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ABSTRACT. We investigate the notion of complex rotation number which was
introduced by V. I. Arnold in 1978. Let f : R/Z→ R/Z be an orientation pre-
serving circle diffeomorphism and let ω ∈ C/Z be a parameter with positive
imaginary part. Construct a complex torus by glueing the two boundary com-
ponents of the annulus { z ∈C/Z | 0 < Im(z) < Im(ω) } via the map f +ω. This
complex torus is isomorphic to C/(Z+τZ) for some appropriate τ ∈C/Z.

According to Moldavskis [5], if the ordinary rotation number rot( f +ω0) is
Diophantine and ifω tends to ω0 non tangentially to the real axis, then τ tends
to rot( f +ω0). We show that the Diophantine and non tangential assumptions
are unnecessary: if rot( f +ω0) is irrational then τ tends to rot( f +ω0) as ω
tends to ω0.

This, together with results of N.Goncharuk [3], motivates us to introduce
a new fractal set, given by the limit values of τ as ω tends to the real axis.
For the rational values of rot( f +ω0), these limits do not necessarily coincide
with rot( f +ω0) and form a countable number of analytic loops in the upper
half-plane.

Notation:

• H=H+ is the set of complex numbers with positive imaginary part.
• H− is the set of complex numbers with negative imaginary part.
• If p/q is a rational number, then p and q are assumed to be coprime.
• If x and y are distinct points in R/Z, then (x, y) denotes the set of points

z ∈ R/Z− { x, y } such that the three points x, z, y are in increasing order
and [x, y] := (x, y)∪ { x, y }.

• If f : R/Z→R/Z is a circle diffeomorphism, D f :=
∫
R/Z

∣∣∣∣ f ′′(x)

f ′(x)

∣∣∣∣ dx.
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INTRODUCTION

Given an orientation preserving analytic circle diffeomorphism f : R/Z →
R/Z and a parameter ω ∈H/Z, set

fω := f +ω : R/Z→R/Z+ω.

The circles R/Z and R/Z+ω bound an annulus Aω ⊂C/Z. Glueing the two sides
of Aω via fω, we obtain a complex torus E( fω), which may be uniformized as
Eτ := C/(Z+τZ) for some appropriate τ ∈ H/Z, the homotopy class of R/Z in
E( fω) corresponding to the homotopy class of R/Z in Eτ. The complex rotation
number of fω is τ f (ω) := τ. It is the complex analog of the ordinary rotation
number of f + t for t ∈R/Z.

V. I. Arnold’s problem [1], generalized by R. Fedorov and E. Risler indepen-
dently, is to study the relation of the ordinary rotation number of the circle
diffeomorphism f : R/Z→R/Z and the limit behaviour of the complex rotation
number τ f (ω) as ω tends to 0.

According to work of Risler [6, Chapter 2, Proposition 2], the function

τ f : H/Z→H/Z

is holomorphic. We shall show that there is a continuous extension of τ f to

H/Z :=H/Z∪R/Z.

The ordinary rotation number of a circle homeomorphism f : R/Z→R/Z is
defined as follows. Let F : R→R be a lift of f : R/Z→R/Z. Such a lift is unique
up to addition of an integer. The sequence of functions 1

n

(
F ◦n − id

)
converges

uniformly to a constant function Θ. If we replace F by F + k with k ∈ Z, the
limit Θ is replaced by Θ+k, so that the value rot( f ) ∈ R/Z of Θ modulo 1 only
depends on f . This is the rotation number of f . Note that the rotation number
is rational if and only if the circle homeomorphism has a periodic cycle.

Our main result, proved in Section 2.6, concerns the behavior of τ f (ω) as ω
tends to R/Z. Recall that a periodic cycle of a circle diffeomorphism is called
parabolic if its multiplier is 1, and it is called hyperbolic otherwise. A circle dif-
feomorphism with periodic cycles is called hyperbolic if it has only hyperbolic
periodic cycles.

MAIN THEOREM. Let f : R/Z→R/Z be an orientation preserving analytic circle
diffeomorphism. Then, the function τ f : H/Z→H/Z has a continuous extension

τ̄ f : H/Z→H/Z. Assume ω ∈R/Z.

• If rot( fω) is irrational, then τ̄ f (ω) = rot( fω).
• If rot( fω) = p/q is rational, then τ̄ f (ω) belongs to the closed disk of radius

D f /(πq2) tangent to R/Z at p/q; moreover
– if fω has a parabolic cycle, then τ̄ f (ω) = rot( fω).
– if fω is hyperbolic, then τ̄ f (ω) ∈H/Z, in particular τ̄ f (ω) 6= rot( fω).

Our main contribution to this result is the case of irrational (yet not Diophan-
tine) rotation number, and the continuous extension of τ f to the whole bound-
ary R/Z. The case of Diophantine rotation numbers was investigated earlier by
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FIGURE 1. Bubbles. The sketch of the set τ̄ f (R/Z).

E.Risler [6, Chapter 2] and V.Moldavskis [5] independently. The case of parabolic
cycles was studied by J.Lacroix (unpublished) and N.Goncharuk [3] indepen-
dently. The case of hyperbolic diffeomorphisms was dealt first by Ilyashenko
and Moldavskis [4], then this result was improved by N.Goncharuk [3]. For exact
statements of these results, see Section 2.

In Appendix A, we shall also study the behavior of τ f (ω) as the imaginary
part of ω tends to +∞.

Bubbles: a new fractal set. The Main Theorem enables us to define a new inter-
esting fractal set, related to the circle diffeomorphism, namely the set τ̄ f (R/Z).
Due to the Main Theorem, this set contains R/Z and a countable number of
loops — “bubbles”, the endpoints of bubbles are rational points of R/Z (see the
sketch at Fig. 1). Due to [3], these loops are analytic curves.

There arises a natural conjecture that τ̄ f (R/Z) is the boundary of τ f (H/Z),
and τ f is univalent. We disprove this conjecture, see Corollary 2.13 of Section
2.5.2.

There are still many open questions about the geometrical structure of the
set τ̄ f (R/Z):

• What can be said about the shape and the size of a bubble? In particular,
could a bubble be self-intersecting?

• Is it possible that different bubbles intersect each other?
• What can be said about the “bubble bundle”, when several bubbles grow

from the same point of the real axis?

