Then in [37], this result
was generalized to all hyperkähler manifolds with b2 > 3. All known examples of hyperkähler
manifolds have b2 > 5 (in fact, b2 � 7) and this has been conjectured to be true in general.

We introduce the basics of hyperkähler geometry and Teichmüller spaces in Subsection 1.1.
Upper semi-continuity of the Kobayashi pseudometric is discussed in Subsection 1.4. Our main
results are in Sections 2 and 3.

For a compact complex manifold M , the Teichmüller space Teich is the space of complex
structures up to isotopies. The mapping class group Γ, or the group of ‘diffeotopies’, acts natu-
rally on Teich. Complex structures with dense Γ-orbits are called ergodic (see Definition 1.17).
We show that if the Kobayashi pseudometric on M vanishes, then the Kobayashi pseudometric
vanishes for all ergodic complex structures on M in the same deformation class (Theorem 2.1).
As a corollary, the Kobayashi pseudometric vanishes for all K3 surfaces (Corollary 2.2), and
for all ergodic complex structures on a hyperkähler manifold (Theorem 2.3). The Strominger-
Yau-Zaslow (SYZ) conjecture predicts that any hyperkähler manifold has a deformation which
admits a Lagrangian fibration (more precisely, SYZ conjecture is a special form of Kawamata’s
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abundance conjecture predicting that all parabolic nef line bundles on hyperkähler manifolds
are semi-ample; see [32, 36] for more details). Assuming this conjecture to be true, we show
the vanishing of the Kobayashi pseudometric for all hyperkähler manifolds with b2 � 7 (which
is expected for all hyperkähler manifolds). When, in addition, the complex structure is non-
ergodic, we prove that the infinitesimal Kobayashi pseudometric defined by Royden vanishes
on a Zariski dense open subset of the manifold (this result is stronger).

We summarize the main results of this article in the following theorems; please see the main
body of the paper for details of the definitions and of the proofs.

Theorem 1.1. Let M be a compact simple hyperkähler manifold with b2(M) � 7. Assume
that some deformation of M admits a holomorphic Lagrangian fibration and the Picard rank
of M is not maximal. Then the Kobayashi pseudometric on M vanishes.

Proof. See Corollary 2.14.

Remark 1.2. All known examples of hyperkähler manifolds have b2(M) � 7 and can be
deformed to one which admits a Lagrangian fibration [18, Claim 1.20]. By the above result, the
Kobayashi pseudometric on known manifolds vanishes, unless their Picard rank is maximal.

Theorem 1.3. Let M be a compact simple hyperkähler manifold with b2(M) � 7. Assume
that nef line bundles on all deformations of M are semi-ample, or that M is projective and
admits a holomorphic Lagrangian fibration up to birational equivalence with a smooth base
and no multiple fibers in codimension 1. Then the Kobayashi pseudometric on M vanishes and
the infinitesimal pseudometric vanishes on a Zariski open subset of M .

Proof. See Corollary 3.4 and Theorem 3.1.

1.1. Teichmüller spaces and hyperkähler geometry

We summarize the definition of the Teichmüller space of hyperkähler manifolds, following [35].

Definition 1.4. Let M be a compact complex manifold and Diff0(M) a connected
component of its diffeomorphism group (the group of isotopies). Denote by Comp the space
of complex structures on M , equipped with a structure of Fréchet manifold. We let Teich :=
Comp /Diff0(M) and call it the Teichmüller space of M .

Remark 1.5. In many important cases, such as in the case of Calabi–Yau manifolds [10],
Teich is a finite-dimensional complex space; usually it is non-Hausdorff.

Definition 1.6. Let Diff(M) be the group of orientable diffeomorphisms of a complex
manifold M . Consider the mapping class group

Γ := Diff(M)/Diff0(M)

acting on Teich. The quotient Comp /Diff = Teich /Γ is called the moduli space of complex
structures on M . Typically, it is very non-Hausdorff. The set Comp /Diff corresponds bijectively
to the set of isomorphism classes of complex structures.
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Definition 1.7. A hyperkähler manifold is a compact holomorphically symplectic
manifold admitting a Kähler structure.

Definition 1.8. A hyperkähler manifold M is called simple if π1(M) = 0 and H2,0(M) =
C. In the literature, simple hyperkähler manifolds are often called irreducible holomorphic
symplectic manifolds, or simply an irreducible symplectic varieties.

The equivalence between these two notions is based on the following theorem of Bogomolov
(via [39]) that motivated this definition.

Theorem 1.9 [4]. Any hyperkähler manifold admits a finite covering which is a product
of a torus and several simple hyperkähler manifolds.

