COMPLEX ROTATION NUMBERS

XAVIER BUFF AND NATALIYA GONCHARUK
(Communicated by Nataliya Goncharuk)

Abstract

We investigate the notion of complex rotation number which was introduced by V.I. Arnold in 1978. Let $f: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ be an orientation preserving circle diffeomorphism and let $\omega \in \mathbb{C} / \mathbb{Z}$ be a parameter with positive imaginary part. Construct a complex torus by glueing the two boundary components of the annulus $\{z \in \mathbb{C} / \mathbb{Z} \mid 0<\operatorname{Im}(z)<\operatorname{Im}(\omega)\}$ via the map $f+\omega$. This complex torus is isomorphic to $\mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})$ for some appropriate $\tau \in \mathbb{C} / \mathbb{Z}$.

According to Moldavskis [5], if the ordinary rotation number $\operatorname{rot}\left(f+\omega_{0}\right)$ is Diophantine and if ω tends to ω_{0} non tangentially to the real axis, then τ tends to $\operatorname{rot}\left(f+\omega_{0}\right)$. We show that the Diophantine and non tangential assumptions are unnecessary: if $\operatorname{rot}\left(f+\omega_{0}\right)$ is irrational then τ tends to $\operatorname{rot}\left(f+\omega_{0}\right)$ as ω tends to ω_{0}.

This, together with results of N.Goncharuk [3], motivates us to introduce a new fractal set, given by the limit values of τ as ω tends to the real axis. For the rational values of $\operatorname{rot}\left(f+\omega_{0}\right)$, these limits do not necessarily coincide with $\operatorname{rot}\left(f+\omega_{0}\right)$ and form a countable number of analytic loops in the upper half-plane.

Notation:

- $\mathbb{H}=\mathbb{H}^{+}$is the set of complex numbers with positive imaginary part.
- \mathbb{H}^{-}is the set of complex numbers with negative imaginary part.
- If p / q is a rational number, then p and q are assumed to be coprime.
- If x and y are distinct points in \mathbb{R} / \mathbb{Z}, then (x, y) denotes the set of points $z \in \mathbb{R} / \mathbb{Z}-\{x, y\}$ such that the three points x, z, y are in increasing order and $[x, y]:=(x, y) \cup\{x, y\}$.
- If $f: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ is a circle diffeomorphism, $D_{f}:=\int_{\mathbb{R} / \mathbb{Z}}\left|\frac{f^{\prime \prime}(x)}{f^{\prime}(x)}\right| \mathrm{d} x$.

[^0]
InTRODUCTION

Given an orientation preserving analytic circle diffeomorphism $f: \mathbb{R} / \mathbb{Z} \rightarrow$ \mathbb{R} / \mathbb{Z} and a parameter $\omega \in \mathbb{H} / \mathbb{Z}$, set

$$
f_{\omega}:=f+\omega: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}+\omega .
$$

The circles \mathbb{R} / \mathbb{Z} and $\mathbb{R} / \mathbb{Z}+\omega$ bound an annulus $A_{\omega} \subset \mathbb{C} / \mathbb{Z}$. Glueing the two sides of A_{ω} via f_{ω}, we obtain a complex torus $E\left(f_{\omega}\right)$, which may be uniformized as $\mathscr{E}_{\tau}:=\mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})$ for some appropriate $\tau \in \mathbb{H} / \mathbb{Z}$, the homotopy class of \mathbb{R} / \mathbb{Z} in $E\left(f_{\omega}\right)$ corresponding to the homotopy class of \mathbb{R} / \mathbb{Z} in \mathscr{E}_{τ}. The complex rotation number of f_{ω} is $\tau_{f}(\omega):=\tau$. It is the complex analog of the ordinary rotation number of $f+t$ for $t \in \mathbb{R} / \mathbb{Z}$.
V. I. Arnold's problem [1], generalized by R. Fedorov and E. Risler independently, is to study the relation of the ordinary rotation number of the circle diffeomorphism $f: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ and the limit behaviour of the complex rotation number $\tau_{f}(\omega)$ as ω tends to 0 .

According to work of Risler [6, Chapter 2, Proposition 2], the function

$$
\tau_{f}: \mathbb{H} / \mathbb{Z} \rightarrow \mathbb{H} / \mathbb{Z}
$$

is holomorphic. We shall show that there is a continuous extension of τ_{f} to

$$
\overline{\mathbb{H} / \mathbb{Z}}:=\mathbb{H} / \mathbb{Z} \cup \mathbb{R} / \mathbb{Z} .
$$

The ordinary rotation number of a circle homeomorphism $f: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ is defined as follows. Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be a lift of $f: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$. Such a lift is unique up to addition of an integer. The sequence of functions $\frac{1}{n}\left(F^{\circ n}-\mathrm{id}\right)$ converges uniformly to a constant function Θ. If we replace F by $F+k$ with $k \in \mathbb{Z}$, the limit Θ is replaced by $\Theta+k$, so that the value $\operatorname{rot}(f) \in \mathbb{R} / \mathbb{Z}$ of Θ modulo 1 only depends on f. This is the rotation number of f. Note that the rotation number is rational if and only if the circle homeomorphism has a periodic cycle.

Our main result, proved in Section 2.6, concerns the behavior of $\tau_{f}(\omega)$ as ω tends to \mathbb{R} / \mathbb{Z}. Recall that a periodic cycle of a circle diffeomorphism is called parabolic if its multiplier is 1 , and it is called hyperbolic otherwise. A circle diffeomorphism with periodic cycles is called hyperbolic if it has only hyperbolic periodic cycles.
MAIN Theorem. Let $f: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ be an orientation preserving analytic circle diffeomorphism. Then, the function $\tau_{f}: \mathbb{H} / \mathbb{Z} \rightarrow \mathbb{H} / \mathbb{Z}$ has a continuous extension $\bar{\tau}_{f}: \overline{\mathbb{H} / \mathbb{Z}} \rightarrow \overline{\mathbb{H} / \mathbb{Z}}$. Assume $\omega \in \mathbb{R} / \mathbb{Z}$.

- If $\operatorname{rot}\left(f_{\omega}\right)$ is irrational, then $\bar{\tau}_{f}(\omega)=\operatorname{rot}\left(f_{\omega}\right)$.
- If $\operatorname{rot}\left(f_{\omega}\right)=p / q$ is rational, then $\bar{\tau}_{f}(\omega)$ belongs to the closed disk of radius $D_{f} /\left(\pi q^{2}\right)$ tangent to \mathbb{R} / \mathbb{Z} at p / q; moreover
- if f_{ω} has a parabolic cycle, then $\bar{\tau}_{f}(\omega)=\operatorname{rot}\left(f_{\omega}\right)$.
- if f_{ω} is hyperbolic, then $\bar{\tau}_{f}(\omega) \in \mathbb{H} / \mathbb{Z}$, in particular $\bar{\tau}_{f}(\omega) \neq \operatorname{rot}\left(f_{\omega}\right)$.

Our main contribution to this result is the case of irrational (yet not Diophantine) rotation number, and the continuous extension of τ_{f} to the whole boundary \mathbb{R} / \mathbb{Z}. The case of Diophantine rotation numbers was investigated earlier by

Figure 1. Bubbles. The sketch of the set $\bar{\tau}_{f}(\mathbb{R} / \mathbb{Z})$.
E.Risler [6, Chapter 2] and V.Moldavskis [5] independently. The case of parabolic cycles was studied by J.Lacroix (unpublished) and N.Goncharuk [3] independently. The case of hyperbolic diffeomorphisms was dealt first by Ilyashenko and Moldavskis [4], then this result was improved by N.Goncharuk [3]. For exact statements of these results, see Section 2.

In Appendix A, we shall also study the behavior of $\tau_{f}(\omega)$ as the imaginary part of ω tends to $+\infty$.

Bubbles: a new fractal set. The Main Theorem enables us to define a new interesting fractal set, related to the circle diffeomorphism, namely the set $\bar{\tau}_{f}(\mathbb{R} / \mathbb{Z})$. Due to the Main Theorem, this set contains \mathbb{R} / \mathbb{Z} and a countable number of loops - "bubbles", the endpoints of bubbles are rational points of \mathbb{R} / \mathbb{Z} (see the sketch at Fig. 1). Due to [3], these loops are analytic curves.

There arises a natural conjecture that $\bar{\tau}_{f}(\mathbb{R} / \mathbb{Z})$ is the boundary of $\tau_{f}(\mathbb{H} / \mathbb{Z})$, and τ_{f} is univalent. We disprove this conjecture, see Corollary 2.13 of Section 2.5.2.

There are still many open questions about the geometrical structure of the set $\bar{\tau}_{f}(\mathbb{R} / \mathbb{Z})$:

- What can be said about the shape and the size of a bubble? In particular, could a bubble be self-intersecting?
- Is it possible that different bubbles intersect each other?
- What can be said about the "bubble bundle", when several bubbles grow from the same point of the real axis?

1. DENJoy's LEMMA

Before embarking into the proof of our results, we shall recall a classical result of Denjoy on the dynamics of circle diffeomorphisms. The distortion of a diffeomorphism $f: I \rightarrow J$ is

$$
\operatorname{dis}_{I}(f)=\max _{x, y \in I} \log \frac{f^{\prime}(x)}{f^{\prime}(y)}
$$

If $f: I \rightarrow J$ and $g: J \rightarrow K$ are diffeomorphisms, then

$$
\operatorname{dis}_{J}\left(f^{-1}\right)=\operatorname{dis}_{I}(f) \quad \text { and } \quad \operatorname{dis}_{I}(g \circ f) \leq \operatorname{dis}_{I}(f)+\operatorname{dis}_{J}(g) .
$$

Lemma 1.1 (Denjoy). Let $f: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ be an orientation preserving diffeomorphism and $I \subset \mathbb{R} / \mathbb{Z}$ be an interval such that $I, f(I), f^{\circ 2}(I), \ldots, f^{\circ n}(I)$ are disjoint. Then,

$$
\operatorname{dis}_{I}\left(f^{\circ n}\right) \leq D_{f}
$$

Proof. Let x and y be points in I. Set $x_{k}:=f^{\circ k}(x)$ and $y_{k}:=f^{\circ k}(y)$. Then,

$$
\begin{aligned}
\left|\log \left(f^{\circ n}\right)^{\prime}(x)-\log \left(f^{\circ n}\right)^{\prime}(y)\right| & =\left|\sum_{k=0}^{n-1} \log f^{\prime}\left(x_{k}\right)-\log f^{\prime}\left(y_{k}\right)\right| \\
& \leq \sum_{k=0}^{n-1}\left|\int_{x_{k}}^{y_{k}} \frac{f^{\prime \prime}(x)}{f^{\prime}(x)} \mathrm{d} x\right| \leq \int_{\mathbb{R} / \mathbb{Z}}\left|\frac{f^{\prime \prime}(x)}{f^{\prime}(x)}\right| \mathrm{d} x=D_{f}
\end{aligned}
$$

As a corollary, we have the following control on the multipliers of the periodic cycles of f. This result is surely known by specialists, but we include its proof due to the lack of a suitable reference.