1. DENJOY ’S LEMMA

Before embarking into the proof of our results, we shall recall a classical re-
sult of Denjoy on the dynamics of circle diffeomorphisms. The distortion of a
diffeomorphism f : I → J is

disI ( f ) = max
x,y∈I

log
f ′(x)

f ′(y)
.
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If f : I → J and g : J → K are diffeomorphisms, then

disJ ( f −1) = disI ( f ) and disI (g ◦ f ) ≤ disI ( f )+disJ (g ).

LEMMA 1.1 (Denjoy). Let f : R/Z→R/Z be an orientation preserving diffeomor-
phism and I ⊂R/Z be an interval such that I , f (I ), f ◦2(I ), . . . , f ◦n(I ) are disjoint.
Then,

disI ( f ◦n) ≤ D f .

Proof. Let x and y be points in I . Set xk := f ◦k (x) and yk := f ◦k (y). Then,∣∣log( f ◦n)′(x)− log( f ◦n)′(y)
∣∣= ∣∣∣∣∣n−1∑

k=0
log f ′(xk )− log f ′(yk )

∣∣∣∣∣
≤

n−1∑
k=0

∣∣∣∣∫ yk

xk

f ′′(x)

f ′(x)
dx

∣∣∣∣≤ ∫
R/Z

∣∣∣∣ f ′′(x)

f ′(x)

∣∣∣∣ dx = D f .

As a corollary, we have the following control on the multipliers of the periodic
cycles of f . This result is surely known by specialists, but we include its proof
due to the lack of a suitable reference.

LEMMA 1.2. Let f : R/Z→R/Z be an orientation preserving diffeomorphism and
ρ be the multiplier of a cycle of f . Then, | logρ| ≤ D f .

Proof. The average of the derivative ( f ◦q )′ along the circle R/Z is equal to 1.
As a consequence, there exists a point x0 ∈ R/Z such that ( f ◦q )′(x0) = 1. Any
periodic cycle { x, f (x), . . . , f ◦q (x) = x } divides the circle into disjoint intervals
I1, . . . , Iq which are permuted by f . Without loss of generality, we may assume
that I1 contains x and x0. Then, according to the previous Lemma,

| logρ| = ∣∣log( f ◦q )′(x)
∣∣= ∣∣∣∣log

( f ◦q )′(x)

( f ◦q )′(x0)

∣∣∣∣≤ disI1 ( f ◦q ) ≤ D f .

2. BEHAVIOR OF τ f NEAR R/Z

The proof of the Main Theorem goes as follows.

Step 1. Recall that a number θ ∈R/Z is Diophantine if there are constants c > 0
and β> 0 such that for all rational numbers p/q ∈Q/Z, we have∣∣∣∣x − p

q

∣∣∣∣> c

q2+β .

THEOREM 2.1 (V. Moldavskis [5]). If ω ∈R/Z and if rot( fω) is Diophantine, then

lim
y→0
y>0

τ f (ω+ iy) = rot( fω).

Step 2. If ω ∈R/Z and rot( fω) is rational, then the conclusion of Theorem 2.1 is
not true. This fact was first proved by Yu. Ilyashenko and V. Moldavkis [4]. We
do not formulate their result since we will use its later generalized version.

THEOREM 2.2 (N. Goncharuk [3]). If ω ∈ R/Z, if rot( fω) is rational and if fω is
hyperbolic, then τ f extends analytically to a neighborhood of ω.
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In the following, we shall denote by τ̄ f (ω) this extension of τ f at ω.

Step 3. Recall that θ ∈R/Z is Liouville if it is irrational but not Diophantine. We
use the following result of Tsujii.

THEOREM 2.3 (M. Tsujii [7]). The set of ω ∈R/Z such that rot( fω) is Liouville has
zero Lebesgue measure.

It implies that almost every ω ∈R/Z satisfies assumptions of either Theorem
2.1, or Theorem 2.2 (note that the set of ω such that fω has a parabolic cycle is
countable).

Step 4. If fω has rational rotation number p/q , we denote by Per( fω) the set of
periodic points of fω : R/Z→ R/Z. For x ∈ Per( fω), we denote by ρx the mul-
tiplier of f as a fixed point of f ◦q . Our contribution starts with the following
result. It is an analog of the Yoccoz Inequality which bounds the multiplier of a
fixed point of a polynomial in terms of its combinatorial rotation number [2].

LEMMA 2.4. Assume that fω is a hyperbolic map with rational rotation number
p/q. Then, τ̄ f (ω) belongs to the disk tangent to R/Z at p/q with radius

Rω := 1

πq · ∑
x∈Per( fω)

1

| logρx |
.

In addition, Rω ≤ D f /(πq2).

The cardinal of Per( fω) is at least q and according to Lemma 1.2, for each
x ∈ Per( fω) we have | logρx | ≤ D f . This yields the upper bound Rω ≤ D f /(πq2).

Step 5. Let τ̄ f : R/Z→C/Z be defined by

• τ̄ f (ω) := rot( fω) if the rotation number of fω is irrational or if fω has a
parabolic cycle and

• τ̄ f (ω) := lim
y→0
y>0

τ f (ω+ iy) if fω is hyperbolic.

This definition agrees with the definition of τ̄ f (ω) for hyperbolic fω (see Step 2).
We are going to prove that τ̄ f is the continuous extension of τ f to the real axis;
so the coincidence of the notation with that of Main Theorem is not accidental
and will not lead to confusion.

LEMMA 2.5. The function τ̄ f is continuous on R/Z.

It is particularly difficult to prove the continuity of τ̄ f at points ω ∈ R/Z for
which fω has hyperbolic and parabolic cycles which bifurcate into complex con-
jugate cycles. The other cases follow easily from Theorem 2.2 and Lemma 2.4.

Step 6. The holomorphic map τ f : H/Z→H/Z has radial limits on R/Z almost
everywhere, and those limits coincide with the continuous map τ̄ f . It follows
easily that τ f extends continuously by τ̄ f to R/Z.
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2.1. The Diophantine case. We include a proof of Theorem 2.1. The proof relies
on the following lemma on quasiconformal maps which is classical.

LEMMA 2.6. Suppose that there exists a K -quasiconformal map between two
complex tori E1 and E2. Then

distH(τ(E1),τ(E2)) ≤ logK

where distH is the hyperbolic distance in H, and where τ(E1) ∈H and τ(E2) ∈H
are moduli with respect to corresponding generators in H1(E1) and H1(E2).