Remark 1.10. Further on, all hyperkähler manifolds are assumed to be simple, Comp is the
space of all complex structures of hyperkähler type on M , and Teich its quotient by Diff0(M).

A simple hyperkähler manifold admits a primitive integral quadratic form on its second
cohomology group known as the Beauville–Bogomolov–Fujiki form. We define it using the
Fujiki identity given in the theorem below; see [13]. For a more detailed description of the
form, we refer the reader to [3, 5].

Theorem 1.11 (Fujiki, [13]). Let M be a simple hyperkähler manifold of dimension 2n
and α ∈ H2(M, Z). Then

∫
M

α2n = cq(α, α)n, where q is a primitive integral quadratic form
on H2(M, Z) of index (3, b2(M) − 3), and c > 0 is a rational number.

Remark 1.12. Fujiki formula can be used to show that
∫

M
α1 ∧ α2 ∧ · · · ∧ α2n is

proportional to a sum of q(αi1αi2)q(αi3αi4) · · · q(αi2n−1αi2n
) taken over all permutations

(i1, i2, . . . , i2n). Whenever α, β ∈ H2(M) satisfy q(α, α) = 0, Fujiki formula gives∫
M

αn ∪ βn = cq(α, β)n.

Definition 1.13. From Theorem 1.11, the form q is defined uniquely up to a sign, except
the case of even n and b2 �= 6. To fix the sign, we make the additional assumption that
q(ω, ω) > 0 for every Kähler form ω. Such a form q is called the Bogomolov–Beauville–Fujiki
form (or the BBF form) of M .

The mapping class group of a hyperkähler manifold can be described in terms of the BBF
form as follows.

Theorem 1.14 [35]. Let M be a simple hyperkähler manifold, Γ its mapping class group,

and Γ
ϕ→ O(H∗(M, Z), q) the natural map. Then ϕ has finite kernel and its image has finite

index in O(H∗(M, Z), q).

Definition 1.15. Let TeichI be a connected component of the Teichmüller space contain-
ing I ∈ Teich, and ΓI the subgroup of the mapping class group preserving TeichI . The group
ΓI is called the monodromy group of (M, I) (see [26]).
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Remark 1.16. In [35], it was shown that ΓI is a finite index subgroup in O(H∗(M, Z), q)
independent of I.

1.2. Ergodic complex structures

Definition 1.17. Let M be a complex manifold, Teich its Teichmüller space, and I ∈
Teich a point. Consider the set ZI ⊂ Teich of all I ′ ∈ Teich such that (M, I) is biholomorphic
to (M, I ′). Clearly, ZI = Γ · I is the orbit of I. A complex structure is called ergodic if the
corresponding orbit ZI is dense in Teich.

Theorem 1.18. Let M be a simple hyperkähler manifold or a compact complex torus of
dimension � 2, and I a complex structure on M . Then I is non-ergodic if and only if the Neron–
Severi lattice of (M, I) has maximal possible rank. This means that rkNS(M, I) = b2(M) − 2
for M hyperkähler, and rkNS(M, I) = (dimC M)2 for M a torus.

Proof. See [37].

1.3. Kobayashi pseudometric/pseudodistance

Let M be a complex manifold. Recall that a pseudometric on M is a function d on M × M
that satisfies all the properties of a metric (or distance function) except for the non-degeneracy
condition: d(x, y) = 0 only if x = y. The Kobayashi pseudometric (a.k.a. pseudodistance) dM on
M is defined as the supremum of all pseudometrics d on M that satisfy the distance-decreasing
property with respect to holomorphic maps f from the Poincaré disk (D, ρ) to M :

f∗d � ρ or equivalently d(f(x), f(y)) � ρ(x, y) ∀x, y ∈ D.

Here ρ denotes the Poincaré metric on D.
The following is S. Kobayashi’s standard construction of dM . Let

δM (p, q) = inf{ ρ(x, y) | f : D → M holomorphic, f(x) = p, f(y) = q }.
Although it does not satisfy the triangle inequality, in general, this is a very useful invariant
of the complex structure on M . For an ordered subset S = {p1, . . . , pl} of M , let

δS
M (p, q) = δM (p, p1) + δM (p1, p2) + · · · + δM (pl, q).

Then the triangle inequality is attained by setting

dM (p, q) = inf δS
M (p, q),

where the infimum is taken over all finite-ordered subsets S in M .
Royden introduced an infinitesimal version of dM as follows. The Kobayashi–Royden Finsler

norm on TM is given, for v ∈ TM , by

|v|M = inf
{

1
R

∣∣∣∣ f : D → M holomorphic, R > 0, f ′(0) = Rv

}
.