Lemma 1.2. Let $f: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ be an orientation preserving diffeomorphism and ρ be the multiplier of a cycle of f. Then, $|\log \rho| \leq D_{f}$.
Proof. The average of the derivative $\left(f^{\circ q}\right)^{\prime}$ along the circle \mathbb{R} / \mathbb{Z} is equal to 1 . As a consequence, there exists a point $x_{0} \in \mathbb{R} / \mathbb{Z}$ such that $\left(f^{\circ q}\right)^{\prime}\left(x_{0}\right)=1$. Any periodic cycle $\left\{x, f(x), \ldots, f^{\circ g}(x)=x\right\}$ divides the circle into disjoint intervals I_{1}, \ldots, I_{q} which are permuted by f. Without loss of generality, we may assume that I_{1} contains x and x_{0}. Then, according to the previous Lemma,

$$
|\log \rho|=\left|\log \left(f^{\circ q}\right)^{\prime}(x)\right|=\left|\log \frac{\left(f^{\circ q}\right)^{\prime}(x)}{\left(f^{\circ q}\right)^{\prime}\left(x_{0}\right)}\right| \leq \operatorname{dis}_{I_{1}}\left(f^{\circ q}\right) \leq D_{f} .
$$

2. Behavior of τ_{f} NEAR \mathbb{R} / \mathbb{Z}

The proof of the Main Theorem goes as follows.
Step 1. Recall that a number $\theta \in \mathbb{R} / \mathbb{Z}$ is Diophantine if there are constants $c>0$ and $\beta>0$ such that for all rational numbers $p / q \in \mathbb{Q} / \mathbb{Z}$, we have

$$
\left|x-\frac{p}{q}\right|>\frac{c}{q^{2+\beta}} .
$$

Theorem 2.1 (V. Moldavskis [5]). If $\omega \in \mathbb{R} / \mathbb{Z}$ and if $\operatorname{rot}\left(f_{\omega}\right)$ is Diophantine, then

$$
\lim _{\substack{y \rightarrow 0 \\ y>0}} \tau_{f}(\omega+\mathrm{i} y)=\operatorname{rot}\left(f_{\omega}\right)
$$

Step 2. If $\omega \in \mathbb{R} / \mathbb{Z}$ and $\operatorname{rot}\left(f_{\omega}\right)$ is rational, then the conclusion of Theorem 2.1 is not true. This fact was first proved by Yu. Ilyashenko and V. Moldavkis [4]. We do not formulate their result since we will use its later generalized version.
Theorem 2.2 (N . Goncharuk [3]). If $\omega \in \mathbb{R} / \mathbb{Z}$, if $\operatorname{rot}\left(f_{\omega}\right)$ is rational and if f_{ω} is hyperbolic, then τ_{f} extends analytically to a neighborhood of ω.

In the following, we shall denote by $\bar{\tau}_{f}(\omega)$ this extension of τ_{f} at ω.
Step 3. Recall that $\theta \in \mathbb{R} / \mathbb{Z}$ is Liouville if it is irrational but not Diophantine. We use the following result of Tsujii.

Theorem 2.3 (M. Tsujii [7]). The set of $\omega \in \mathbb{R} / \mathbb{Z}$ such that $\operatorname{rot}\left(f_{\omega}\right)$ is Liouville has zero Lebesgue measure.

It implies that almost every $\omega \in \mathbb{R} / \mathbb{Z}$ satisfies assumptions of either Theorem 2.1, or Theorem 2.2 (note that the set of ω such that f_{ω} has a parabolic cycle is countable).

Step 4. If f_{ω} has rational rotation number p / q, we denote by $\operatorname{Per}\left(f_{\omega}\right)$ the set of periodic points of $f_{\omega}: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$. For $x \in \operatorname{Per}\left(f_{\omega}\right)$, we denote by ρ_{x} the multiplier of f as a fixed point of $f^{\circ q}$. Our contribution starts with the following result. It is an analog of the Yoccoz Inequality which bounds the multiplier of a fixed point of a polynomial in terms of its combinatorial rotation number [2].

Lemma 2.4. Assume that f_{ω} is a hyperbolic map with rational rotation number p / q. Then, $\bar{\tau}_{f}(\omega)$ belongs to the disk tangent to \mathbb{R} / \mathbb{Z} at p / q with radius

$$
R_{\omega}:=\frac{1}{\pi q \cdot \sum_{x \in \operatorname{Per}\left(f_{\omega}\right)} \frac{1}{\log \rho_{x} \mid}} .
$$

In addition, $R_{\omega} \leq D_{f} /\left(\pi q^{2}\right)$.
The cardinal of $\operatorname{Per}\left(f_{\omega}\right)$ is at least q and according to Lemma 1.2, for each $x \in \operatorname{Per}\left(f_{\omega}\right)$ we have $\left|\log \rho_{x}\right| \leq D_{f}$. This yields the upper bound $R_{\omega} \leq D_{f} /\left(\pi q^{2}\right)$.
Step 5. Let $\bar{\tau}_{f}: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{C} / \mathbb{Z}$ be defined by

- $\bar{\tau}_{f}(\omega):=\operatorname{rot}\left(f_{\omega}\right)$ if the rotation number of f_{ω} is irrational or if f_{ω} has a parabolic cycle and
- $\bar{\tau}_{f}(\omega):=\lim _{\substack{y \rightarrow 0 \\ y>0}} \tau_{f}(\omega+\mathrm{i} y)$ if f_{ω} is hyperbolic.

This definition agrees with the definition of $\bar{\tau}_{f}(\omega)$ for hyperbolic f_{ω} (see Step 2). We are going to prove that $\bar{\tau}_{f}$ is the continuous extension of τ_{f} to the real axis; so the coincidence of the notation with that of Main Theorem is not accidental and will not lead to confusion.

Lemma 2.5. The function $\bar{\tau}_{f}$ is continuous on \mathbb{R} / \mathbb{Z}.
It is particularly difficult to prove the continuity of $\bar{\tau}_{f}$ at points $\omega \in \mathbb{R} / \mathbb{Z}$ for which f_{ω} has hyperbolic and parabolic cycles which bifurcate into complex conjugate cycles. The other cases follow easily from Theorem 2.2 and Lemma 2.4.

Step 6. The holomorphic map $\tau_{f}: \mathbb{H} / \mathbb{Z} \rightarrow \mathbb{H} / \mathbb{Z}$ has radial limits on \mathbb{R} / \mathbb{Z} almost everywhere, and those limits coincide with the continuous map $\bar{\tau}_{f}$. It follows easily that τ_{f} extends continuously by $\bar{\tau}_{f}$ to \mathbb{R} / \mathbb{Z}.
2.1. The Diophantine case. We include a proof of Theorem 2.1. The proof relies on the following lemma on quasiconformal maps which is classical.

Lemma 2.6. Suppose that there exists a K-quasiconformal map between two complex tori E_{1} and E_{2}. Then

$$
\operatorname{dist}_{\sharp-1}\left(\tau\left(E_{1}\right), \tau\left(E_{2}\right)\right) \leq \log K
$$

where dist $_{\mathbb{H}}$ is the hyperbolic distance in \mathbb{H}, and where $\tau\left(E_{1}\right) \in \mathbb{H}$ and $\tau\left(E_{2}\right) \in \mathbb{H}$ are moduli with respect to corresponding generators in $H_{1}\left(E_{1}\right)$ and $H_{1}\left(E_{2}\right)$.

Without loss of generality, we may assume that $f: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ has Diophantine rotation number $\theta \in \mathbb{R} / \mathbb{Z}$. A theorem of Yoccoz (see [8]) asserts that there is an analytic circle diffeomorphism $\phi: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ conjugating the rotation of angle θ to f : for all $x \in \mathbb{R} / \mathbb{Z}$, we have

$$
\phi(x+\theta)=f \circ \phi(x) .
$$

Let $\hat{\phi}: \mathbb{C} / \mathbb{Z} \rightarrow \mathbb{C} / \mathbb{Z}$ be the homeomorphism defined by

$$
\hat{\phi}(z)=\phi(\operatorname{Re}(z))+\mathrm{i} \operatorname{Im}(z)
$$

Then, $\hat{\phi}: \mathbb{C} / \mathbb{Z} \rightarrow \mathbb{C} / \mathbb{Z}$ is a K-quasiconformal homeomorphism with

$$
K:=\max \left(\left\|\phi^{\prime}\right\|_{\infty},\left\|1 / \phi^{\prime}\right\|_{\infty}\right)
$$

Now, for any $y>0$,

$$
\hat{\phi}(x+\theta+\mathrm{i} y)=f(\hat{\phi}(x))+i y
$$

and so, $\hat{\phi}$ induces a K-quasiconformal homeomorphism between the complex tori $\mathbb{C} /(\mathbb{Z}+(\theta+\mathrm{i} y) \mathbb{Z})$ and $E\left(f_{\mathrm{i} y}\right)$. It follows that for $y>0$, the hyperbolic distance in \mathbb{H} / \mathbb{Z} between $\theta+\mathrm{i} y$ and $\tau_{f}(\mathrm{i} y)$ is uniformly bounded and thus,

$$
\lim _{\substack{y \rightarrow 0 \\ y>0}} \tau_{f}(\mathrm{i} y)=\theta
$$

2.2. The hyperbolic case. We recall the arguments of the proof of Theorem 2.2 given in [3]. It is based on an auxiliary construction of a complex torus $\mathfrak{E}(f)$ when $f: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ has rational rotation number and is hyperbolic. This construction will be used again in the proofs of Lemmas 2.4 and 2.5.