Without loss of generality, we may assume that f : R/Z→R/Z has Diophan-
tine rotation number θ ∈ R/Z. A theorem of Yoccoz (see [8]) asserts that there
is an analytic circle diffeomorphism φ : R/Z→R/Z conjugating the rotation of
angle θ to f : for all x ∈R/Z, we have

φ(x +θ) = f ◦φ(x).

Let φ̂ : C/Z→C/Z be the homeomorphism defined by

φ̂(z) =φ(
Re(z)

)+ i Im(z).

Then, φ̂ : C/Z→C/Z is a K -quasiconformal homeomorphism with

K := max
(‖φ′‖∞,‖1/φ′‖∞

)
.

Now, for any y > 0,
φ̂(x +θ+ iy) = f

(
φ̂(x)

)+ i y,

and so, φ̂ induces a K -quasiconformal homeomorphism between the complex
tori C/

(
Z+(θ+ iy)Z

)
and E ( fiy ). It follows that for y > 0, the hyperbolic distance

in H/Z between θ+ iy and τ f (iy) is uniformly bounded and thus,

lim
y→0
y>0

τ f (iy) = θ.

2.2. The hyperbolic case. We recall the arguments of the proof of Theorem 2.2
given in [3]. It is based on an auxiliary construction of a complex torus E( f )
when f : R/Z→ R/Z has rational rotation number and is hyperbolic. This con-
struction will be used again in the proofs of Lemmas 2.4 and 2.5.

Let us assume f : R/Z→R/Z has rational rotation number p/q and has only
hyperbolic periodic cycles. The number m ≥ 1 of attracting cycles is equal to the
number of repelling cycles. Denote by α j , j ∈Z/(2mq)Z, the periodic points of
f , ordered cyclically; even indices correspond to attracting periodic points and
odd indices to repelling periodic points. Note that f (α j ) =α j+2mp .

Let ρ j be the multiplier of α j as a fixed point of f ◦q and φ j : (C,0) → (C/Z,α j )
be the linearizing map which conjugates multiplication by ρ j to f ◦q :

f ◦q ◦φ j (z) =φ j (ρ j z)

and is normalized by φ′
j (0) = 1. Then,

f ◦φ j (z) =φ j+2mp (λ j · z) with λ j := f ′(α j ).



COMPLEX ROTATION NUMBERS 7

In addition, if ε> 0 is small enough, the linearizing map φ j extends univalently
to the strip { z ∈C | | Im(z)| < ε } and

φ j (R) = (α j−1,α j+1).

For each j ∈Z/(2mq)Z, let x j be a point in (α j ,α j+1), so that

• f (x j ) ∈ (α j+2pm , x j+2pm) if the orbit of α j attracts (i.e. j is even) and
• f (x j ) ∈ (x j+2pm ,α j+2pm+1) if the orbit of α j repels (i.e. j is odd).

This is possible since f ◦q (x j ) ∈ (α j , x j ) when j is even and f ◦q (x j ) ∈ (x j , a j+1)
when j is odd. Similarly, let ε j be a point on the negative imaginary axis if j is
even and on the positive imaginary axis if j is odd, so that for all j ∈Z/(2mpZ),

• |ε j | < ε, |λ jε j | < ε and
• λ jε j is above ε j+2mp .

Let C j be the arc of circle with endpoints φ−1
j (x j−1) and φ−1

j (x j ) passing
through ε j and set

γ := ⋃
j∈Z/(2mqZ)

φ j (C j ).

Then, γ is a simple closed curve in C/Z and f is univalent in a neighborhood of
γ.

α1

α0
α1

γ

f (γ)

x0x1 x1x0

FIGURE 2. A possible choice of curve γ for the map f : C/Z 3
z 7→ z + 1

4π sin(2πx) ∈ C/Z which restricts as a hyperbolic circle
diffeomorphism f : R/Z→ R/Z. The curve f (γ) lies above γ in
C/Z. The essential annulus between γ and f (γ) is colored (light
grey in the upper half-plane and dark grey in the lower half-
plane). The map f has an attracting fixed point at α0 := 0 ∈R/Z
and a repelling fixed point at α1 := 1/2 ∈ R/Z. The basin of at-
traction of α0 in C/Z is white; its complement is the Julia set of
f .
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The attracting cycles of f are above γ in C/Z and the repelling cycles are
below γ in C/Z. In addition,

f (γ) = ⋃
j∈Z/(2mqZ)

φ j+2mp (λ j C j )

and so, f (γ) lies above γ in C/Z.
For ω sufficiently close to 0, the curve fω(γ) = f (γ)+ω remains above γ in

C/Z. The curves γ and fω(γ) bound an essential annulus in C/Z. Glueing the
two sides via fω, we obtain a complex torus E( fω), which may be uniformized as
Eτ :=C/(Z+τZ) for some appropriate τ ∈H/Z, the homotopy class of γ in E( fω)
corresponding to the homotopy class of R/Z in Eτ. We set τ̄ f (ω) := τ ∈H/Z.

According to Risler [6, Chapter 2, Proposition 2], the map ω 7→ τ̄ f (ω) is holo-
morphic. When ω ∈ H/Z, the complex torus E( fω) is isomorphic to E( fω) and
the homotopy class of γ in E( fω) corresponds to the homotopy class of R/Z
in E( fω) (see [3] for details). As a consequence, τ̄ f (ω) = τ f (ω) when ω ∈H/Z is
sufficiently close to 0. This completes the proof of Theorem 2.2 for ω= 0.

2.3. The Liouville case: Tsujii’s theorem. For completeness, we now present a
proof of Tsujii’s Theorem 2.3 which we believe is a simplification of the original
one, although the ideas are essentially the same. The main argument in Tsujii’s
proof is the following.

PROPOSITION 2.7. Let f : R/Z→R/Z be a C 2-smooth orientation preserving cir-
cle diffeomorphism with irrational rotation number θ ∈R/Z. If p/q is an approx-
imant to θ given by the continued fraction algorithm, then there is an ω ∈ R/Z
satisfying

|ω| < eD f · |θ−p/q| and rot( fω) = p/q.

Proof. According to a Theorem of Denjoy, there is a homeomorphism φ : R/Z→
R/Z such that φ(x +θ) = f ◦φ(x) for all x ∈R/Z.