It is the largest ‘Finsler’ pseudonorm on TM that satisfies the distance-decreasing property
with respect to holomorphic maps from the Poincaré disk and therefore, it is automatically
‘distance-decreasing’ with respect to holomorphic maps. Royden showed that | |M is upper
semi-continuous and that dM is the integrated version of | |M , see [31]. In particular, this
implies the well-known fact that dM is a continuous function for a complex manifold M .

We recall that both the pseudometric and its infinitesimal version are insensitive to removing
complex codimension 2 subsets of M .
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Theorem 1.19. Let M be a complex manifold and Z ⊂ M be a complex analytic
subvariety of codimension at least 2. (In fact, the same proof would work for any subset
Z ⊂ M of Hausdorff codimension at least 3.) Then dM\Z = dM |M\Z and | |M\Z = (| |M )|M\Z .

Proof. Theorems 3.2.19 and 3.5.35 in [21].

Corollary 1.20. Let τ : M ��� M ′ be a birational equivalence of Calabi–Yau manifolds.
Suppose that the Kobayashi pseudometric on M vanishes. Then it vanishes on M ′.

Proof. It is easy to check (see [15, Subsection 4.4]) that the exceptional set of τ is a
subvariety of codimension at least 2. Then Theorem 1.19 can be applied to obtain that the
Kobayashi pseudometric vanishes on M and M ′ (by the distance-decreasing property) whenever
it vanishes on the smooth locus of τ .

1.4. Upper semi-continuity

Recall that a function F on a topological space X with values in R ∪ {∞} is upper semi-
continuous if and only if {x ∈ X |F (x) < α } is an open set for every α ∈ R. It is upper
semi-continuous at a point x0 ∈ X if for all ε > 0, there is a neighborhood of x0 containing
{x ∈ X |F (x) < F (x0) + ε }. If X is a metric space, then this is equivalent to

lim sup
ti→t0

F (ti) � F (t0),

for all sequence (ti) converging to t0. From its very definition, the infimum of a collection of
upper semi-continuous functions is again upper semi-continuous.

We will be interested in the upper semi-continuity of dMt
and | |Mt

in the variable t for a
proper smooth fibration π : M → T , that is, π is holomorphic, surjective, having everywhere
of maximal rank and connected fibers Mt = π−1(t). This follows in the standard way as is for
the case of | |M by the following result of Siu.

Theorem 1.21 [33]. Let f : D → M be a holomorphic immersion of a Stein manifold D
into a complex manifold M . Identify D as the zero section of the normal bundle X = f∗TM/TD
of D in M . Then there is a holomorphic immersion of a neighborhood of D in X which
extends f .

Since π is locally differentiably trivial, we may assume that M is differentiably a product
T × M and π its projection to the first factor. One can easily deduce from the above theorem
of Siu applied to the graph of a holomorphic map from D = D that δJ(t)(p, q) and |v|J(t) are
upper semi-continuous with respect to p, q ∈ M , v ∈ TM and t ∈ T , where we have replaced the
subscript Mt by its associated complex structure J(t). It follows then that δS

J(t)(p, q) is upper
semi-continuous with respect to p, q and t, and hence so is dJ(t)(p, q). We have established the
following proposition, cf. [40].

Proposition 1.22. Let π : M → T be a proper holomorphic and surjective map having
everywhere of maximal rank and connected fibers Mt = π−1(t). Then dMt

and | |Mt
are upper

semi-continuous with respect to all variables involved, including t.
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Although we will not need this, a little reflection will show that one can relax many of the
conditions on π. An immediate consequence of the above proposition is the following.

Corollary 1.23. For M , a compact complex manifold, let diam(M) be the diameter of
M with respect to dM . Then diam(M) is upper semi-continuous with respect to the variation
of the complex structure on M .

Proof. We need to show that diam(Mt) is upper semi-continuous with respect to t for a
family as given above, that is, for all t0 ∈ T and sequences (ti) converging to t0,

lim sup
ti→t0

diam(Mti
) � diam(Mt0).

If the inequality is false, then after replacing the sequence (ti) by a subsequence there is
an ε > 0 such that diam(Mti

) > diam(Mt0) + ε for all i. By compactness and the continuity of
the pseudometric on each Mt, there exist pi, qi such that diam(Mti

) = dMti
(pi, qi). Replacing

by a further subsequence if necessary, we may assume that the sequences (pi) and (qi) are
convergent. Let p, q ∈ Mt0 be their respective limit. Then by upper semi-continuity, we have

diam(Mt0) + ε � lim sup
i→∞

dMti
(pi, qi) � dMt0

(p, q) � diam(Mt0).