Let us assume $f: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ has rational rotation number p / q and has only hyperbolic periodic cycles. The number $m \geq 1$ of attracting cycles is equal to the number of repelling cycles. Denote by $\alpha_{j}, j \in \mathbb{Z} /(2 m q) \mathbb{Z}$, the periodic points of f, ordered cyclically; even indices correspond to attracting periodic points and odd indices to repelling periodic points. Note that $f\left(\alpha_{j}\right)=\alpha_{j+2 m p}$.

Let ρ_{j} be the multiplier of α_{j} as a fixed point of $f^{\circ q}$ and $\phi_{j}:(\mathbb{C}, 0) \rightarrow\left(\mathbb{C} / \mathbb{Z}, \alpha_{j}\right)$ be the linearizing map which conjugates multiplication by ρ_{j} to $f^{\circ q}$:

$$
f^{\circ q} \circ \phi_{j}(z)=\phi_{j}\left(\rho_{j} z\right)
$$

and is normalized by $\phi_{j}^{\prime}(0)=1$. Then,

$$
f \circ \phi_{j}(z)=\phi_{j+2 m p}\left(\lambda_{j} \cdot z\right) \quad \text { with } \quad \lambda_{j}:=f^{\prime}\left(\alpha_{j}\right)
$$

In addition, if $\varepsilon>0$ is small enough, the linearizing map ϕ_{j} extends univalently to the strip $\{z \in \mathbb{C}||\operatorname{Im}(z)|<\varepsilon\}$ and

$$
\phi_{j}(\mathbb{R})=\left(\alpha_{j-1}, \alpha_{j+1}\right) .
$$

For each $j \in \mathbb{Z} /(2 m q) \mathbb{Z}$, let x_{j} be a point in $\left(\alpha_{j}, \alpha_{j+1}\right)$, so that

- $f\left(x_{j}\right) \in\left(\alpha_{j+2 p m}, x_{j+2 p m}\right)$ if the orbit of α_{j} attracts (i.e. j is even) and
- $f\left(x_{j}\right) \in\left(x_{j+2 p m}, \alpha_{j+2 p m+1}\right)$ if the orbit of α_{j} repels (i.e. j is odd).

This is possible since $f^{\circ q}\left(x_{j}\right) \in\left(\alpha_{j}, x_{j}\right)$ when j is even and $f^{\circ q}\left(x_{j}\right) \in\left(x_{j}, a_{j+1}\right)$ when j is odd. Similarly, let ε_{j} be a point on the negative imaginary axis if j is even and on the positive imaginary axis if j is odd, so that for all $j \in \mathbb{Z} /(2 m p \mathbb{Z})$,

- $\left|\varepsilon_{j}\right|<\varepsilon,\left|\lambda_{j} \varepsilon_{j}\right|<\varepsilon$ and
- $\lambda_{j} \varepsilon_{j}$ is above $\varepsilon_{j+2 m p}$.

Let C_{j} be the arc of circle with endpoints $\phi_{j}^{-1}\left(x_{j-1}\right)$ and $\phi_{j}^{-1}\left(x_{j}\right)$ passing through ε_{j} and set

$$
\gamma:=\bigcup_{j \in \mathbb{Z} /(2 m q \mathbb{Z})} \phi_{j}\left(C_{j}\right) .
$$

Then, γ is a simple closed curve in \mathbb{C} / \mathbb{Z} and f is univalent in a neighborhood of γ.

Figure 2. A possible choice of curve γ for the map $f: \mathbb{C} / \mathbb{Z} \ni$ $z \mapsto z+\frac{1}{4 \pi} \sin (2 \pi x) \in \mathbb{C} / \mathbb{Z}$ which restricts as a hyperbolic circle diffeomorphism $f: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$. The curve $f(\gamma)$ lies above γ in \mathbb{C} / \mathbb{Z}. The essential annulus between γ and $f(\gamma)$ is colored (light grey in the upper half-plane and dark grey in the lower halfplane). The map f has an attracting fixed point at $\alpha_{0}:=0 \in \mathbb{R} / \mathbb{Z}$ and a repelling fixed point at $\alpha_{1}:=1 / 2 \in \mathbb{R} / \mathbb{Z}$. The basin of attraction of α_{0} in \mathbb{C} / \mathbb{Z} is white; its complement is the Julia set of f.

The attracting cycles of f are above γ in \mathbb{C} / \mathbb{Z} and the repelling cycles are below γ in \mathbb{C} / \mathbb{Z}. In addition,

$$
f(\gamma)=\bigcup_{j \in \mathbb{Z} /(2 m q \mathbb{Z})} \phi_{j+2 m p}\left(\lambda_{j} C_{j}\right)
$$

and so, $f(\gamma)$ lies above γ in \mathbb{C} / \mathbb{Z}.
For ω sufficiently close to 0 , the curve $f_{\omega}(\gamma)=f(\gamma)+\omega$ remains above γ in \mathbb{C} / \mathbb{Z}. The curves γ and $f_{\omega}(\gamma)$ bound an essential annulus in \mathbb{C} / \mathbb{Z}. Glueing the two sides via f_{ω}, we obtain a complex torus $\mathfrak{E}\left(f_{\omega}\right)$, which may be uniformized as $\mathscr{E}_{\tau}:=\mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})$ for some appropriate $\tau \in \mathbb{H} / \mathbb{Z}$, the homotopy class of γ in $\mathfrak{E}\left(f_{\omega}\right)$ corresponding to the homotopy class of \mathbb{R} / \mathbb{Z} in \mathscr{E}_{τ}. We set $\bar{\tau}_{f}(\omega):=\tau \in \mathbb{H} / \mathbb{Z}$.

According to Risler [6, Chapter 2, Proposition 2], the map $\omega \mapsto \bar{\tau}_{f}(\omega)$ is holomorphic. When $\omega \in \mathbb{H} / \mathbb{Z}$, the complex torus $\mathfrak{E}\left(f_{\omega}\right)$ is isomorphic to $E\left(f_{\omega}\right)$ and the homotopy class of γ in $\mathfrak{E}\left(f_{\omega}\right)$ corresponds to the homotopy class of \mathbb{R} / \mathbb{Z} in $E\left(f_{\omega}\right)$ (see [3] for details). As a consequence, $\bar{\tau}_{f}(\omega)=\tau_{f}(\omega)$ when $\omega \in \mathbb{H} / \mathbb{Z}$ is sufficiently close to 0 . This completes the proof of Theorem 2.2 for $\omega=0$.
2.3. The Liouville case: Tsujii's theorem. For completeness, we now present a proof of Tsujii's Theorem 2.3 which we believe is a simplification of the original one, although the ideas are essentially the same. The main argument in Tsujii's proof is the following.

Proposition 2.7. Let $f: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ be a \mathscr{C}^{2}-smooth orientation preserving circle diffeomorphism with irrational rotation number $\theta \in \mathbb{R} / \mathbb{Z}$. If p / q is an approximant to θ given by the continued fraction algorithm, then there is an $\omega \in \mathbb{R} / \mathbb{Z}$ satisfying

$$
|\omega|<e^{D_{f}} \cdot|\theta-p / q| \text { and } \operatorname{rot}\left(f_{\omega}\right)=p / q \text {. }
$$

Proof. According to a Theorem of Denjoy, there is a homeomorphism $\phi: \mathbb{R} / \mathbb{Z} \rightarrow$ \mathbb{R} / \mathbb{Z} such that $\phi(x+\theta)=f \circ \phi(x)$ for all $x \in \mathbb{R} / \mathbb{Z}$.

Without loss of generality, let us assume that $\theta<p / q$ and set $\delta:=p-q \theta$. Let $T \subset \mathbb{R} / \mathbb{Z}$ be the union of intervals

$$
T:=\bigcup_{1 \leq j \leq q} T_{j} \text { with } T_{j}:=(j \theta, j \theta+\delta) .
$$

Since p / q is an approximant of θ, this is a disjoint union of q intervals of length δ. According to Lemma 2.8 below, we may choose $t \in \mathbb{R} / \mathbb{Z}$ such that the Lebesgue measure of $\phi(T+t)$ is at most $q \delta$.

Now, set $x:=\phi(t)$ and for $j \in \mathbb{Z}$, set

$$
x_{j}:=f^{\circ j}(x)=\phi(t+j \theta) \quad \text { and } \quad I_{j}:=\left(x_{j}, x_{j-q}\right)=\phi\left(T_{j}\right) .
$$

The intervals $I_{1}, I_{2}=f\left(I_{1}\right), \ldots, I_{q}=f^{\circ q}\left(I_{1}\right)$ are disjoint and the sum of their lengths satisfies

$$
\sum_{j=1}^{q}\left|I_{j}\right| \leq q \delta=q^{2} \cdot|\theta-p / q| .
$$

As $\omega \in \mathbb{R} / \mathbb{Z}$ increases from 0 , the rotation number $\operatorname{rot}\left(f_{\omega}\right) \in \mathbb{R} / \mathbb{Z}$ increases from θ, and there is a first ω_{0} such that $\operatorname{rot}\left(f_{\omega_{0}}\right)=p / q$. For $j \in[0, q]$, set

$$
y_{j}:=\left(f_{\omega_{0}}\right)^{\circ j}(x) \quad \text { and } \quad z_{j}:=f^{\circ(q-j)}\left(y_{j}\right) .
$$

Finally, for $j \in[1, q]$, set

$$
J_{j}:=\left(f\left(y_{j-1}\right), y_{j}\right)=\left(f\left(y_{j-1}\right), f\left(y_{j-1}\right)+\omega_{0}\right) \quad \text { and } \quad K_{j}:=\left(z_{j-1}, z_{j}\right) .
$$

Then, $\left(z_{0}, z_{1}, \ldots, z_{q}\right)$ is a subdivision of $\left(z_{0}, z_{q}\right)$ (see Figure 3).