Without loss of generality, let us assume that θ < p/q and set δ := p −qθ. Let
T ⊂R/Z be the union of intervals

T := ⋃
1≤ j≤q

T j with T j := ( jθ, jθ+δ).

Since p/q is an approximant of θ, this is a disjoint union of q intervals of
length δ. According to Lemma 2.8 below, we may choose t ∈ R/Z such that
the Lebesgue measure of φ(T + t ) is at most qδ.

Now, set x :=φ(t ) and for j ∈Z, set

x j := f ◦ j (x) =φ(t + jθ) and I j := (x j , x j−q ) =φ(T j ).

The intervals I1, I2 = f (I1), . . . , Iq = f ◦q (I1) are disjoint and the sum of their
lengths satisfies

q∑
j=1

|I j | ≤ qδ= q2 · |θ−p/q|.
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As ω ∈R/Z increases from 0, the rotation number rot( fω) ∈R/Z increases from
θ, and there is a first ω0 such that rot( fω0 ) = p/q . For j ∈ [0, q], set

y j := ( fω0 )◦ j (x) and z j := f ◦(q− j )(y j ).

Finally, for j ∈ [1, q], set

J j := (
f (y j−1), y j

)= (
f (y j−1), f (y j−1)+ω0

)
and K j := (z j−1, z j ).

Then, (z0, z1, . . . , zq ) is a subdivision of (z0, zq ) (see Figure 3).

x1−q

f ◦(q−2)

f

f ◦(q−2)

f (y1) J2

J1x1

I1

I2

Iq

xq=z0

K2

z2z1

K1

zq−1 yq=zq

Jq=Kq

x2

x0

x2−q

y1

y2

FIGURE 3. The intervals I j , J j and K j .

As ω increases from 0 to ω0, the point ( fω)◦q (x) increases from xq to yq but
remains in Iq since rot( fω) remains less than p/q . Thus, (z0, zq ) = (xq , yq ) ⊆ Iq

and so,

|Iq | ≥ |zq − z0| =
q∑

j=1
|K j |.

In addition, J j ⊂ I j and K j = f ◦(q− j )(J j ). It follows from Denjoy’s Lemma 1.1 that

|K j |
|Iq |

≥ e−D f
|J j |
|I j |

= e−D f
ω0

|I j |
.

Now, according to the Cauchy-Schwarz Inequality, we have

q2 =
(

q∑
j=1

√
|I j | · 1√|I j |

)2

≤
(

q∑
j=1

|I j |
)
·
(

q∑
j=1

1

|I j |

)
≤ q2 · |θ−p/q| ·

q∑
j=1

1

|I j |
.
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Thus,

|Iq | ≥
q∑

j=1
|K j | ≥ e−D f ω0|Iq | ·

q∑
j=1

1

|I j |
≥ e−D f ω0|Iq |

|θ−p/q|
and so,

ω0 ≤ eD f · |θ−p/q|.
LEMMA 2.8. Let φ : R/Z→R/Z be a homeomorphism. Then, for any measurable
set T ⊆R/Z, there is a t ∈R/Z such that

Leb
(
φ(T + t )

)≤ Leb(T ).

Proof. Let µ be the Lebesgue measure on R/Z. According to Tonelli’s theorem,∫
t∈R/Z

µ
(
φ(T + t )

)
dt =

∫
t∈R/Z

(∫
u∈T+t

d(φ∗µ)

)
dµ

=
∫

u∈R/Z

(∫
t∈−T+u

dµ

)
d(φ∗µ)

=
∫

u∈R/Z
µ(T ) d(φ∗µ)

=µ(T ) ·µ(
φ(R/Z)

)=µ(T ).

So, the average of µ
(
φ(T + t )

)
with respect to t is equal to µ(T ) and the result

follows.

Theorem 2.3 follows easily from Proposition 2.7: for β > 0, let Sβ be the set
of ω ∈R/Z such that rot( fω) is irrational and such that there are infinitely many
p, q ∈Z satisfying

∣∣rot( fω)−p/q
∣∣< 1/q2+β. The set of ω ∈R/Z such that rot( fω)

is Liouville is the intersection of the sets Sβ. So, it is sufficient to show that the
Leb(Sβ) = 0 for all β> 0. Note that

Sβ = limsup
q→+∞

Sβ,q

where Sβ,q is the set of ω ∈ R/Z such that rot( fω) is irrational and such that∣∣rot( fω)−p/q
∣∣< 1/q2+β for some approximant p/q of rot( fω).

Proposition 2.7 implies that Sβ,q is located in the C /q2+β-neighborhood of
the union of q intervals where the rotation number is rational with denominator
q , where C := eD f . So,

Leb(Sβ,q ) ≤ 2q · C

q2+β = 2C

q1+β .

In particular, for all β> 0,

Leb(Sβ) = Leb

(
limsup

q→+∞
Sβ,q

)
≤ limsup

q→+∞

∑
r≥q

2C

r 1+β = 0.
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2.4. Back to the hyperbolic case. We now come to our main contribution, start-
ing with the proof of Lemma 2.4. Assume f : R/Z→ R/Z has rational rotation
number p/q and has only hyperbolic periodic cycles. As in Section 2.2, consider
a simple closed curve γ oscillating between the attracting cycles of f (which are
above γ in C/Z) and the repelling cycles of f (which are below γ in C/Z), so that
f (γ) lies above γ in C/Z.

The curves γ and f (γ) bound an essential annulus in C/Z. Glueing the curves
via f , we obtain a complex torus E( f ) isomorphic to Eτ :=C/(Z+τZ) with τ :=
τ̄0( f ) ∈H/Z, the class of γ in E( f ) corresponding to the class of R/Z in Eτ.

The projection of R/Z in E( f ) consists of 2m topological circles cutting E( f )
into 2m annuli associated to the cycles of f . More precisely, each attracting
(respectively repelling) cycle c has a basin of attraction Bc for f (respectively for
f −1) and the projection of H−∩Bc (respectively H+∩Bc ) in E( f ) is an annulus
Ac of modulus

mod Ac = π

| logρc |
,

where ρc is the multiplier of c as a cycle of f .
Those annuli wind around the class of γ in E( f ) with combinatorial rotation

number −p/q . It follows from a classical length-area argument (see [2, Proposi-
tion 3.3] for example) that there is a representative τ̃ ∈H of τ ∈H/Z such that∑

c cycle of f
mod Ac ≤ Im(τ̃)

|−p +q τ̃|2 .