This is a contradiction.

2. Vanishing of the Kobayashi pseudometric

2.1. Kobayashi pseudometric and ergodicity

The main technical result of this paper is the following theorem. Recall that an ergodic complex
structure I on M is one which has a dense Diff(M)-orbit in the deformation space of complex
structures.

Theorem 2.1. Let M be a complex manifold with vanishing Kobayashi pseudometric.
Then the Kobayashi pseudometric vanishes for all ergodic complex structures in the same
deformation class.

Proof. Let diam : Teich → R�0 map a complex structure I to the diameter of the
Kobayashi pseudodistance on (M, I). By Corollary 1.23, this function is upper semi-continuous.
Let I be an ergodic complex structure. The set of points I ′ ∈ Teich such that (M, I ′) is
biholomorphic to (M, I) is dense, because I is ergodic. By upper semi-continuity, 0 = diam(I) �
infI′∈Teich diam(I ′).

Corollary 2.2. Let M be a K3 surface. Then the Kobayashi pseudometric on M vanishes.

Proof. Note that any non-ergodic complex structure on a hyperkähler manifold is projec-
tive. Indeed, if the rank of the Picard group is maximal, then the set of rational (1, 1)-classes is
dense in H1,1(M), hence the Kähler cone contains a rational class and M is projective. For all
projective M , one has diam(M) = 0 (see [38, Lemma 1.51] or [23, Corollary 4.5]). Therefore,
Theorem 2.1 implies that diam(M) = 0 for non-projective complex structures as well.

The same argument leads to the following result.
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Theorem 2.3. Let M be a hyperkähler manifold admitting a complex structure with
vanishing Kobayashi pseudometric and b2(M) � 4. Then the Kobayashi pseudometric vanishes
for all complex structures I in the same deformation class.

Proof. The diameter of the Kobayashi pseudometric is upper semi-continuous, by Corol-
lary 1.23. Choose any ergodic complex structure J on M (such J exists because b2(M) > 3). By
definition of ergodic complex structures, in any neighborhood of I one has a complex manifold
isomorphic to (M,J). By upper semi-continuity, one has diam(M,J) � diam(M, I) = 0. Now
vanishing of the Kobayashi pseudometric follows from Theorem 2.1.

2.2. Lagrangian fibrations in hyperkähler geometry

The theory of Lagrangian fibrations on hyperkähler manifolds is based on the following
remarkable theorem of Matsushita.

Theorem 2.4 [28]. Let M be a simple hyperkähler manifold, and ϕ : M → X a surjective
holomorphic map, with 0 < dim X < dim M . Then the fibers of ϕ are Lagrangian subvarieties
on M, and the general fibers of ϕ are complex tori. (These fibers are known to be abelian
varieties, see [8, Proposition 3.3].)

Remark 2.5. Such a map is called a Lagrangian fibration. All the known examples of
hyperkähler manifolds admit Lagrangian fibrations [18, Claim 1.20].

Definition 2.6. A cohomology class η ∈ H2(M, R) is called nef if it lies in the closure
of the Kähler cone; a line bundle L is nef if c1(L) is nef. A nef line bundle L is big if∫

M
c1(L)dimC M �= 0. A non-trivial nef line bundle L on a hyperkähler manifold is called

parabolic if it is not big. From the definition of the BBF form, this is equivalent to
q(c1(L), c1(L)) = 0. Lagrangian fibrations are in bijective correspondence with semi-ample
parabolic bundles, as follows from Matsushita’s theorem.

Claim 2.7. Let M be a simple hyperkähler manifold, and L a non-trivial semi-ample
bundle on M . Assume that L is not ample. Consider the holomorphic map π : M →
Proj(

⊕
N H0(M,LN ). Then π is a Lagrangian fibration. Moreover, every Lagrangian fibration

is uniquely determined by a parabolic nef line bundle.

Proof. The first statement of Claim 2.7 is a corollary of Theorem 2.4. Let M
π→ X be a

Lagrangian fibration. By Matsushita’s results [28], X is projective and H∗(X) ∼= H∗(CPn).
Denote by η ∈ H2(M, Z) the ample generator of Pic(X). Then π∗η = c1(L), where L =
π∗OX(1) is a parabolic nef bundle on M .

The SYZ conjecture [32, 36] claims that any parabolic nef line bundle on a hyperkähler
manifold is semi-ample, that is, it is associated with a Lagrangian fibration. This is true for
K3 surfaces (as it follows from the Riemann–Roch formula) and for all deformations of Hilbert
schemes of K3 surfaces [2, 27].