Figure 3. The intervals I_{j}, J_{j} and K_{j}.
As ω increases from 0 to ω_{0}, the point $\left(f_{\omega}\right)^{\circ q}(x)$ increases from x_{q} to y_{q} but remains in I_{q} since $\operatorname{rot}\left(f_{\omega}\right)$ remains less than p / q. Thus, $\left(z_{0}, z_{q}\right)=\left(x_{q}, y_{q}\right) \subseteq I_{q}$ and so,

$$
\left|I_{q}\right| \geq\left|z_{q}-z_{0}\right|=\sum_{j=1}^{q}\left|K_{j}\right|
$$

In addition, $J_{j} \subset I_{j}$ and $K_{j}=f^{\circ(q-j)}\left(J_{j}\right)$. It follows from Denjoy's Lemma 1.1 that

$$
\frac{\left|K_{j}\right|}{\left|I_{q}\right|} \geq e^{-D_{f}} \frac{\left|J_{j}\right|}{\left|I_{j}\right|}=e^{-D_{f}} \frac{\omega_{0}}{\left|I_{j}\right|} .
$$

Now, according to the Cauchy-Schwarz Inequality, we have

$$
q^{2}=\left(\sum_{j=1}^{q} \sqrt{\left|I_{j}\right|} \cdot \frac{1}{\sqrt{\left|I_{j}\right|}}\right)^{2} \leq\left(\sum_{j=1}^{q}\left|I_{j}\right|\right) \cdot\left(\sum_{j=1}^{q} \frac{1}{\left|I_{j}\right|}\right) \leq q^{2} \cdot|\theta-p / q| \cdot \sum_{j=1}^{q} \frac{1}{\left|I_{j}\right|} .
$$

Thus,

$$
\left|I_{q}\right| \geq \sum_{j=1}^{q}\left|K_{j}\right| \geq e^{-D_{f}} \omega_{0}\left|I_{q}\right| \cdot \sum_{j=1}^{q} \frac{1}{\left|I_{j}\right|} \geq \frac{e^{-D_{f}} \omega_{0}\left|I_{q}\right|}{|\theta-p / q|}
$$

and so,

$$
\omega_{0} \leq e^{D_{f}} \cdot|\theta-p / q|
$$

LEMMA 2.8. Let $\phi: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ be a homeomorphism. Then, for any measurable set $T \subseteq \mathbb{R} / \mathbb{Z}$, there is a $t \in \mathbb{R} / \mathbb{Z}$ such that

$$
\operatorname{Leb}(\phi(T+t)) \leq \operatorname{Leb}(T)
$$

Proof. Let μ be the Lebesgue measure on \mathbb{R} / \mathbb{Z}. According to Tonelli's theorem,

$$
\begin{aligned}
\int_{t \in \mathbb{R} / \mathbb{Z}} \mu(\phi(T+t)) \mathrm{d} t & =\int_{t \in \mathbb{R} / \mathbb{Z}}\left(\int_{u \in T+t} \mathrm{~d}\left(\phi^{*} \mu\right)\right) \mathrm{d} \mu \\
& =\int_{u \in \mathbb{R} / \mathbb{Z}}\left(\int_{t \in-T+u} \mathrm{~d} \mu\right) \mathrm{d}\left(\phi^{*} \mu\right) \\
& =\int_{u \in \mathbb{R} / \mathbb{Z}} \mu(T) \mathrm{d}\left(\phi^{*} \mu\right) \\
& =\mu(T) \cdot \mu(\phi(\mathbb{R} / \mathbb{Z}))=\mu(T)
\end{aligned}
$$

So, the average of $\mu(\phi(T+t))$ with respect to t is equal to $\mu(T)$ and the result follows.

Theorem 2.3 follows easily from Proposition 2.7: for $\beta>0$, let S_{β} be the set of $\omega \in \mathbb{R} / \mathbb{Z}$ such that $\operatorname{rot}\left(f_{\omega}\right)$ is irrational and such that there are infinitely many $p, q \in \mathbb{Z}$ satisfying $\left|\operatorname{rot}\left(f_{\omega}\right)-p / q\right|<1 / q^{2+\beta}$. The set of $\omega \in \mathbb{R} / \mathbb{Z}$ such that $\operatorname{rot}\left(f_{\omega}\right)$ is Liouville is the intersection of the sets S_{β}. So, it is sufficient to show that the $\operatorname{Leb}\left(S_{\beta}\right)=0$ for all $\beta>0$. Note that

$$
S_{\beta}=\limsup _{q \rightarrow+\infty} S_{\beta, q}
$$

where $S_{\beta, q}$ is the set of $\omega \in \mathbb{R} / \mathbb{Z}$ such that $\operatorname{rot}\left(f_{\omega}\right)$ is irrational and such that $\left|\operatorname{rot}\left(f_{\omega}\right)-p / q\right|<1 / q^{2+\beta}$ for some approximant p / q of $\operatorname{rot}\left(f_{\omega}\right)$.

Proposition 2.7 implies that $S_{\beta, q}$ is located in the $C / q^{2+\beta}$-neighborhood of the union of q intervals where the rotation number is rational with denominator q, where $C:=e^{D_{f}}$. So,

$$
\operatorname{Leb}\left(S_{\beta, q}\right) \leq 2 q \cdot \frac{C}{q^{2+\beta}}=\frac{2 C}{q^{1+\beta}}
$$

In particular, for all $\beta>0$,

$$
\operatorname{Leb}\left(S_{\beta}\right)=\operatorname{Leb}\left(\limsup _{q \rightarrow+\infty} S_{\beta, q}\right) \leq \limsup _{q \rightarrow+\infty} \sum_{r \geq q} \frac{2 C}{r^{1+\beta}}=0
$$

2.4. Back to the hyperbolic case. We now come to our main contribution, starting with the proof of Lemma 2.4. Assume $f: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ has rational rotation number p / q and has only hyperbolic periodic cycles. As in Section 2.2, consider a simple closed curve γ oscillating between the attracting cycles of f (which are above γ in \mathbb{C} / \mathbb{Z}) and the repelling cycles of f (which are below γ in \mathbb{C} / \mathbb{Z}), so that $f(\gamma)$ lies above γ in \mathbb{C} / \mathbb{Z}.

The curves γ and $f(\gamma)$ bound an essential annulus in \mathbb{C} / \mathbb{Z}. Glueing the curves via f, we obtain a complex torus $\mathfrak{E}(f)$ isomorphic to $\mathscr{E}_{\tau}:=\mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})$ with $\tau:=$ $\bar{\tau}_{0}(f) \in \mathbb{H} / \mathbb{Z}$, the class of γ in $\mathfrak{E}(f)$ corresponding to the class of \mathbb{R} / \mathbb{Z} in \mathscr{E}_{τ}.

The projection of \mathbb{R} / \mathbb{Z} in $\mathfrak{E}(f)$ consists of $2 m$ topological circles cutting $\mathfrak{E}(f)$ into $2 m$ annuli associated to the cycles of f. More precisely, each attracting (respectively repelling) cycle c has a basin of attraction B_{c} for f (respectively for f^{-1}) and the projection of $\mathbb{H}^{-} \cap B_{c}$ (respectively $\mathbb{H}^{+} \cap B_{c}$) in $\mathfrak{E}(f)$ is an annulus A_{c} of modulus

$$
\bmod A_{c}=\frac{\pi}{\left|\log \rho_{c}\right|}
$$

where ρ_{c} is the multiplier of c as a cycle of f.
Those annuli wind around the class of γ in $\mathfrak{E}(f)$ with combinatorial rotation number $-p / q$. It follows from a classical length-area argument (see [2, Proposition 3.3] for example) that there is a representative $\tilde{\tau} \in \mathbb{H}$ of $\tau \in \mathbb{H} / \mathbb{Z}$ such that

$$
\sum_{c \text { cycle of } f} \bmod A_{c} \leq \frac{\operatorname{Im}(\tilde{\tau})}{|-p+q \tilde{\tau}|^{2}}
$$

As a consequence,

$$
\frac{|\tilde{\tau}-p / q|^{2}}{\operatorname{Im} \tilde{\tau}} \leq R_{\omega}:=\frac{1}{\pi q^{2} \cdot \sum_{c \text { cycle of } f} \bmod A_{c}}
$$

which yields Lemma 2.4 since

$$
\sum_{c \text { cycle of } f} \bmod A_{c}=\sum_{c \text { cycle of } f} \frac{\pi}{\left|\log \rho_{c}\right|}=\frac{1}{q} \sum_{x \in \operatorname{Per}(f)} \frac{\pi}{\left|\log \rho_{x}\right|}
$$

Before going further, we shall establish a result that will be used in the proof of Lemma 2.5. Recall that the curve γ intersects the interval (α_{j}, α_{j+1}) at the point x_{j}, belongs to the lower half-plane below the segment $\left(x_{j-1}, x_{j}\right)$ if j is even and to the upper half-plane above the segment $\left(x_{j-1}, x_{j}\right)$ if j is odd.

Recall that m is the number of attracting cycles of f. The projection of \mathbb{R} / \mathbb{Z} in $\mathfrak{E}\left(f^{\circ q}\right)$ cuts the torus in $2 m q$ annuli $A_{j}, j \in \mathbb{Z} /(2 m q) \mathbb{Z}$, which wind around the class of γ with combinatorial rotation number 0 and have moduli

$$
\bmod A_{j}=m_{j}:=\frac{\pi}{\left|\log \rho_{j}\right|}
$$

Let $S_{j} \subset \mathbb{C}$ and $B_{j} \subset \mathbb{C} / \mathbb{Z}$ be defined by

$$
S_{j}:=\left\{z \in \mathbb{C} \mid 0<\operatorname{Im}(z)<m_{j}\right\} \quad \text { and } \quad B_{j}:=S_{j} / \mathbb{Z}
$$

Set

$$
\tilde{r}_{j}:=\frac{\log \phi_{j}^{-1}\left(x_{j}\right)}{\log \rho_{j}} \quad \text { and } \quad \tilde{s}_{j}:=\frac{\log \left|\phi_{j}^{-1}\left(x_{j-1}\right)\right|}{\log \rho_{j}}+\frac{\mathrm{i} \pi}{\left|\log \rho_{j}\right|} .
$$

The class r_{j} of \tilde{r}_{j} in \mathbb{C} / \mathbb{Z} belongs to the lower boundary component $C_{j}^{-}:=\mathbb{R} / \mathbb{Z}$ of B_{j} and the class s_{j} of \tilde{s}_{j} in \mathbb{C} / \mathbb{Z} belongs to the upper boundary component $C_{j}^{+}:=\left(\mathbb{R}+\mathrm{i} m_{j}\right) / \mathbb{Z}$ of B_{j}. The map $z \mapsto \phi_{j} \circ \exp \left(z \cdot \log \rho_{j}\right)$ induces an isomorphism $\chi_{j}: B_{j} \rightarrow A_{j}$ which extends analytically to the boundary, sends r_{j} to the class of x_{j} in $\mathfrak{E}\left(f^{\circ q}\right)$ and s_{j} to the class of x_{j-1} in $\mathfrak{E}\left(f^{\circ q)}\right.$ (see Figure 4).

