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On weighted Blaschke–Santaló

and strong Brascamp–Lieb inequalities

Andrea Colesanti, Alexander Kolesnikov, Galyna Livshyts, Liran Rotem

Abstract

In this paper, we study new extensions of the functional Blaschke-Santaló inequalities, and explore
applications of such new inequalities beyond the classical setting of the standard Gaussian measure. In
particular, we study functionals of the type

(

∫

Rn

e
−Φ

dx
) 1

p
(

∫

Rn

e
− 1

p−1
Φ∗(∇V )

dx
)

p−1
p

, (1)

where p > 1 and V is a p-homogeneous convex even function. The function Φ is assumed to be convex
and even.

In particular, we prove that maximizers of (1) are p-homogeneous and solve an equation of the Monge–
Ampère type appearing in the Lq-Minkowski problem. This gives a novel mass-transport approach to
Blaschke-Santaló inequality, which is of independent interest even in the classical setting. We find
sufficient conditions for Φ = V to be the maximizer of (1). In particular, these conditions are satisfied if
V = |x|pq , where p ≥ q ≥ 2 and | · |q is the lq-norm. We prove that in general V fails to be the maximizer.

In addition, we prove that any maximizer of (1) satisfies a strong version of the Brascamb–Lieb

inequality on the set of even functions. In particular, if V is the maximizer of (1), then µ = e−V dx∫
e−V dx

satisfies the following strengthening of the Brascamp–Lieb inequality on the set of even functions:

Varµf ≤ λ

∫

Rn

〈(D2
V )−1∇f,∇f〉dµ (2)

with the sharp value λ = 1− 1
p
. We also estimate the best constant λ < 1 in (2) for probability measures

of the form µ = Ce−c|x|pqdx for various values of p and q.

1 Introduction

The Blaschke–Santaló inequality
|K||Ko| ≤ |Bn

2 |2 (3)

discovered in the beginning of XXth century by W. Blaschke in dimensions n = 3 and proved later by
L. Santaló [60] for n > 3, is one of the fundamental and most celebrated results in convex geometry. Here
K ⊂ Rn is a symmetric convex body, | · | is the n-dimensional volume, and

Ko = {y : 〈x, y〉 ≤ 1 ∀ x ∈ K}

is the corresponding polar body. The notation Bn
p stands for the unit lp-ball in R

n:

Bn
p =

{

x : |x|p =
(

n
∑

i=1

|xi|p
)

1
p ≤ 1

}

.

The standard lp-norm of vector x is denoted by |x|p. In the case p = 2 we omit subscript 2 and write |x|.
The classical proof of (3) goes via the Steiner symmetrization and the Brunn–Minkowski inequality see

e.g. Artstein-Avidan, Giannopolous, Milman [1], Campi, Gronchi [17], Meyer, Pajor [53]. An important
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feature of the volume product functional |K||Ko|, which appears on the left hand side of this inequality, is
its affine invariance: for any linear transformation T on Rn, we have

|K||Ko| = |T (K)||(T (K))o|.

A remarkable functional form of the Blaschke–Santaló inequality was discovered by K. Ball in [4]. Let Φ
be an arbitrary proper even function on R

n with values in (−∞,+∞] and

Φ∗(y) = sup
x∈Rn

(

〈x, y〉 − Φ(x)
)

be its Legendre transform. Then

∫

e−Φ(x)dx

∫

e−Φ∗(y)dy ≤ (2π)n. (4)

The equality holds if and only if Φ = a + 〈Ax, x〉 for some symmetric non-degenerate matrix A. This
result was later generalized by Artstein-Avidan, Klartag, Milman [2], Fradelizi, Meyer [29], [30], [31], Lehec
[49], Lin, Leng [50], Kolesnikov, Werner [48], Gozlan, Fradelizi, Sadovsky, Zugmeyer [28]. Stability of the
inequality has been studied by Böröczky [11]. A Fourier analytic proof is presented by Bianchi, Kelly [5].
A novel analytic approach (semigroups and a monotonicity property) to (4) is presented in the recent work
of Nakamura and Tsuji [56]. We remark that both (3) and (4) have a conjectured reverse form, referred
to as Mahler conjecture, which shall not be discussed in detail in this work. However, an intense research
activity has been carried out in relation to this conjecture; we refer the interested reader to Fradelizi, Meyer,
Zvavitch [32] and the references therein.