Further on, we shall need the following birational version of Matsushita’s theorem on
Lagrangian fibrations, which is due to Matsushita–Zhang.
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Theorem 2.8 [29, Theorem 1.4]. Let X be a projective hyperkähler manifold, and BK(X)
be the closure of a union of all Kähler cones for all birational models of X. Consider an effective
R-divisor P ∈ BK(X). Then there exists a birational modification τ : X ′ ��� X, where X ′ is
a projective hyperkähler manifold such that τ∗P is nef.

Theorem 2.9. Let M be a projective hyperkähler manifold, and L a line bundle of
Kodaira dimension 1

2 dimC M . Then there exists a birational modification τ : M ′ ��� M from
a projective hyperkähler manifold such that τ∗L is semi-ample, and induces a Lagrangian
fibration as in Claim 2.7.

Proof. Let L be a nef bundle on a Kähler manifold. Recall that the numerical Kodaira
dimension of L is the maximal k such that c1(L)k �= 0. The Kodaira dimension of L is the
Krull dimension of the ring

⊕
N H0(M,LN ).

Consider the modification τ : M ′ ��� M produced by the Matsushita–Zhang theorem. Then
the numerical dimension of τ∗L is equal to 1

2 dimC M , by [34], and the Kodaira dimension stays
the same. As shown in [19, Theorem 1] (see also [1, Proposition 2.8]), whenever the numerical
dimension of a nef bundle is equal to its Kodaira dimension, the bundle is semi-ample. Then
Theorem 2.9 follows from Claim 2.7.

This result motivates the following definition.

Definition 2.10. Let τ : M ′ ��� M be a birational map of hyperkähler manifolds, and
L a Lagrangian fibration on M . Then τ∗L is called a birational Lagrangian fibration on M ′.
Its fibers are proper preimages of those fibers of L which are not contained in the exceptional
locus of τ .

2.3. Kobayashi pseudometrics and Lagrangian fibrations

The idea to use Theorem 2.11 is suggested by Claire Voisin. We are very grateful to Prof.
Voisin for her invaluable help.

Theorem 2.11. Let M be a simple hyperkähler manifold admitting two Lagrangian
fibrations associated with two non-proportional parabolic classes. Then the Kobayashi
pseudometric on M vanishes.

Proof. Let πi : M → Xi, i = 1, 2, be the Lagrangian fibration maps. Since the general
fibers of πi are tori, the Kobayashi pseudometric vanishes on each fiber of πi. To prove that
the Kobayashi pseudometric vanishes on M , it would suffice to show that a general fiber of π1

intersects all the fibers of π2.
Let now ωi be an ample class of Xi lifted to M , and 2n = dimC M . Since ω1 and ω2 are

not proportional, the standard linear-algebra argument, often called the Hodge index formula,
implies that q(ω1, ω2) �= 0. Indeed, q(ω1, ω2) �= 0 or else the space (H1,1(M, R), q) would contain
a two-dimensional isotropic plane while its signature is (1, b2 − 3).

Clearly, the fundamental class [Zi] of a fiber of πi is proportional to ωn
i . Fix the constant

multiplier in such a way that [Zi] = ωn
i . The fibers of π1 intersect that of π2 if

∫
M

[Z1] ∧ [Z2] > 0.
However, Fujiki’s formula (see Remark 1.12) shows that

∫
M

[Z1] ∧ [Z2] = Cq(ω1, ω2)n > 0. This
means that Z1 and Z2 always intersect.
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Further on, we shall use a birational version of this statement.

Theorem 2.12. Let M be a simple hyperkähler manifold admitting a Lagrangian fibration
A and a birational Lagrangian fibration B associated to two non-proportional parabolic classes.
Then the Kobayashi pseudometric on M vanishes.

Proof. Let τ : M ��� M ′ be a birational modification such that B is the pullback of a
Lagrangian fibration on M ′. Since M and M ′ have trivial canonical bundle, the exceptional
locus of τ has codimension at least 2, hence a general fiber L of B is birationally equivalent to
a torus outside of this exceptional locus. By Theorem 1.19, the Kobayashi pseudometric on L
vanishes. The same argument as used in Theorem 2.11 shows that L meets all general fibers of
A, and thus the Kobayashi pseudodistance between any two general points x, y in M vanishes.
Indeed, take a general fiber L of B. Let x′, y′ be the points where the fibers of A associated
with x, y intersect L. The Kobayashi pseudodistance d(x′, y′) vanishes, because it vanishes on
L, and d(x, x′) = d(y, y′) = 0, because these are points in the same complex tori.