Figure 4. The projection of \mathbb{R} / \mathbb{Z} in $\mathfrak{E}\left(f^{\circ q}\right)$ cuts the torus in $2 m q$ annuli $A_{j}, j \in \mathbb{Z} /(2 m q) \mathbb{Z}$.

Lemma 2.9. We have that

$$
\operatorname{dist}_{\mathbb{H} / \mathbb{Z}}\left(q \tau,-\frac{1}{\sigma}\right) \leq 5 D_{f} \quad \text { with } \quad \sigma:=\sum_{j \in \mathbb{Z} / 2 m q Z} \tilde{s}_{j}-\tilde{r}_{j} .
$$

Proof. It will be more convenient to work with $f^{\circ q}$ whose rotation number is $0 / 1$. The diffeomorphism f induces an automorphism of $\mathfrak{E}\left(f^{\circ q}\right)$ of order q. The quotient of $\mathfrak{E}\left(f^{\circ q}\right)$ by this automorphism is isomorphic to $\mathfrak{E}(f)$. The class of γ in $\mathfrak{E}(f)$ has q disjoint preimages in $\mathfrak{E}\left(f^{\circ q}\right)$ which map with degree 1 to γ. It follows that $\mathfrak{E}\left(f^{\circ q}\right)$ is isomorphic to $\mathscr{E}_{q \tau}:=\mathbb{C} /(\mathbb{Z}+q \tau \mathbb{Z})$, the class of γ in $\mathfrak{E}\left(f^{\circ q}\right)$ corresponding to the class of \mathbb{R} / \mathbb{Z} in $\mathscr{E}_{q \tau}$.

Set $\mathscr{E}_{\sigma}:=\mathbb{C} /(\mathbb{Z}+\sigma \mathbb{Z})$. We will now construct a K-quasiconformal map

$$
\psi: \mathfrak{E}\left(f^{\circ q}\right) \rightarrow \mathscr{E}_{\sigma}
$$

which sends the class of \mathbb{R} / \mathbb{Z} in $\mathfrak{E}\left(f^{\circ q}\right)$ to the class of $\sigma \mathbb{R} / \sigma \mathbb{Z}$ in \mathscr{E}_{σ}. We will also show that $\log K \leq 5 D_{f}$. The result then follows from Lemma 2.6.

On the one hand, glueing the lower boundary component C_{j}^{-}of B_{j} with the upper boundary component C_{j+1}^{+}of B_{j+1} via the analytic diffeomorphism

$$
\xi_{j}:=\chi_{j+1}^{-1} \circ \chi_{j}: C_{j}^{-} \rightarrow C_{j+1}^{+}
$$

we obtain a complex torus E which is isomorphic to $\mathfrak{E}\left(f^{\circ q}\right)$. Let δ_{j} be the projection of the segment $\left[\tilde{r}_{j}, \tilde{s}_{j}\right]$ to E. The homotopy class of the simple closed curve

$$
\delta:=\bigcup_{j \in \mathbb{Z} /(2 m q) \mathbb{Z}} \delta_{j}
$$

in E corresponds to the homotopy class of γ in $\mathfrak{E}\left(f^{\circ q}\right)$.
On the other hand, glueing the lower boundary component C_{j}^{-}of B_{j} with the upper boundary component C_{j+1}^{+}of B_{j+1} via the translation by $z \mapsto z-r_{j}+s_{j+1}$, we obtain a complex torus E^{\prime} which is isomorphic to \mathscr{E}_{σ}. Let δ_{j}^{\prime} be the projection of the segment $\left[\tilde{r}_{j}, \tilde{s}_{j}\right]$ to E^{\prime}. The homotopy class of the simple closed curve

$$
\delta^{\prime}:=\bigcup_{j \in \mathbb{Z}(2 m q) \mathbb{Z}} \delta_{j}^{\prime}
$$

in E^{\prime} corresponds to the homotopy class of $\sigma \mathbb{R} / \sigma \mathbb{Z}$ in \mathscr{E}_{σ}.
The homeomorphism

$$
\psi_{j}:=\xi_{j}-s_{j+1}+r_{j}: C_{j}^{-} \rightarrow C_{j}^{-}
$$

fixes $r_{j} \in C_{j}^{-}$. Let $\tilde{\psi}_{j}: \mathbb{R} \rightarrow \mathbb{R}$ be the lift of $\psi_{j}: C_{j}^{-} \rightarrow C_{j}^{-}$which fixes \tilde{r}_{j} and let $\Psi_{j}: S_{j} \rightarrow S_{j}$ be the extension to S_{j} defined by

$$
\Psi_{j}(x+\mathrm{i} y):=\frac{y}{m_{j}}\left(x+\mathrm{i} m_{j}\right)+\left(1-\frac{y}{m_{j}}\right) \tilde{\psi}_{j}(x) .
$$

The homeomorphism $\Psi_{j}: \bar{S}_{j} \rightarrow \bar{S}_{j}$ restricts to the identity on $\mathbb{R}+\mathrm{i} m_{j}$ and descends to a homeomorphism $\psi_{j}: \bar{B}_{j} \rightarrow \bar{B}_{j}$. By construction, the following diagram commutes:

So, the collection of homeomorphisms $\psi_{j}: \bar{B}_{j} \rightarrow \bar{B}_{j}$ induces a global homeomorphism $\psi: E \rightarrow E^{\prime}$. Since Ψ_{j} fixes \tilde{r}_{j} and \tilde{s}_{j}, the homeomorphism ψ sends the homotopy class of δ in E to the homotopy class of δ^{\prime} in E^{\prime}. The proof is completed by Lemma 2.10 below.
Lemma 2.10. The homeomorphism $\psi: E \rightarrow E^{\prime}$ is $e^{5 D_{f} \text {-quasiconformal. }}$
Proof. The image of the curves $C_{j}^{ \pm}$in E are analytic (because the glueing map ξ_{j} is analytic), therefore quasiconformally removable. So, it is enough to prove that each $\psi_{j}: B_{j} \rightarrow B_{j}$ is $e^{5 D_{f}}$-quasiconformal. Equivalently, we must prove that

$$
\left\|\frac{\partial \Psi_{j} / \partial \bar{z}}{\partial \Psi_{j} / \partial z}\right\|_{\infty} \leq k<1 \quad \text { with } \quad \operatorname{dist}_{\mathbb{D}}(0, k)<5 D_{f},
$$

where dist $_{\mathbb{D}}$ is the hyperbolic distance within the unit disk.

For readibility, we drop the index j in the following computation:

$$
\begin{aligned}
\frac{\partial \Psi / \partial \bar{z}}{\partial \Psi / \partial z}(x+\mathrm{i} y) & =\frac{\partial \Psi / \partial x+\mathrm{i} \partial \Psi / \partial y}{\partial \Psi / \partial x-\mathrm{i} \partial \Psi / \partial y}(x+\mathrm{i} y) \\
& =\frac{\left(1-\frac{y}{m}\right) \cdot\left(\tilde{\psi}^{\prime}(x)-1\right)-\frac{\mathrm{i}}{m}(\tilde{\psi}(x)-x)}{2+\left(1-\frac{y}{m}\right) \cdot\left(\tilde{\psi}^{\prime}(x)-1\right)+\frac{\mathrm{i}}{m}(\tilde{\psi}(x)-x)}
\end{aligned}
$$

This last quantity is of the form $(a-1) /(\bar{a}+1)$ with

$$
\operatorname{Re}(a)=1+\left(1-\frac{y}{m}\right) \cdot\left(\tilde{\psi}^{\prime}(x)-1\right) \quad \text { and } \quad \operatorname{Im}(a)=\frac{\tilde{\psi}(x)-x}{m}
$$

Note that $\left|\frac{a-1}{\bar{a}+1}\right|=\left|\frac{a-1}{a+1}\right|$ and the Möbius transformation $a \mapsto \frac{a-1}{a+1}$ sends the right half-plane into the unit disk. So, it is enough to show that a belongs to the right half-plane $\{z \in \mathbb{C} \mid \operatorname{Re}(z)>0\}$ and that the hyperbolic distance within this half-plane between 1 and a is at most $5 D_{f}$.

This hyperbolic distance is bounded from above by $|\operatorname{Im}(a)|+|\log \operatorname{Re}(a)|$. Since $\tilde{\psi}: \mathbb{R} \rightarrow \mathbb{R}$ is an increasing diffeomorphism which fixes $p+\mathbb{Z} \in \mathbb{R}$, we have that $\tilde{\psi}^{\prime}(x)>0$ and $|\tilde{\psi}(x)-x|<1$. In addition, $0<1-y / m<1$, and so,

$$
0<\min _{\mathbb{R}} \tilde{\psi}^{\prime} \leq \operatorname{Re}(a) \leq \max _{\mathbb{R}} \tilde{\psi}^{\prime} \quad \text { and } \quad|\operatorname{Im}(a)| \leq \frac{1}{m}=\frac{|\log \rho|}{\pi} \leq|\log \rho| \leq D_{f}
$$

The last inequality is given by Lemma 1.2. The average of $\tilde{\psi}^{\prime}$ on $[0,1]$ is equal to $\tilde{\psi}(1)-\tilde{\psi}(0)=1$. So, $\tilde{\psi}^{\prime}$ takes the value 1 and

$$
-\operatorname{dis}_{\mathbb{R}}(\xi)=-\operatorname{dis}_{\mathbb{R}}(\tilde{\psi})<\log \min _{\mathbb{R}}\left(\tilde{\psi}^{\prime}\right) \leq 0 \leq \log \max _{\mathbb{R}}\left(\tilde{\psi}^{\prime}\right)<\operatorname{dis}_{\mathbb{R}}(\tilde{\psi})=\operatorname{dis}_{\mathbb{R}}(\xi)
$$

The proof is completed by Lemma 2.11 below.
LEMMA 2.11. For any $j \in \mathbb{Z} /(2 m q) \mathbb{Z}$, the distortion of ξ_{j} is bounded by $4 D_{f}$.
Proof. The map $\xi_{j}: C_{j}^{-} \rightarrow C_{j+1}^{+}$is induced by the following composition

$$
\mathbb{R} \xrightarrow{e_{j}}(0,+\infty) \xrightarrow{\phi_{j}}\left(\alpha_{j}, \alpha_{j+1}\right) \xrightarrow{\phi_{j+1}^{-1}}(-\infty, 0) \xrightarrow{e_{j+1}^{-1}} \mathbb{R}+\mathrm{i} m_{j+1}
$$

with

$$
e_{j}(z):=\exp \left(z \cdot \log \rho_{j}\right) \quad \text { and } \quad e_{j+1}(z)=\exp \left(z \cdot \log \rho_{j+1}\right)
$$

The distortion of e_{j} on any interval of length 1 is $\left|\log \rho_{j}\right|$ which is at most D_{f} according to Lemma 1.2. Similarly, the distortion of e_{j+1} on any interval of length 1 is $\left|\log \rho_{j+1}\right| \leq D_{f}$.