As a consequence,

|τ̃−p/q|2
Im τ̃

≤ Rω := 1

πq2 · ∑
c cycle of f

mod Ac
,

which yields Lemma 2.4 since∑
c cycle of f

mod Ac =
∑

c cycle of f

π

| logρc |
= 1

q

∑
x∈Per( f )

π

| logρx |
.

Before going further, we shall establish a result that will be used in the proof
of Lemma 2.5. Recall that the curve γ intersects the interval (α j ,α j+1) at the
point x j , belongs to the lower half-plane below the segment (x j−1, x j ) if j is
even and to the upper half-plane above the segment (x j−1, x j ) if j is odd.

Recall that m is the number of attracting cycles of f . The projection of R/Z
in E( f ◦q ) cuts the torus in 2mq annuli A j , j ∈ Z/(2mq)Z, which wind around
the class of γ with combinatorial rotation number 0 and have moduli

mod A j = m j := π

| logρ j |
.

Let S j ⊂C and B j ⊂C/Z be defined by

S j := { z ∈C | 0 < Im(z) < m j } and B j := S j /Z.
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Set

r̃ j :=
logφ−1

j (x j )

logρ j
and s̃ j :=

log |φ−1
j (x j−1)|

logρ j
+ iπ

| logρ j |
.

The class r j of r̃ j in C/Z belongs to the lower boundary component C−
j :=R/Z

of B j and the class s j of s̃ j in C/Z belongs to the upper boundary component
C+

j := (R+im j )/Z of B j . The map z 7→φ j ◦exp(z ·logρ j ) induces an isomorphism
χ j : B j → A j which extends analytically to the boundary, sends r j to the class of
x j in E( f ◦q ) and s j to the class of x j−1 in E( f ◦q ) (see Figure 4).

r̃ j 1+r̃ j

x j−1

α j+1

α j x j

s j

r j

s̃ j 1+s̃ j

z 7→φ j ◦exp(z·logρ j )

γ

f ◦q (γ)

S j

z∼1+z

z∼ f ◦q (z)

B j

χ j

A j

E( f ◦q )

FIGURE 4. The projection of R/Z in E( f ◦q ) cuts the torus in
2mq annuli A j , j ∈Z/(2mq)Z.

LEMMA 2.9. We have that

distH/Z

(
qτ,− 1

σ

)
≤ 5D f with σ := ∑

j∈Z/2mq Z
s̃ j − r̃ j .

Proof. It will be more convenient to work with f ◦q whose rotation number is
0/1. The diffeomorphism f induces an automorphism of E( f ◦q ) of order q . The
quotient of E( f ◦q ) by this automorphism is isomorphic to E( f ). The class of
γ in E( f ) has q disjoint preimages in E( f ◦q ) which map with degree 1 to γ. It
follows that E( f ◦q ) is isomorphic to Eqτ :=C/(Z+qτZ), the class of γ in E( f ◦q )
corresponding to the class of R/Z in Eqτ.

Set Eσ :=C/(Z+σZ). We will now construct a K -quasiconformal map

ψ : E( f ◦q ) → Eσ

which sends the class of R/Z in E( f ◦q ) to the class of σR/σZ in Eσ. We will also
show that logK ≤ 5D f . The result then follows from Lemma 2.6.

On the one hand, glueing the lower boundary component C−
j of B j with the

upper boundary component C+
j+1 of B j+1 via the analytic diffeomorphism

ξ j :=χ−1
j+1 ◦χ j : C−

j →C+
j+1,
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we obtain a complex torus E which is isomorphic to E( f ◦q ). Let δ j be the pro-
jection of the segment [r̃ j , s̃ j ] to E . The homotopy class of the simple closed
curve

δ := ⋃
j∈Z/(2mq)Z

δ j

in E corresponds to the homotopy class of γ in E( f ◦q ).
On the other hand, glueing the lower boundary component C−

j of B j with the

upper boundary component C+
j+1 of B j+1 via the translation by z 7→ z−r j +s j+1,

we obtain a complex torus E ′ which is isomorphic to Eσ. Let δ′j be the projection

of the segment [r̃ j , s̃ j ] to E ′. The homotopy class of the simple closed curve

δ′ := ⋃
j∈Z/(2mq)Z

δ′j

in E ′ corresponds to the homotopy class of σR/σZ in Eσ.
The homeomorphism

ψ j := ξ j − s j+1 + r j : C−
j →C−

j

fixes r j ∈ C−
j . Let ψ̃ j : R→ R be the lift of ψ j : C−

j → C−
j which fixes r̃ j and let

Ψ j : S j → S j be the extension to S j defined by

Ψ j (x + iy) := y

m j
(x + im j )+

(
1− y

m j

)
ψ̃ j (x).

The homeomorphism Ψ j : S j → S j restricts to the identity on R+ im j and de-

scends to a homeomorphism ψ j : B j → B j . By construction, the following dia-
gram commutes:

C−
j

ψ j //

ξ j

��

C−
j

z 7→z−r j+s j+1

��
C+

j+1 ψ j+1

// C+
j+1.

So, the collection of homeomorphisms ψ j : B j → B j induces a global homeo-
morphism ψ : E → E ′. Since Ψ j fixes r̃ j and s̃ j , the homeomorphism ψ sends
the homotopy class of δ in E to the homotopy class of δ′ in E ′. The proof is
completed by Lemma 2.10 below.

LEMMA 2.10. The homeomorphism ψ : E → E ′ is e5D f -quasiconformal.

Proof. The image of the curves C±
j in E are analytic (because the glueing map

ξ j is analytic), therefore quasiconformally removable. So, it is enough to prove
that each ψ j : B j → B j is e5D f -quasiconformal. Equivalently, we must prove that∥∥∥∥∂Ψ j /∂z̄

∂Ψ j /∂z

∥∥∥∥
∞

≤ k < 1 with distD(0,k) < 5D f ,

where distD is the hyperbolic distance within the unit disk.
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For readibility, we drop the index j in the following computation:

∂Ψ/∂z̄

∂Ψ/∂z
(x + iy) = ∂Ψ/∂x + i∂Ψ/∂y

∂Ψ/∂x − i∂Ψ/∂y
(x + iy)

=
(
1− y

m

) · (ψ̃′(x)−1
)− i

m

(
ψ̃(x)−x

)
2+ (

1− y
m

) · (ψ̃′(x)−1
)+ i

m

(
ψ̃(x)−x

) .