Theorem 2.13. Let M be a simple hyperkähler manifold with a Lagrangian fibration
ϕ : M → X. Assume b2(M) � 7. Then M has a deformation M ′ admitting both a Lagrangian
fibration and a birational Lagrangian fibration that correspond to different classes η, η′ ∈
H2(M, Z), respectively. Also M ′ is projective.

Proof. Let η ∈ H1,1(M) be a parabolic nef class associated with ϕ as in Claim 2.7. Denote
by Teichη the divisor parameterizing deformations of M for which η is of type (1,1). Denote by
L the line bundle with c1(L) = η. We can think of L as of a holomorphic line bundle on (M, I)
for all I ∈ Teichη.

When rk Pic(M, I) = 1, and the Picard group is generated by a non-negative vector, the
positive cone is equal to the Kähler cone, as shown in [15]. In [18, Theorem 3.4], the following
result was proved. Let D0 be the set of all J ∈ Teichη such that L is semi-ample on (M,J).
Then D0 is dense in Teichη, if it is non-empty. By Matsushita’s theorem, for such J , the image
of the map (M,J) → Proj(

⊕
N H0(LN )) has dimension 1

2 dim M . When J /∈ D0, the Kodaira
dimension of L is at least 1

2 dimC M , by upper semi-continuity.(Note that by Kawamata’s result
[19, Theorem 1], the Kodaira dimension of L cannot exceed its numerical dimension, which is
equal to 1

2 dim M .) Since η is nef whenever Pic(M) is generated by η, we may assume that for
all J /∈ D0, Pic(M) contains a positive vector. As shown by Huybrechts, [15, Theorem 3.11;
16], for such J the manifold (M,J) is projective.

Applying Theorem 2.9, we obtain that (M,J) admits a birational Lagrangian fibration for
all J ∈ TeichJ if L is semi-ample for at least one point J ∈ Teichη.

Consider now the action of the monodromy group ΓI on H2(M, Z). As follows from
Remark 1.16, ΓI is an arithmetic subgroup in O(H2((M, Z), q). Therefore, ΓI contains an
element γ such that γ(η) �= η. It is easy to see that the divisors Teichη and Teichγ(η) intersect
transversally. Their intersection corresponds to a manifold M with two birational Lagrangian
fibrations A and B. Now let M ′ be a birationally equivalent hyperkähler manifold where A
is holomorphic, we obtain the statement of Theorem 2.13. (As shown by Huybrechts [15],
birationally equivalent hyperkähler manifolds belong to the same deformation class.)

Corollary 2.14. Let M be a simple hyperkähler manifold with a Lagrangian fibration.
Assume b2(M) � 7. Then the Kobayashi pseudometric vanishes for all ergodic complex
structures on M .
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Proof. Consider a deformation (M, I ′) of M admitting two birational Lagrangian fibrations.
Then the Kobayashi pseudometric of (M, I ′) vanishes by Theorem 2.12. For an ergodic complex
structure I, we obtain

diam(I) � inf
I′∈Teich

diam(I ′) = 0

by upper semi-continuity.

3. Vanishing of the infinitesimal pseudometric

In this section, we are interested in conditions that guarantee the vanishing of the infinitesimal
Kobayashi pseudometric | |M on a Zariski dense open subset of M . Recall that the SYZ
conjecture predicts the existence of a Lagrangian fibration for every hyperkähler M, dimC M =
2n. Furthermore, if the base of the fibration is smooth (this is conjectured, see [17]), then the
base is isomorphic to CPn, as shown by Hwang (see [14, 17]). If M is projective and admits
an abelian fibration, then we have the following two results.

Theorem 3.1. Let M be a projective manifold with an equidimensional abelian fibration
f : M → B (holomorphic surjective with all fibers of the same dimension and general fibers
isomorphic to abelian varieties), where B is a complex projective space of lower dimension. If f
has no multiple fibers in codimension 1, then | |M vanishes everywhere on M . In particular, if M
is a projective hyperkähler manifold with a birational Lagrangian fibration over a non-singular
base without multiple fibers in codimension 1, then | |M vanishes everywhere.

Proof. Let v ∈ TxM . Then v can be regarded as the first-order part of some non-vertical
k-jet ν, which, in turn, push forward to a non-trivial jet prescription μ at b = f(x) ∈ B. This
jet prescription μ is clearly satisfied by an algebraic holomorphic map h : C → B. Since this
map can be chosen to avoid any subset of codimension 2 or more, we see by so doing that
the pull back fibration Mh → C has no multiple fibers. Hence, all higher-order jet infinitesimal
pseudometric vanishes on Mh by Theorem A.3. Since ν is in the image of a k-jet on Mh, it also
has zero k-jet infinitesimal pseudometric by the distance-decreasing property, and therefore
|v|M = 0.