Let x be any point in $\left(\alpha_{j}, \alpha_{j+1}\right)$ and let $I \subset \mathbb{R} / \mathbb{Z}$ be the interval whose extremities are x and $f(x)$. To complete the proof, it is enough to show that

$$
\operatorname{dis}_{I}\left(\phi_{j}^{-1}\right) \leq D_{f} \quad \text { and } \quad \operatorname{dis}_{I}\left(\phi_{j+1}^{-1}\right) \leq D_{f}
$$

We will only prove this result for ϕ_{j} in the case where α_{j} is attracting. The other cases are dealt similarly and left to the reader.

On I, the linearizing map ϕ_{j} is the limit of the maps $\varphi_{n}:=\left(f^{\circ q n}-\alpha_{j}\right) / \rho_{j}^{n}$. Since I is disjoint from all its iterates, Denjoy's Lemma 1.1 yields

$$
\operatorname{dis}_{I} \varphi_{n}=\operatorname{dis}_{I} f^{\circ q n} \leq D_{f}
$$

Passing to the limit as n tends to ∞ shows that $\operatorname{dis}_{I} \phi_{j} \leq D_{f}$ as required.
2.5. Continuity of $\bar{\tau}_{f}$. We now prove Lemma 2.5. It is enough to prove that $\bar{\tau}_{f}$ is continuous at $\omega=0$. We shall see that when $\operatorname{rot}(f)$ is irrational, the continuity follows from Lemma 2.4, but when $\operatorname{rot}(f)$ is rational, the situation is more subtle.
2.5.1. Irrational rotation number. If $\operatorname{rot}(f)$ is irrational, then $\bar{\tau}_{f}(0)=\operatorname{rot}(f)$ due to the definition of $\bar{\tau}_{f}$.

Let $I \subset \mathbb{R} / \mathbb{Z}$ be a small neighborhood of 0 such that for $\omega \in I$, the periods of the periodic cycles of f_{ω} are at least N. For $\omega \in I$, either $\bar{\tau}_{f}(\omega)=\operatorname{rot}\left(f_{\omega}\right)$, or according to Lemma 2.4,

$$
\left|\bar{\tau}_{f}(\omega)-\operatorname{rot}\left(f_{\omega}\right)\right| \leq \frac{D_{f}}{N^{2}}
$$

Thus, $\bar{\tau}_{f}(I)$ is located within D_{f} / N^{2}-neighborhood of $\left\{\operatorname{rot}\left(f_{\omega}\right) \mid \omega \in I\right\}$. The result follows since $\omega \mapsto \operatorname{rot}\left(f_{\omega}\right)$ is continuous.
2.5.2. Rational rotation number. If f is hyperbolic, then the continuity of $\bar{\tau}_{f}$ at 0 follows directly from Theorem 2.2.

Let us assume f has at least one parabolic cycle. We will only prove that

$$
\lim _{\omega>0, \omega \rightarrow 0} \bar{\tau}_{f}(\omega)=\frac{p}{q}=\bar{\tau}_{f}(0)
$$

Applying this result to the diffeomorphism $x \mapsto-f(-x)$ yields

$$
\lim _{\omega<0, \omega \rightarrow 0} \bar{\tau}_{f}(\omega)=\frac{p}{q}=\bar{\tau}_{f}(0)
$$

There are three different cases.

1. All q-periodic orbits of f disappear as ω increases, so that, $\operatorname{rot}\left(f_{\omega}\right)>p / q$ for $\omega>0$. In this case, the proof is literally the same as in the case of irrational rotation number.
2. At least one parabolic cycle of f bifurcates into real hyperbolic cycles. In this case, the multipliers of these real hyperbolic cycles tend to 1 as ω tends to 0 . The result follows from Lemma 2.4.
3. All parabolic cycles of f bifurcate into complex conjugate cycles as $\omega>0$ increases but the rotation number stays unchanged because f has hyperbolic cycles.
The rest of the Section is devoted to the treatment of the third case.
LEMMA 2.12. Under the assumptions of case (3) above, the curve $\bar{\tau}_{f}(\omega)$ is tangent to the segment $\left[\frac{p}{q}, \frac{p}{q}+\varepsilon\right) \subset \mathbb{R} / \mathbb{Z}$; moreover, it is located between two horocycles tangent to \mathbb{R} / \mathbb{Z} at $\frac{p}{q}$.
Proof. According to Lemma 2.4, we know that for $\omega>0$ close to $\omega, \bar{\tau}_{f}(\omega)$ remains in a subdisk of \mathbb{H} / \mathbb{Z} tangent to the real axis at p / q. So, it is enough to prove that $q \bar{\tau}_{f}(\omega)$ tends to 0 tangentially to the segment $[0, \varepsilon) \in \mathbb{R} / \mathbb{Z}$ and is located in between two horocycles tangent to \mathbb{R} / \mathbb{Z} at the point 0 .

According to Lemma 2.9, the hyperbolic distance in \mathbb{H} / \mathbb{Z} between $q \bar{\tau}_{f}(\omega)$ and $-1 / \sigma$ (where $\sigma=\sigma_{\omega}$ depends on ω) is uniformly bounded as $\omega>0$ tends to 0 . So, it is enough to show that the imaginary part of σ_{ω} is bounded and that the real part of σ_{ω} tends to $-\infty$.

Now we recall the definition of σ, and at the same time we introduce some notation. This new notation is similar to that of Section 2.2. The main difference is, that f is not hyperbolic.

Let m be the number of attracting hyperbolic cycles of f and order cyclically the hyperbolic periodic points $\alpha_{j}, j \in \mathbb{Z} /(2 m q) \mathbb{Z}$. For each $j \in \mathbb{Z} /(2 m q) \mathbb{Z}$, let x_{j} be a point in $\left(\alpha_{j}, \alpha_{j+1}\right)$, so that

- $f\left(x_{j}\right) \in\left(\alpha_{j+2 p m}, x_{j+2 p m}\right)$ if the orbit of α_{j} attracts (i.e. j is even) and
- $f\left(x_{j}\right) \in\left(x_{j+2 p m}, \alpha_{j+2 p m+1}\right)$ if the orbit of α_{j} repels (i.e. j is odd).

Note that since the parabolic cycles disappear as $\omega>0$ increases, the graph of $f^{\circ q}$ - id lies above the diagonal near those points. As a consequence, each parabolic periodic point lies in an interval of the form (α_{j}, α_{j+1}) with α_{j} repelling and α_{j+1} attracting.

For $\omega>0$ close enough to $0, f_{\omega}$ has a hyperbolic point $\alpha_{j}(\omega)$ close to α_{j}. We denote by $\rho_{\omega, j}$ the corresponding multiplier and by $\phi_{\omega, j}$ the corresponding linearizing map. Finally, using the points x_{j} chosen above which do not depend on ω, set

$$
\tilde{r}_{\omega, j}:=\frac{\log \phi_{\omega, j}^{-1}\left(x_{j}\right)}{\log \rho_{\omega, j}}, \quad \tilde{s}_{\omega, j}:=\frac{\log \left|\phi_{\omega, j}^{-1}\left(x_{j-1}\right)\right|}{\log \rho_{\omega, j}}+\frac{\mathrm{i} \pi}{\left|\log \rho_{\omega, j}\right|}
$$

and

$$
\sigma_{\omega}:=\sum_{j \in \mathbb{Z} /(2 m q) \mathbb{Z}} \tilde{s}_{\omega, j}-\tilde{r}_{\omega, j}
$$

This definition agrees with the notation of Lemma 2.9.
Now, we prove that the imaginary part of σ_{ω} is bounded and that the real part of σ_{ω} tends to $-\infty$.

Since

$$
\operatorname{Im}\left(\tilde{r}_{\omega, j}\right)=0 \quad \text { and } \quad \operatorname{Im}\left(\tilde{s}_{\omega, j}\right) \underset{\omega>0, \omega \rightarrow 0}{\longrightarrow} \operatorname{Im}\left(\tilde{s}_{j}\right)
$$

we see that the imaginary part remains bounded as $\omega>0$ tends to 0 .
If f has no parabolic periodic point on the interval (α_{j}, α_{j+1}), then $\phi_{\omega, j}^{-1} \rightarrow$ ϕ_{j}^{-1} on the interval $\left(\alpha_{j}, \alpha_{j+1}\right)$. It follows that $\operatorname{Re}\left(\tilde{r}_{\omega, j}\right)$ and $\operatorname{Re}\left(\tilde{s}_{\omega, j+1}\right)$ remain bounded. If f has a parabolic periodic point on the interval (α_{j}, α_{j+1}), then α_{j} is repelling and α_{j+1} is attracting. Either the two quantities $\log \phi_{\omega, j}^{-1}\left(x_{j}\right)$ and $\log \left|\phi_{\omega, j+1}^{-1}\left(x_{j}\right)\right|$ tend to $+\infty$, or one remains bounded and the other tends to $+\infty$. Since $\log \rho_{\omega, j} \rightarrow \log \rho_{j}>0$ and $\log \rho_{\omega, j+1} \rightarrow \log \rho_{j+1}<0$, in both cases,

$$
\operatorname{Re}\left(\tilde{s}_{\omega, j+1}-\tilde{r}_{\omega, j}\right) \underset{\omega>0, \omega \rightarrow 0}{\longrightarrow}-\infty
$$

As announced in the introduction, we derive the existence of orientation preserving analytic circle diffeomorphisms f for which τ_{f} fails to be univalent.