This last quantity is of the form (a −1)/(ā +1) with

Re(a) = 1+
(
1− y

m

)
· (ψ̃′(x)−1

)
and Im(a) = ψ̃(x)−x

m
.

Note that

∣∣∣∣ a −1

ā +1

∣∣∣∣= ∣∣∣∣ a −1

a +1

∣∣∣∣ and the Möbius transformation a 7→ a −1

a +1
sends the

right half-plane into the unit disk. So, it is enough to show that a belongs to the
right half-plane { z ∈C | Re(z) > 0 } and that the hyperbolic distance within this
half-plane between 1 and a is at most 5D f .

This hyperbolic distance is bounded from above by
∣∣Im(a)

∣∣+∣∣logRe(a)
∣∣. Since

ψ̃ : R→ R is an increasing diffeomorphism which fixes p +Z ∈ R, we have that
ψ̃′(x) > 0 and

∣∣ψ̃(x)−x
∣∣< 1. In addition, 0 < 1− y/m < 1, and so,

0 < min
R
ψ̃′ ≤ Re(a) ≤ max

R
ψ̃′ and

∣∣Im(a)
∣∣≤ 1

m
= | logρ|

π
≤ | logρ| ≤ D f .

The last inequality is given by Lemma 1.2. The average of ψ̃′ on [0,1] is equal to
ψ̃(1)− ψ̃(0) = 1. So, ψ̃′ takes the value 1 and

−disR(ξ) =−disR(ψ̃) < logmin
R

(ψ̃′) ≤ 0 ≤ logmax
R

(ψ̃′) < disR(ψ̃) = disR(ξ).

The proof is completed by Lemma 2.11 below.

LEMMA 2.11. For any j ∈Z/(2mq)Z, the distortion of ξ j is bounded by 4D f .

Proof. The map ξ j : C−
j →C+

j+1 is induced by the following composition

R
e j−→ (0,+∞)

φ j−→ (α j ,α j+1)
φ−1

j+1−→ (−∞,0)
e−1

j+1−→R+ im j+1.

with
e j (z) := exp(z · logρ j ) and e j+1(z) = exp(z · logρ j+1).

The distortion of e j on any interval of length 1 is | logρ j | which is at most D f ac-
cording to Lemma 1.2. Similarly, the distortion of e j+1 on any interval of length
1 is | logρ j+1| ≤ D f .

Let x be any point in (α j ,α j+1) and let I ⊂R/Z be the interval whose extrem-
ities are x and f (x). To complete the proof, it is enough to show that

disI (φ−1
j ) ≤ D f and disI (φ−1

j+1) ≤ D f .

We will only prove this result for φ j in the case where α j is attracting. The other
cases are dealt similarly and left to the reader.

On I , the linearizing map φ j is the limit of the maps ϕn := ( f ◦qn −α j )/ρn
j .

Since I is disjoint from all its iterates, Denjoy’s Lemma 1.1 yields

disI ϕn = disI f ◦qn ≤ D f .
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Passing to the limit as n tends to ∞ shows that disI φ j ≤ D f as required.

2.5. Continuity of τ̄ f . We now prove Lemma 2.5. It is enough to prove that τ̄ f

is continuous at ω= 0. We shall see that when rot( f ) is irrational, the continuity
follows from Lemma 2.4, but when rot( f ) is rational, the situation is more subtle.

2.5.1. Irrational rotation number. If rot( f ) is irrational, then τ̄ f (0) = rot( f ) due
to the definition of τ̄ f .

Let I ⊂ R/Z be a small neighborhood of 0 such that for ω ∈ I , the periods
of the periodic cycles of fω are at least N . For ω ∈ I , either τ̄ f (ω) = rot( fω), or
according to Lemma 2.4, ∣∣τ̄ f (ω)− rot( fω)

∣∣≤ D f

N 2 .

Thus, τ̄ f (I ) is located within D f /N 2-neighborhood of
{

rot( fω)
∣∣ω ∈ I

}
. The re-

sult follows since ω 7→ rot( fω) is continuous.

2.5.2. Rational rotation number. If f is hyperbolic, then the continuity of τ̄ f at
0 follows directly from Theorem 2.2.

Let us assume f has at least one parabolic cycle. We will only prove that

lim
ω>0,ω→0

τ̄ f (ω) = p

q
= τ̄ f (0).

Applying this result to the diffeomorphism x 7→ − f (−x) yields

lim
ω<0,ω→0

τ̄ f (ω) = p

q
= τ̄ f (0).

There are three different cases.

1. All q-periodic orbits of f disappear as ω increases, so that, rot( fω) > p/q
for ω > 0. In this case, the proof is literally the same as in the case of
irrational rotation number.

2. At least one parabolic cycle of f bifurcates into real hyperbolic cycles. In
this case, the multipliers of these real hyperbolic cycles tend to 1 as ω
tends to 0. The result follows from Lemma 2.4.

3. All parabolic cycles of f bifurcate into complex conjugate cycles as ω> 0
increases but the rotation number stays unchanged because f has hyper-
bolic cycles.

The rest of the Section is devoted to the treatment of the third case.

LEMMA 2.12. Under the assumptions of case (3) above, the curve τ̄ f (ω) is tangent

to the segment
[

p
q , p

q +ε
)
⊂ R/Z; moreover, it is located between two horocycles

tangent to R/Z at p
q .

Proof. According to Lemma 2.4, we know that for ω > 0 close to ω, τ̄ f (ω) re-
mains in a subdisk of H/Z tangent to the real axis at p/q . So, it is enough to
prove that q τ̄ f (ω) tends to 0 tangentially to the segment [0,ε) ∈ R/Z and is lo-
cated in between two horocycles tangent to R/Z at the point 0.



16 XAVIER BUFF AND NATALIYA GONCHARUK

According to Lemma 2.9, the hyperbolic distance in H/Z between q τ̄ f (ω) and
−1/σ (where σ = σω depends on ω) is uniformly bounded as ω > 0 tends to 0.
So, it is enough to show that the imaginary part of σω is bounded and that the
real part of σω tends to −∞.

Now we recall the definition of σ, and at the same time we introduce some
notation. This new notation is similar to that of Section 2.2. The main difference
is, that f is not hyperbolic.