Theorem 3.2. Let M be a projective manifold. Let f : M → B define an abelian fibration.
Assume that there is a subvariety Z ⊂ X that dominates B and is birational to an abelian
variety. Then | |M vanishes everywhere above a Zariski dense open subset U in B. In
particular, this holds for hyperkähler manifolds with b2 � 5 having two birational Lagrangian
fibrations.

Proof. By hypothesis and the resolution of singularity theorem, Z is the holomorphic image
of a non-singular projective variety A obtained from an abelian variety by blowing up smooth
centers. By construction, any vector in A is in the tangent space of an entire holomorphic
curve. Let g : A → B be the composition with the projection to B and disc(g) its discriminant
locus. Let v ∈ TM be a non-zero vector above the complement U in B of disc(f) ∪ disc(g). If v
is vertical, then it is a vector on the fiber A through p, which is an abelian variety and clearly
|v|M � |v|A = 0 in this case. If v is horizontal, then there is a vector v′ in TA by construction
such that f∗v = g∗v′. Let h : C → A be such that h′(0) = v′ and π : Mh → C be the pull back
fibration via the base change by g ◦ h. Then π has no multiple fibers and v lies in the image
of TMh by construction. Theorem A.2 from the Appendix now applies to show that | |Mh
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vanishes, and so the distance-decreasing property yields |v|M = 0. The last statement follows
from the projectivity of M by the proof of Corollary 2.2.

We also have the following result modulo the SYZ conjecture.

Theorem 3.3. Let M be a simple hyperkähler manifold with b2 � 7. Assume that the SYZ
conjecture is true for any deformation of M, and the Picard rank of M is maximal. Then M
admits two birational Lagrangian fibrations.

Proof. Consider a non-zero integral vector z ∈ Pic(M) such that q(z, z) = 0, where q
denotes the Beauville–Bogomolov–Fujiki form. Since rkPic(M) � 5, such a vector exists by
Meyer’s Theorem (see [9, p. 75]). As shown in the proof of Theorem 2.13, z is associated with
a birational Lagrangian fibration. Denote by Γ1 the group of automorphisms of the lattice
Pic(M). Since this group is arithmetic, it contains an element γ which does not preserve z.
Then γ(z) is another vector associated with a birational Lagrangian fibration.

The above theorems together imply the following corollary.

Corollary 3.4. Let M be a simple hyperkähler manifold with b2 � 7. Assume that the
SYZ conjecture is true for any deformation of M . Then dM is identically zero. If, further, the
rank of Pic(M) is at least 5, then | |M vanishes on a dense Zariski open subset of M .

Proof. By the proof of Corollary 2.2, M is projective and therefore Theorem 3.2 applies.

We remark again the expectation that the above assumption on the rank of the Picard group
and on b2(M) should always hold for hyperkähler manifolds of maximal Picard rank, and hence
for non-ergodic hyperkähler manifolds.

Appendix. On abelian fibrations

The following are some relevant basic results concerning abelian fibrations found in [23],
which was cited and used in [7, 24, 25]. Recall that a fibration is a proper surjective map
with connected fibers. All fibrations are assumed to be projective in this section, and abelian
fibrations are those whose general fibers are abelian varieties.

Proposition A.1. Let e : P → D define an abelian fibration which, outside 0 ∈ D, is
smooth with abelian varieties as fibers. Let n0 be the multiplicity of the central fiber P0.
Then there is a component of multiplicity n0 in P0.

Proof. We may reduce the problem to the case of n0 = 1 by the usual base change z �→ zn0 ,
so that the resulting object (after normalization) is again such a fibration with an unramified
cover to the original P . Let {m1,m2, . . . ,mk} be the set of multiplicities of the components of
P0. By assumption, there exists integers li such that l1m1 + l2m2 + · · · + lkmk = 1.

As fibrations are assumed to be projective in this paper, we may assume that f is algebraic.
By restricting to Dr = { t : |t| < r } for an r < 1 if necessary, we can construct an algebraic
multi-section si with multiplicity mi above Dr by simply taking a one-dimensional algebraic
slice transversal to the ith component for each i. Above each point t outside 0, si consists of
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mi points sj
i (t), j = 1, 2, . . . ,mi. Then it is easy to verify that

⎛
⎝l1

∑
j

sj
1(t)

⎞
⎠ +

⎛
⎝l2

∑
j

sj
2(t)

⎞
⎠ + · · · +

⎛
⎝lk

∑
j

sj
k(t)

⎞
⎠

is independent of the choice of an origin in the abelian variety Pt. This gives a section s of
the fibration outside 0, and we now show that s must be algebraic, giving a section of f and
establishing our proposition.