Corollary 2.13. Assume that $x-f(x)$ has two local maxima at points x_{1} and x_{2} with $x_{1}-f\left(x_{1}\right) \neq x_{2}-f\left(x_{2}\right)$. Then, τ_{f} is not injective.

Proof. Let y_{1} and y_{2} be the respective values of $x-f(x)$ at x_{1} and x_{2}. Suppose that $y_{1}<y_{2}$. Then the map f_{ω} for $y_{1}<\omega<y_{2}$ has zero rotation number, and it has parabolic fixed points for $\omega=y_{1}$ and $\omega=y_{2}$. When ω increases from y_{1} to $y_{1}+\varepsilon$, the parabolic fixed point disappears, thus due to Lemma 2.12, the curve $\omega \mapsto \bar{\tau}_{f}(\omega)$ is tangent to $\left[y_{1}, y_{1}+\varepsilon\right)$. When $\omega<y_{2}$ tends to y_{2}, the two hyperbolic fixed points merge into a parabolic fixed point. Thus, according to Lemma 2.4, the curve $\omega \mapsto \bar{\tau}_{f}(\omega)$ enters any horocycle as $\omega<y_{2}$ tends to y_{2}. But if τ_{f} were injective, the pair of germs of the curve $\left.\bar{\tau}_{f}\right|_{\mathbb{R} / \mathbb{Z}}$ at y_{1} and y_{2} (both passing through 0) would be oriented clockwise. The contradiction shows that τ_{f} is not injective in the upper half-plane.

2.6. Proof of the Main Theorem. The map

$$
\mathbb{C} / \mathbb{Z} \ni z \mapsto \exp (2 \pi \mathrm{i} z) \in \mathbb{C}-\{0\}
$$

is an isomorphism of Riemann surfaces. It conjugates $\tau_{f}: \mathbb{H} / \mathbb{Z} \rightarrow \mathbb{H} / \mathbb{Z}$ to a holomorphic function $g: \mathbb{D}-\{0\} \rightarrow \mathbb{D}-\{0\}$ and $\bar{\tau}_{f}: \mathbb{R} / \mathbb{Z} \rightarrow \overline{\mathbb{W} / \mathbb{Z}}$ to a continuous function $h: \partial \mathbb{D} \rightarrow \overline{\mathbb{D}}$. Since g is bounded, it extends holomorphically at 0 . According to the previous study,

$$
\text { for almost every } t \in \mathbb{R} / \mathbb{Z}, \quad \lim _{r \rightarrow 1, r<1} g\left(r e^{2 \pi \mathrm{i} t}\right)=h\left(e^{2 \pi \mathrm{i} t}\right)
$$

The Main Theorem is therefore a consequence of the following classical result.
LEMMA 2.14. Let $g: \mathbb{D} \rightarrow \mathbb{C}$ be a bounded holomorphic function and $h: \partial \mathbb{D} \rightarrow \mathbb{C}$ be a continuous function such that:

$$
\text { for almost every } t \in \mathbb{R} / \mathbb{Z}, \quad \lim _{r \rightarrow 1, r<1} g\left(r e^{2 \pi \mathrm{i} t}\right)=h\left(e^{2 \pi \mathrm{i} t}\right) .
$$

Then, h extends g continuously to $\overline{\mathbb{D}}$.
Proof. The real and imaginary parts of g are harmonic functions. Due to the Poisson formula (applied to both $\operatorname{Re} g$ and $\operatorname{Im} g$) for $|z|<r$ we have

$$
\begin{equation*}
g(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} g\left(r e^{i \alpha}\right) P\left(r e^{i \alpha}, z\right) \mathrm{d} \alpha \tag{2.1}
\end{equation*}
$$

where P is the Poisson kernel,

$$
P\left(r e^{i \alpha}, R e^{i \beta}\right)=\frac{r^{2}-R^{2}}{r^{2}+R^{2}-2 r R \cos (\alpha-\beta)}
$$

The integrand in (2.1) is bounded as r tends to 1 , and it tends to $h\left(e^{i \alpha}\right) P\left(e^{i \alpha}, z\right)$ almost everywhere. Due to the Lebesgue bounded convergence theorem,

$$
g(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} h\left(e^{i \alpha}\right) P\left(e^{i \alpha}, z\right) \mathrm{d} \alpha
$$

Due to the Poisson theorem, the right-hand side provides the solution of the Dirichlet boundary problem for Laplace equation. Thus $\operatorname{Re} g$ and $\operatorname{Im} g$ satisfy

$$
\lim _{z \rightarrow e^{i \alpha}} \operatorname{Re} g(z)=\operatorname{Re} h\left(e^{i \alpha}\right), \quad \lim _{z \rightarrow e^{i \alpha}} \operatorname{Im} g(z)=\operatorname{Im} h\left(e^{i \alpha}\right)
$$

Appendix A. Behavior of τ_{f} NEAR $+\mathrm{i} \infty$

Here, we study the behavior of $\tau_{f}(\omega)$ as the imaginary part of ω tends to $+\infty$. The map $\mathbb{C} / \mathbb{Z} \ni z \mapsto \exp (2 \pi \mathrm{i} z) \in \mathbb{C}-\{0\}$ is an isomorphism of Riemann surfaces. Thus, \mathbb{C} / \mathbb{Z} may be compactified as a Riemann surface $\overline{\mathbb{C} / \mathbb{Z}}$ isomorphic to the Riemann sphere, by adding two points $+\mathrm{i} \infty$ anf $-\mathrm{i} \infty$ (the notation suggests that $\pm \mathrm{i} \infty$ is the limit of points $z \in \mathbb{C} / \mathbb{Z}$ whose imaginary part tends to $\pm \infty$). We shall denote by

$$
\overline{\mathbb{H}^{ \pm} / \mathbb{Z}}=\mathbb{H}^{ \pm} / \mathbb{Z} \cup \mathbb{R} / \mathbb{Z} \cup\{ \pm \mathrm{i} \infty\}
$$

the closure of $\mathbb{H}^{ \pm} / \mathbb{Z}$ in $\overline{\mathbb{C} / \mathbb{Z}}$.
The following construction is usually referred to as conformal welding. It is customarily studied in the case of non-smooth circle homeomorphisms and is trivial in the case of analytic circle diffeormorphisms.

The analytic circle diffeomorphism f may be viewed as an analytic diffeomorphism between the boundary of $\overline{\mathbb{H}^{+} / \mathbb{Z}}$ and the boundary of $\overline{\mathbb{H}^{-} / \mathbb{Z}}$. If we glue $\overline{\mathbb{H}^{+} / \mathbb{Z}}$ to $\overline{\mathbb{H}^{-} / \mathbb{Z}}$ via f, we obtain a Riemann surface which is isomorphic to $\overline{\mathbb{C} / \mathbb{Z}}$. We may choose the isomorphism ϕ such that $\phi(\pm \mathrm{i} \infty)= \pm \mathrm{i} \infty$. Such an isomorphism is not unique, but it is unique up to addition of a constant in \mathbb{C} / \mathbb{Z}. It restricts to univalent maps $\phi^{ \pm}: \mathbb{H}^{ \pm} / \mathbb{Z} \rightarrow \mathbb{C} / \mathbb{Z}$ which extend univalently to neighborhoods of $\overline{\mathbb{H}^{ \pm} / \mathbb{Z}}$ and satisfy $\phi^{-} \circ f=\phi^{+}$near the boundary of $\overline{\mathbb{H}^{+} / \mathbb{Z}}$.

Holomorphy of $\phi^{ \pm}$near $\pm \mathrm{i} \infty$ yields that

$$
\phi^{ \pm}(z)=z+C^{ \pm}+o(1) \text { as } z \rightarrow \pm \mathrm{i} \infty
$$

for appropriate constants $C^{ \pm} \in \mathbb{C} / \mathbb{Z}$. Since ϕ is unique up to addition of a constant, the difference

$$
C_{f}:=C^{+}-C^{-}
$$

only depends on f and will be referred as the welding constant of f.
Proposition A.1. Let $f: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ be an orientation preserving analytic circle diffeomorphism and let C_{f} be its welding constant. As ω tends to $+\mathrm{i} \infty$ in \mathbb{C} / \mathbb{Z},

$$
\tau_{f}(\omega)=\omega+C_{f}+o(1)
$$

The proof goes as follows.
Step 1. The isomorphism between the complex torus $E\left(f_{\omega}\right)$ and $\mathscr{E}_{\tau_{f}(\omega)}$ induces a univalent map $\phi_{\omega}: A_{\omega} \rightarrow \mathbb{C} / \mathbb{Z}$ which extends univalently to a neighborhood of the closed annulus \bar{A}_{ω}, with $\phi_{\omega}\left(f_{\omega}\right)=\phi_{\omega}+\tau_{f}(\omega)$ in a neighborhood of \mathbb{R} / \mathbb{Z}.
Step 2. As $\omega \rightarrow+\mathrm{i} \infty$, the sequence of univalent maps

$$
\phi_{\omega}^{+}: z \mapsto \phi_{\omega}(z)-\phi_{\omega}(0)
$$

converges locally uniformly in $\mathbb{H}^{+} / \mathbb{Z}$ to a limit $\phi^{+}: \mathbb{H}^{+} / \mathbb{Z} \rightarrow \mathbb{C} / \mathbb{Z}$, and the sequence of univalent maps

$$
\phi_{\omega}^{-}: z \mapsto \phi_{\omega}(z+\omega)-\phi_{\omega}(f(0)+\omega)
$$

converges locally uniformly in $\mathbb{H}^{-} / \mathbb{Z}$ to a limit $\phi^{-}: \mathbb{H}^{-} / \mathbb{Z} \rightarrow \mathbb{C} / \mathbb{Z}$. In addition, the maps $\phi^{ \pm}: \mathbb{H}^{+} / \mathbb{Z} \rightarrow \mathbb{C} / \mathbb{Z}$ form a pair of univalent maps provided by the welding construction.
Step 3. Comparing constant Fourier coefficients of ϕ_{ω}, ϕ^{+}and ϕ^{-}, we deduce that as $\omega \rightarrow+\mathrm{i} \infty$, we have

$$
C^{+}+\phi_{\omega}(0)=-\omega+C^{-}+\phi_{\omega}(f(0)+\omega)+o(1)
$$

whence

$$
\tau_{f}(\omega)=\phi_{\omega}(f(0)+\omega)-\phi_{\omega}(0)=\omega+C^{+}-C^{-}+o(1)=\omega+C_{f}+o(1) .
$$

A.1. The map ϕ_{ω}. Let $\delta>0$ be sufficiently tiny so that $f: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ extends univalently to the annulus $B_{\delta}:=\{z \in \mathbb{C} / \mathbb{Z}|\delta>|\operatorname{Im}(z)|\}$. Set

$$
A_{\omega}^{+}:=A_{\omega} \cup B_{\delta} \cup\left(\omega+f\left(B_{\delta}\right)\right) .
$$

The complex torus $E\left(f_{\omega}\right)$ is the quotient of A_{ω}^{+}where $z \in B_{\delta}$ is identified to $f_{\omega}(z) \in f\left(B_{\delta}\right)+\omega$.