Let m be the number of attracting hyperbolic cycles of f and order cyclically
the hyperbolic periodic points α j , j ∈Z/(2mq)Z. For each j ∈Z/(2mq)Z, let x j

be a point in (α j ,α j+1), so that

• f (x j ) ∈ (α j+2pm , x j+2pm) if the orbit of α j attracts (i.e. j is even) and
• f (x j ) ∈ (x j+2pm ,α j+2pm+1) if the orbit of α j repels (i.e. j is odd).

Note that since the parabolic cycles disappear as ω> 0 increases, the graph of
f ◦q − id lies above the diagonal near those points. As a consequence, each par-
abolic periodic point lies in an interval of the form (α j ,α j+1) with α j repelling
and α j+1 attracting.

For ω > 0 close enough to 0, fω has a hyperbolic point α j (ω) close to α j .
We denote by ρω, j the corresponding multiplier and by φω, j the corresponding
linearizing map. Finally, using the points x j chosen above which do not depend
on ω, set

r̃ω, j :=
logφ−1

ω, j (x j )

logρω, j
, s̃ω, j :=

log |φ−1
ω, j (x j−1)|

logρω, j
+ iπ

| logρω, j |
and

σω := ∑
j∈Z/(2mq)Z

s̃ω, j − r̃ω, j .

This definition agrees with the notation of Lemma 2.9.
Now, we prove that the imaginary part of σω is bounded and that the real

part of σω tends to −∞.
Since

Im(r̃ω, j ) = 0 and Im(s̃ω, j ) −→
ω>0,ω→0

Im(s̃ j ),

we see that the imaginary part remains bounded as ω> 0 tends to 0.
If f has no parabolic periodic point on the interval (α j ,α j+1), then φ−1

ω, j →
φ−1

j on the interval (α j ,α j+1). It follows that Re(r̃ω, j ) and Re(s̃ω, j+1) remain
bounded. If f has a parabolic periodic point on the interval (α j ,α j+1), then
α j is repelling and α j+1 is attracting. Either the two quantities logφ−1

ω, j (x j ) and

log |φ−1
ω, j+1(x j )| tend to +∞, or one remains bounded and the other tends to +∞.

Since logρω, j → logρ j > 0 and logρω, j+1 → logρ j+1 < 0, in both cases,

Re(s̃ω, j+1 − r̃ω, j ) −→
ω>0,ω→0

−∞.

As announced in the introduction, we derive the existence of orientation
preserving analytic circle diffeomorphisms f for which τ f fails to be univalent.
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COROLLARY 2.13. Assume that x − f (x) has two local maxima at points x1 and
x2 with x1 − f (x1) 6= x2 − f (x2). Then, τ f is not injective.

Proof. Let y1 and y2 be the respective values of x − f (x) at x1 and x2. Suppose
that y1 < y2. Then the map fω for y1 < ω < y2 has zero rotation number, and
it has parabolic fixed points for ω = y1 and ω = y2. When ω increases from y1

to y1 + ε, the parabolic fixed point disappears, thus due to Lemma 2.12, the
curve ω 7→ τ̄ f (ω) is tangent to [y1, y1 + ε). When ω < y2 tends to y2, the two
hyperbolic fixed points merge into a parabolic fixed point. Thus, according to
Lemma 2.4, the curve ω 7→ τ̄ f (ω) enters any horocycle as ω < y2 tends to y2.
But if τ f were injective, the pair of germs of the curve τ̄ f |R/Z at y1 and y2 (both
passing through 0) would be oriented clockwise. The contradiction shows that
τ f is not injective in the upper half-plane.

2.6. Proof of the Main Theorem. The map

C/Z 3 z 7→ exp(2πiz) ∈C− {0}

is an isomorphism of Riemann surfaces. It conjugates τ f : H/Z→H/Z to a holo-

morphic function g : D−{0} →D−{0} and τ̄ f : R/Z→H/Z to a continuous func-

tion h : ∂D→D. Since g is bounded, it extends holomorphically at 0. According
to the previous study,

for almost every t ∈R/Z, lim
r→1,r<1

g (r e2πit ) = h(e2πit ).

The Main Theorem is therefore a consequence of the following classical result.

LEMMA 2.14. Let g : D→C be a bounded holomorphic function and h : ∂D→C

be a continuous function such that:

for almost every t ∈R/Z, lim
r→1,r<1

g (r e2πit ) = h(e2πit ).

Then, h extends g continuously to D.

Proof. The real and imaginary parts of g are harmonic functions. Due to the
Poisson formula (applied to both Re g and Im g ) for |z| < r we have

g (z) = 1

2π

∫ 2π

0
g (r e iα)P (r e iα, z) dα,(2.1)

where P is the Poisson kernel,

P (r e iα,Re iβ) = r 2 −R2

r 2 +R2 −2r R cos(α−β)
.

The integrand in (2.1) is bounded as r tends to 1, and it tends to h(e iα)P (e iα, z)
almost everywhere. Due to the Lebesgue bounded convergence theorem,

g (z) = 1

2π

∫ 2π

0
h(e iα)P (e iα, z) dα.
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Due to the Poisson theorem, the right-hand side provides the solution of the
Dirichlet boundary problem for Laplace equation. Thus Re g and Im g satisfy

lim
z→e iα

Re g (z) = Reh(e iα), lim
z→e iα

Im g (z) = Imh(e iα).

APPENDIX A. BEHAVIOR OF τ f NEAR +i∞
Here, we study the behavior of τ f (ω) as the imaginary part of ω tends to +∞.

The map C/Z 3 z 7→ exp(2πiz) ∈C− {0} is an isomorphism of Riemann surfaces.
Thus, C/Z may be compactified as a Riemann surface C/Z isomorphic to the
Riemann sphere, by adding two points +i∞ anf −i∞ (the notation suggests that
±i∞ is the limit of points z ∈C/Z whose imaginary part tends to ±∞). We shall
denote by

H±/Z=H±/Z∪R/Z∪ {±i∞ }

the closure of H±/Z in C/Z.
The following construction is usually referred to as conformal welding. It is

customarily studied in the case of non-smooth circle homeomorphisms and is
trivial in the case of analytic circle diffeormorphisms.