Recall that the standard Gaussian measure γ on Rn is the measure with the density (2π)−
n
2 e−

|x|2

2 . The
inequality (4) states that the functional

∫

e−Φ(x)dx

∫

e−Φ∗(y)dy

is maximized when Φ is the potential of a Gaussian measure (in particular, the standard one). Hence
the inequality (4) seems like a purely Gaussian phenomenon. However, Fradelizi and Meyer [29] extended
the formulation of (4) in a way so that other rotation-invariant measures appear as maximizers of similar
inequalities.

In this paper, we study a different possibility to extend the Blaschke-Santaló inequality, with the goal of
potentially getting a richer class of measures as maximizers of this type of functionals. Namely, we pose the
following questions.

Question 1.1. What are the maximizers for the generalized weighted Blaschke–Santaló functional

BSα,β,ρ1,ρ2(Φ) =
(

∫

e−αΦ(x)ρ1(x)dx
)

1
α
(

∫

e−βΦ∗(y)ρ2(y)dy
)

1
β

, α, β ∈ (0,+∞),

with symmetric weights ρ1, ρ2 on the set of even functions? Of interest are existence, uniqueness and charac-
terizations of the maximizers of BSα,β,ρ1,ρ2 , and especially situations when BSα,β,ρ1,ρ2 admits a closed-form
solution.

The setting of Question 1.1 is very general even for the problem of existence of maximizers. In the largest
part of this work we deal mainly with a particular case of the generalized Blaschke–Santaló functional. Let
p > 1 and let V be an even strictly convex p-homogeneous C2 function on Rn. We consider the functional

BSp,V (Φ) =

∫

e−Φ(x)dx

(∫

e−
1

p−1Φ
∗(∇V (y))dy

)p−1

.
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Note that BSp,V is a particular case of BSα,β,ρ1,ρ2 , because after the change of variables z = ∇V (y) it can
be rewritten as

BSp,V (Φ) =

∫

e−Φ(x)dx

(∫

e−
1

p−1Φ
∗(z) det(D2V ∗(z))dz

)p−1

.

A remarkable property of BSp,V is the following homogeneity invariance:

BSp,V (Φ(tx)) = BSp,V (Φ(x))

for all Φ and t > 0. Another important property of BSp,V is that the function V (more generally V (tx))
is a natural candidate to be a maximizer. Indeed, this hint comes from the observation that V satisfies the
corresponding Euler–Lagrange equation for the minimization problem defining BSp,V (see Proposition 7.2).
Thus the following question appears naturally.

Question 1.2. Let p > 1 and let V be an even strictly convex p-homogeneous C2 function on Rn. Under
which conditions do we have

∫

e−Φ(x)dx

(∫

e−
1

p−1Φ
∗(∇V (y))dy

)p−1

≤
(∫

e−V (x)dx

)p

, (5)

for an arbitrary proper convex even function Φ on R
n with values in (−∞,+∞]?

As we shall explain in Section 6 (following the ideas of Artstein-Avidan, Klartag, Milman [2]), inequality
(5) of Question 1.2 is equivalent to certain Blaschke–Santaló type inequality for sets.

Proposition 1.3. Let p > 1 and let V be an even strictly convex p-homogeneous C2 function on Rn.
Inequality (5) holds for arbitrary convex proper function Φ if and only if inequality

|K| · |∇V ∗(Ko)|p−1 ≤
∣

∣

∣

∣

{

V ≤ 1

p

}∣

∣

∣

∣

p

(6)

holds for arbitrary compact convex body K.
If inequality (6) holds, then equality is attained when K is a level set of V : K = {V ≤ α}.
Unfortunately, one can not hope for the affirmative answer to Question 1.2 in too great a generality. To

see this, in view of Proposition 1.3, consider V (x) = |x|pp with p ∈ [1, 2]. In this case, (6) states that the
maximizer of the functional

|K|
(

∫

Ko

n
∏

i=1

|xi|
2−p
p−1 dx

)p−1

among all symmetric convex sets is K = 1
pB

n
p . In the limiting case p → 1, this would be equivalent to the

inequality

|K| sup
x∈Ko

n
∏

i=1

|xi| ≤ |Bn
1 | sup

x∈Bn
∞

n
∏

i=1

|xi| =
2n

n!
.