An isomorphism between $E\left(f_{\omega}\right)$ and $\mathscr{E}_{\tau}:=\mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})$ sending the homotopy class of \mathbb{R} / \mathbb{Z} in $E\left(f_{\omega}\right)$ to the homotopy class of \mathbb{R} / \mathbb{Z} in $\mathscr{E}_{\tau_{f}(\omega)}$ will lift to a univalent map $\phi_{\omega}: A_{\omega}^{+} \rightarrow \mathbb{C} / \mathbb{Z}$ sending \mathbb{R} / \mathbb{Z} to a curve homotopic to \mathbb{R} / \mathbb{Z}, preserving orientation. The following relation then holds on B_{δ} :

$$
\phi_{\omega}\left(f_{\omega}\right)=\phi_{\omega}+\tau_{f}(\omega) .
$$

A.2. Convergence of $\phi_{\omega}^{ \pm}$. As $\omega \rightarrow+\mathrm{i} \infty$, the open sets A_{ω}^{+}eat every compact subset of $\mathbb{H}^{+} / \mathbb{Z} \cup B_{\delta}$. The sequence of univalent maps $\phi_{\omega}^{+}: A_{\omega}^{+} \rightarrow \mathbb{C} / \mathbb{Z}$ defined by

$$
\phi_{\omega}^{+}(z):=\phi_{\omega}(z)-\phi_{\omega}(0)
$$

is normal and any limit value $\phi^{+}: \mathbb{H}^{+} / \mathbb{Z} \cup B_{\delta}$ satisfies $\phi^{+}(0)=0$. It cannot be constant since each ϕ_{ω}^{+}sends \mathbb{R} / \mathbb{Z} to a homotopically nontrivial curve in \mathbb{C} / \mathbb{Z} passing through 0 . So, any limit value $\phi^{+}: \mathbb{H}^{+} / \mathbb{Z} \cup B_{\delta} \rightarrow \mathbb{C} / \mathbb{Z}$ is univalent.

Similarly, as $\omega \rightarrow+\mathrm{i} \infty$, the open sets

$$
A_{\omega}^{-}:=-\omega+A_{\omega}^{+}
$$

eat every compact subset of $\mathbb{H}^{-} / \mathbb{Z} \cup f\left(B_{\delta}\right)$. In addition, the sequence of univalent maps $\phi_{\omega}^{-}: A_{\omega}^{-} \rightarrow \mathbb{C} / \mathbb{Z}$ defined by

$$
\phi_{\omega}^{-}(z):=\phi_{\omega}(z+\omega)-\phi_{\omega}(f(0)+\omega)
$$

is normal and any limit value $\phi^{-}: \mathbb{H} / \mathbb{Z} \cup f\left(B_{\delta}\right) \rightarrow \mathbb{C} / \mathbb{Z}$ is univalent and satisfies $\phi^{-}(f(0))=0$.

Passing to the limit on the following relation, valid on B_{δ} :

$$
\begin{aligned}
\phi_{\omega}^{-} \circ f(z) & =\phi_{\omega}(f(z)+\omega)-\phi_{\omega}(f(0)+\omega) \\
& =\phi_{\omega}(z)+\tau_{f}(\omega)-\phi_{\omega}(f(0)+\omega)=\phi_{\omega}(z)-\phi_{\omega}(0)=\phi_{\omega}^{+}(z),
\end{aligned}
$$

we get the following relation, valid on B_{δ} :

$$
\phi^{-} \circ f=\phi^{+}
$$

It follows that the pair (ϕ^{-}, ϕ^{+}) induces an isomorphism from $\left(A_{\omega}^{+} \sqcup A_{\omega}^{-}\right) / f$ (we identify $z \in B_{\delta} \subseteq A_{\omega}^{+}$to $f(z) \in f\left(B_{\delta}\right) \subseteq A_{\omega}^{-}$) to \mathbb{C} / \mathbb{Z}. Therefore, ϕ^{-}and ϕ^{+} coincide with the unique isomorphisms arising from the welding construction, normalized by the conditions $\phi^{+}(0)=\phi^{-}(f(0))=0$. This uniqueness shows that there is only one possible pair of limit values. Thus, the sequences $\phi_{\omega}^{-}: A_{\omega}^{-} \rightarrow$ \mathbb{C} / \mathbb{Z} and $\phi_{\omega}^{+}: A_{\omega}^{+} \rightarrow \mathbb{C} / \mathbb{Z}$ are convergent.
A.3. Comparing Fourier coefficients. Note that $z \mapsto \phi_{\omega}^{ \pm}(z)-z$ and $z \mapsto \phi^{ \pm}(z)$ are well-defined on \mathbb{R} / \mathbb{Z} with values in \mathbb{C}. The previous convergence implies:

$$
C_{\omega}^{+}:=\int_{\mathbb{R} / \mathbb{Z}}\left(\phi_{\omega}^{+}(z)-z\right) \mathrm{d} z \underset{\omega \rightarrow+\mathrm{i} \infty}{\longrightarrow} C^{+}:=\int_{\mathbb{R} / \mathbb{Z}}\left(\phi^{+}(z)-z\right) \mathrm{d} z
$$

and

$$
C_{\omega}^{-}:=\int_{\mathbb{R} / \mathbb{Z}}\left(\phi_{\omega}^{-}(z)-z\right) \mathrm{d} z \underset{\omega \rightarrow+\mathrm{i} \infty}{\longrightarrow} C^{-}:=\int_{\mathbb{R} / \mathbb{Z}}\left(\phi^{-}(z)-z\right) \mathrm{d} z
$$

Since ϕ_{ω} is holomorphic on A_{ω}^{+}, we have

$$
\int_{\mathbb{R} / \mathbb{Z}}\left(\phi_{\omega}(z)-z\right) \mathrm{d} z=\int_{\omega+\mathbb{R} / \mathbb{Z}}\left(\phi_{\omega}(z)-z\right) \mathrm{d} z=\int_{\mathbb{R} / \mathbb{Z}}\left(\phi_{\omega}(t+\omega)-t\right) \mathrm{d} t-\omega .
$$

Thus,

$$
\begin{aligned}
C_{\omega}^{+} & :=\int_{\mathbb{R} / \mathbb{Z}}\left(\phi_{\omega}^{+}(z)-z\right) \mathrm{d} z \\
& =\int_{\mathbb{R} / \mathbb{Z}}\left(\phi_{\omega}(z)-z\right) \mathrm{d} z-\phi_{\omega}(0) \\
& =\int_{\mathbb{R} / \mathbb{Z}}\left(\phi_{\omega}(t+\omega)-t\right) \mathrm{d} t-\omega-\phi_{\omega}(0) \\
& =\int_{\mathbb{R} / \mathbb{Z}}\left(\phi_{\omega}^{-}(t)-t\right) \mathrm{d} t-\omega+\phi_{\omega}(f(0)+\omega)-\phi_{\omega}(0)=C_{\omega}^{-}-\omega+\tau_{f}(\omega)
\end{aligned}
$$

As $\omega \rightarrow+\mathrm{i} \infty$, we therefore have

$$
C^{+}+o(1)=C^{-}+o(1)-\omega+\tau_{f}(\omega)
$$

which yields

$$
\tau_{f}(\omega)=\omega+C^{+}-C^{-}+o(1)=\omega+C_{f}+o(1)
$$

References

[1] V. I. ARnold, Geometrical Methods In The Theory Of Ordinary Differential Equations, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 250, Springer-Verlag, New York-Berlin, 1983, 334 pp.
[2] J. H. Hubbard, Local connectivity of Julia sets and bifurcation loci: three theorems of J. C. Yoccoz, in Topological Methods in Modern Mathematics, Goldberg and Phillips eds Publish or Perish 1993, p.467-511.
[3] N. B. Goncharuk, Rotation numbers and moduli of elliptic curves, Functional Analysis and Its Applications, Volume 46, Issue 1, pp 11-25.
[4] Y. ILYASHENKO \& V. MOLDAVSKis, Morse-Smale circle diffeomorphisms and moduli of complex tori, Moscow Mathematical Journal, Volume 3, April-June 2003, no 2, p.531-540.
[5] V. S. Moldavskir, Moduli of Elliptic Curves and Rotation Numbers of Circle Diffeomorphisms, Functional Analysis and Its Applications, 35:3(2001), p.234-236.
[6] E. Risler, Linéarisation des perturbations holomorphes des rotations et applications, Mémoires de la S.M.F. 2^{e} série, tome 77(1999), p. III-VII +1-102.
[7] M. Tsujil, Rotation number and one-parameter families of circle diffeomorphisms, Ergod. th. \& Dynam. sys. (1992), 12, 359-363.
[8] J.-C. Yoccoz, Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne, Ann. Sci. École Norm. Sup. (4) 17 (1984), no. 3, pp. 333-359.

XAVIER BUFF xavier.buff@math.univ-toulouse.fr: Institut de Mathématiques de Toulouse Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex, France

Nataliya Goncharuk natalka@mccme.ru: National Research University Higher School of Economics, Russia, Moscow, Miasnitskaya Street 20, and Independent University of Moscow, Russia, Moscow, Bolshoy Vlasyevskiy Pereulok 11

[^0]: Received July 14, 2013.
 2010 Mathematics Subject Classification: Primary: 37E10; Secondary: 37E45 and 30C62.
 Key words and phrases: complex tori, rotation numbers, diffeomorphisms of the circle, quasiconformal maps.

 XB: Supported by the IUF.
 NG: Supported by the following grants: RFBR projects 10-01-00739-a and 12-01-33020 mol_a_ved, joint RFBR/CNRS project 10-01-93115-CNRS_a, Moebius Contest Foundation for Young Scientists, Simons Foundation.