The analytic circle diffeomorphism f may be viewed as an analytic diffeo-
morphism between the boundary of H+/Z and the boundary of H−/Z. If we
glue H+/Z to H−/Z via f , we obtain a Riemann surface which is isomorphic
to C/Z. We may choose the isomorphism φ such that φ(±i∞) =±i∞. Such an
isomorphism is not unique, but it is unique up to addition of a constant in
C/Z. It restricts to univalent maps φ± : H±/Z→ C/Z which extend univalently
to neighborhoods of H±/Z and satisfy φ− ◦ f =φ+ near the boundary of H+/Z.

Holomorphy of φ± near ±i∞ yields that

φ±(z) = z +C±+o(1) as z →±i∞
for appropriate constants C± ∈C/Z. Since φ is unique up to addition of a con-
stant, the difference

C f :=C+−C−

only depends on f and will be referred as the welding constant of f .

PROPOSITION A.1. Let f : R/Z→R/Z be an orientation preserving analytic circle
diffeomorphism and let C f be its welding constant. As ω tends to +i∞ in C/Z,

τ f (ω) =ω+C f +o(1).

The proof goes as follows.

Step 1. The isomorphism between the complex torus E( fω) and Eτ f (ω) induces
a univalent map φω : Aω → C/Z which extends univalently to a neighborhood
of the closed annulus Aω, with φω( fω) =φω+τ f (ω) in a neighborhood of R/Z.

Step 2. As ω→+i∞, the sequence of univalent maps

φ+
ω : z 7→φω(z)−φω(0)
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converges locally uniformly in H+/Z to a limit φ+ : H+/Z→ C/Z, and the se-
quence of univalent maps

φ−
ω : z 7→φω(z +ω)−φω

(
f (0)+ω)

converges locally uniformly in H−/Z to a limit φ− : H−/Z→C/Z. In addition, the
maps φ± : H+/Z→C/Z form a pair of univalent maps provided by the welding
construction.

Step 3. Comparing constant Fourier coefficients of φω, φ+ and φ−, we deduce
that as ω→+i∞, we have

C++φω(0) =−ω+C−+φω
(

f (0)+ω)+o(1),

whence

τ f (ω) =φω
(

f (0)+ω)−φω(0) =ω+C+−C−+o(1) =ω+C f +o(1).

A.1. The map φω. Let δ > 0 be sufficiently tiny so that f : R/Z→ R/Z extends
univalently to the annulus Bδ := { z ∈C/Z | δ> | Im(z)| }. Set

A+
ω := Aω∪Bδ∪

(
ω+ f (Bδ)

)
.

The complex torus E( fω) is the quotient of A+
ω where z ∈ Bδ is identified to

fω(z) ∈ f (Bδ)+ω.
An isomorphism between E( fω) and Eτ :=C/(Z+τZ) sending the homotopy

class of R/Z in E( fω) to the homotopy class of R/Z in Eτ f (ω) will lift to a univa-
lent map φω : A+

ω→C/Z sending R/Z to a curve homotopic to R/Z, preserving
orientation. The following relation then holds on Bδ:

φω( fω) =φω+τ f (ω).

A.2. Convergence of φ±
ω. As ω→+i∞, the open sets A+

ω eat every compact sub-
set of H+/Z∪Bδ. The sequence of univalent maps φ+

ω : A+
ω→C/Z defined by

φ+
ω(z) :=φω(z)−φω(0)

is normal and any limit value φ+ : H+/Z∪Bδ satisfies φ+(0) = 0. It cannot be
constant since each φ+

ω sends R/Z to a homotopically nontrivial curve in C/Z
passing through 0. So, any limit value φ+ : H+/Z∪Bδ→C/Z is univalent.

Similarly, as ω→+i∞, the open sets

A−
ω :=−ω+ A+

ω

eat every compact subset ofH−/Z∪ f (Bδ). In addition, the sequence of univalent
maps φ−

ω : A−
ω→C/Z defined by

φ−
ω(z) :=φω(z +ω)−φω

(
f (0)+ω)

is normal and any limit value φ− : H/Z∪ f (Bδ) →C/Z is univalent and satisfies
φ−(

f (0)
)= 0.

Passing to the limit on the following relation, valid on Bδ:

φ−
ω ◦ f (z) =φω

(
f (z)+ω)−φω

(
f (0)+ω)

=φω(z)+τ f (ω)−φω
(

f (0)+ω)=φω(z)−φω(0) =φ+
ω(z),



20 XAVIER BUFF AND NATALIYA GONCHARUK

we get the following relation, valid on Bδ:

φ− ◦ f =φ+.

It follows that the pair (φ−,φ+) induces an isomorphism from
(

A+
ωt A−

ω

)
/ f

(we identify z ∈ Bδ ⊆ A+
ω to f (z) ∈ f (Bδ) ⊆ A−

ω) to C/Z. Therefore, φ− and φ+
coincide with the unique isomorphisms arising from the welding construction,
normalized by the conditions φ+(0) =φ−(

f (0)
)= 0. This uniqueness shows that

there is only one possible pair of limit values. Thus, the sequences φ−
ω : A−

ω →
C/Z and φ+

ω : A+
ω→C/Z are convergent.

A.3. Comparing Fourier coefficients. Note that z 7→ φ±
ω(z)− z and z 7→ φ±(z)

are well-defined on R/Z with values in C. The previous convergence implies:

C+
ω :=

∫
R/Z

(
φ+
ω(z)− z

)
dz −→

ω→+i∞
C+ :=

∫
R/Z

(
φ+(z)− z

)
dz

and

C−
ω :=

∫
R/Z

(
φ−
ω(z)− z

)
dz −→

ω→+i∞
C− :=

∫
R/Z

(
φ−(z)− z

)
dz.

Since φω is holomorphic on A+
ω, we have∫

R/Z

(
φω(z)− z

)
dz =

∫
ω+R/Z

(
φω(z)− z

)
dz =

∫
R/Z

(
φω(t +ω)− t

)
dt −ω.

Thus,

C+
ω :=

∫
R/Z

(
φ+
ω(z)− z

)
dz

=
∫
R/Z

(
φω(z)− z

)
dz −φω(0)

=
∫
R/Z

(
φω(t +ω)− t

)
dt −ω−φω(0)

=
∫
R/Z

(
φ−
ω(t )− t

)
dt −ω+φω

(
f (0)+ω)−φω(0) =C−

ω −ω+τ f (ω).

As ω→+i∞, we therefore have

C++o(1) =C−+o(1)−ω+τ f (ω)

which yields
τ f (ω) =ω+C+−C−+o(1) =ω+C f +o(1).
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