However, this is false: if we let v = e1 + ... + en, and K
o
R = [−Rv,Rv] + Bn

2 (which, for large R, is a long
needle-like body pointing in the direction of v), then

lim
R→∞

(

|KR| sup
x∈Ko

R

n
∏

i=1

|xi|
)

= ∞.

Remark 1.4. It seems to be of independent interest to find minimizers and maximizers of the functional

inf
T∈GLn



|T (K)|
(

∫

[T (K)]◦

n
∏

i=1

|xi|
2−p
p−1 dx

)p−1


 ,

since this may provide an interesting novel extension of the Blaschke-Santaló inequality which has not been
previously studied.
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In a similar manner, one may see that the lack of affine invariance of the functional BSp,V makes (5)
hopeless in many situations. See Section 5.4 for more details and other counterexamples. Nevertheless, in
the following Theorem we were able to obtain some sufficient conditions for (5).

Theorem A. Let p > 1 and let V be an even strictly convex p-homogeneous C2 function on Rn. Assume
that V is an unconditional function, and that the function

x = (x1, . . . , xn) 7→ V
(

x
1
p

1 , ..., x
1
p
n

)

is concave in
R

n
+ = {(x1, . . . , xn) : xi ≥ 0 ∀ i = 1, . . . , n}.

Then inequality (5) holds for every unconditional convex Φ.
Assume, in addition, that for every coordinate hyperplane H, with unit normal e, and for every x′ ∈ H,

the function ϕ : [0,+∞) → R defined by

ϕ(t) = detD2V ∗(x′ + te)

is decreasing. Then inequality (5) holds for every even convex Φ.

Corollary 1.5. Let V = c|x|pq , c ≥ 0. Then inequality (5) holds in the following cases:

1. For p ≥ q > 1 and unconditional Φ

2. For p ≥ q ≥ 2 and even Φ.

The proof of the “unconditional” part of Theorem A is based on the application of the Prékopa–Leindler
inequality in the unconditional case via a change of variables on Rn

+ (see e.g. Fradelizi, Meyer [29] for
another application of this idea). The general case follows by a symmetrization argument: we show that
Steiner symmetrization increases the value of the functional and reduce the problem to the unconditional
case.

In Section 5 we prove that under various assumptions of additional symmetries (for V and for Φ) the
left hand side of our inequality admits a non-degenerate maximizer. See, for instance, Theorem 5.4 for the
existence in the case of rotation-invariant weights while Φ is even, and Theorem 5.2 for the existence when
both the weights and Φ are assumed to be 1-symmetric. In particular, in Section 4 we use symmetrization
techniques to show existence and various properties of such maximizers.

From our perspective, one of the most exciting aspects of this work is the novel mass transport approach
to proving the classical Blaschke-Santaló inequality. The starting point for our mass transport approach is
an observation, going back to [48], that any maximizer Φ for the Blaschke–Santaló functional is a solution
for a nonlinear PDE of the Monge–Ampère type.

Theorem 1.6 ([48]). Let α, β > 0, and let ρ1, ρ2 be positive even functions. Assume that Φ is a maximum
point of the functional BSα,β,ρ1,ρ2 . Then ∇Φ is the optimal transportation pushing forward µ onto ν, where

dµ =
e−αΦρ1dx
∫

e−αΦρ1dx
, dν =

e−βΦ∗

ρ2dy
∫

e−βΦ∗ρ2dy
.