This can be accomplished by looking at the base change via z �→ t = zm, where m is the least
common multiple of m1, .. ,mk. Then each si lifts to mi sections which the cyclic Galois action
permutes. Hence, the Galois action of Zm acts transitively on the m sections constructed by
replacing the ith term in the above expressing with each of the mi sections, and so this set of
sections descends to a section of the original fibration as desired.

We remark that the above proposition is really a special case of a result of Lang and Tate
found in [22].

This proposition allows us to do exactly the same analysis as in the case for elliptic fibrations
done in [6] to obtain the following theorem. We refer the reader there or to [23] for the detail
of the proof.

Theorem A.2. Let f : X → C define an abelian fibration over a complex curve C. Then,
for each s ∈ C, the multiplicity of the fiber Xs at s is the same as the minimum multiplicity
ms of the components of Xs. Let the Q-divisor A =

∑
s(1 − 1/ms)s be the resulting orbifold

structure on C. Then the three conditions dX = 0 on X, | |X = 0 on X and (C,A) is non-
hyperbolic (that is, C is quasi-projective and e(C) − deg A � 0) are equivalent for such a
fibration. In the case C is quasi-projective; these three conditions are equivalent to the absence
of non-commutative free subgroups in π1(X), and to π1(X) being solvable up to a finite
extension.

Proof. In the case (C,A) is uniformizable, we may pull back the fibration to the universal
cover U of (C,A) with resulting fibration f̃ : Y → X. This is the case when C is not quasi-
projective and otherwise when e(C) � deg A, with equality if and only if U = C, and when
e(C) > deg A, in which case either C = U = C and A is supported at one point, or C = P1

and A is supported at more than two points, see, for example, [12]. In all these cases, U is
non-hyperbolic if and only if (C,A) is. By construction, Y has no multiple fibers over U , and
is unramified over X (in codimension 1) so that all holomorphic curves in X lifts to Y . Hence,
the Kobayashi pseudometrics and norms vanish on X if and only if it is so on Y, and so we only
need to show the vanishing of | |Y in this case since the fundamental group characterization
in the quasi-projective case follows from the same characterization of the Galois group of the
uniformization f̃ : U → C, and the exact sequence of fundamental groups of a fibration without
multiple fibers. Note that in the case U = P1, to show that | |Y vanish at a point above z ∈ U
we may replace U by C = U \ {z} since | |Y � | |Y ′ , where Y ′ := Y \ f̃−1(z) ⊂ Y .

In the case (C,A) is not uniformizable, then C = P1 and A is supported at one or two points,
and the exact sequence of orbifold fundamental groups shows that π1(X) is a quotient of π1(Xs)
for a general fiber Xs, hence abelian. Thus, it is suffice to show that for a point p ∈ X, | |X
vanishes there in this case and, for this, it is sufficient to replace X by the complement of a
fiber Xz different from the fiber Xw containing p and C by C \ {z}, where in the case w lies in
the support of A, we choose z to be the other point in this support if one exists. Then (C,A)
is uniformizable by C.
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Hence, it remains to show that | |X vanishes at a point p for the case X has no multiple
fibers and C = C. In fact, given a finite jet prescription at p, we can find an entire holomorphic
curve through p satisfying the jet prescription as follows. The jet prescription gives rise to
a jet prescription at f(p) ∈ C which we assume, without loss of generality, to be the origin
of C = C. Let l be the first non-vanishing order of the latter jet and let f̃ : Y → C be the
pull back fibration by the base change z �→ zl. Then the inverse function theorem allows us to
translate the jet prescription at p to a section jet prescription on Y over 0 ∈ C. As there are
no multiple fibers for f̃ , Proposition A.1 yield the existence of local sections of f̃ through any
point of C. The Cousin principles apply in this situation (that is, an analog of Weierstrass’
theorem can be worked out, see [6, 23]) so that we can patch up a minimal covering family of
such sections, including the one with the jet prescription, to give a global section of f̃ with the
jet prescription, and this gives the required entire holomorphic curve.

Instead of restricting our attention to just the first-order jets for the infinitesimal pseudo-
metric, one can generalize the definition of | |X to jets of arbitrary finite order, see [23]. By
their very definition, these infinitesimal pseudometrics dominates | |X by truncating the jets
to first order. The exact same proof as above yields the following generalization, see [23].

Theorem A.3. The above theorem holds if | |X is replaced by its more general kth order
jet version, for all integer k > 0.
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