This result implies, in particular, that Φ solves the following nonlinear PDE of the Monge–Ampère type.

e−αΦ

∫

e−αΦρ1dx
ρ1 =

e−βΦ∗(∇Φ)

∫

e−βΦ∗ρ2dy
ρ2(∇Φ)detD2Φ. (7)

Of course, there is no hope to find a closed-form solution for this equation for general ρ1, ρ1. However,
in some particular cases there exists a natural candidate, as is demonstrated by our results. For the case
α = β = 1, ρ1 = ρ2 = 1 this equation was already studied in [48]. It was proved there that under additional
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regularity assumptions all solutions to equation (7) are positive quadratic forms: Φ(x) = 〈Ax, x〉. This would
not prove the classical Blaschke–Santaló inequality, unless we know a priori that any solution to

e−αΦ

∫

e−αΦdx
=
e−βΦ∗(∇Φ)

∫

e−βΦ∗dy
detD2Φ (8)

is sufficiently regular; in this paper we prove that any solution to (8) (understood in the mass transportation
sense) is indeed regular, which gives, in particular, a transportation proof of the functional Blaschke–Santaló
inequality (4) (see Remark 7.13).

When trying to extend these arguments to other cases, we face the difficulty that Monge–Ampère equation
(7) may have many solutions. Indeed, let us consider the functional BSp,V . We prove the following result.

Theorem B. Let V be convex and p-homogeneous. Then any maximum point Φ of the functional BSp,V

satisfying Φ(0) = 0 is p-homogeneous.

Using homogeneity one can reduce equation for the maximizer of BS1,V to a Monge–Ampère equation
on the unit sphere. More precisely, we get that it is equivalent to the so-called Lq-Minkowski problem for
some corresponding q(p, n). The latter is the following non-linear elliptic problem on the sphere: given a
measure µ = fdx on S

n−1 solve equation of the type

h1−q det(hij + hδij) = f. (9)

Uniqueness of solution to (9) would provide a natural way of establishing affirmative answer to Question
1.2. Unfortunately, it is known that in general equation (9) has many (even infinitely many) solutions for
those values of q which are of interest for us. For instance, for p = 2 we get q = −n and this is the so-called
centro-affine Minkowski problem. We refer to [18], [33], [36], [57] for examples of non-uniqueness. It is known
that uniqueness in Minkowski problem is closely related to the conjectured Lp-Brunn–Minkowski inequality.
See, in particular, seminal paper [13] about log-Brunn–Minkowski inequality. Some uniqueness results via
Lp-Brunn–Minkowski inequality can be found in [47], [34], [35]. More information the reader can find in the
recent book [12]. See Subsection 7.5 for details.

Let us now discuss some possible motivations for studying the aforementioned questions. The inequality
(4) is related to many other important and interesting results, such as the Reverse Log-Sobolev inequality
of Artstein-Avidan, Klartag, Schütt, Werner [3] (see also Caglar, Fradelizi, Gozlan, Lehec, Schütt, Werner
[15]), and the generalized Talagrand’s Transport-Entropy inequality due to Fathi [24]. Therefore one would
hope that our results pave the way to discovering this type of phenomena also beyond the Gaussian setting.

In order to explain a particularly important motivation, let us recall the connection of the Blaschke-
Santaló inequality to the sharp symmetric Gaussian Poincaré inequality. Inequality (4) implies that for any
t > 0 and any even f ∈ C2(Rn), the function

F (t) =

∫

e−( x2

2 +tf(x))dx

∫

e−(y2

2 +tf(y))∗(y)dy

is maximized at t = 0.
One may thus check that F ′(0) = 0 and deduce that F ′′(0) ≤ 0. Computing F ′′(0) we obtain the

“symmetric Gaussian Poincare inequality”: for any even locally-Lipschitz function f : Rn → R, one has

∫

f2dγ −
(∫

fdγ

)2

≤ 1

2

∫

|∇f |2dγ. (10)

(see more details e.g. at [51]). This fact can be also proven using Hermite polynomial decomposition, and
in many other ways – see e.g. Cordero-Erausquin, Fradelizi, Maurey [20].

Using an analogous variational argument, one can get
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Proposition 1.7. Let Φ be the maximum point of BSα,β,ρ1,ρ2 . Then µ = e−αΦρ1dx∫
e−αΦρ1dx

satisfies

Varµf ≤ 1

α+ β

∫

〈(D2Φ)−1∇f,∇f〉dµ.

The result of Proposition 1.7 (for ρ1 = 1) is an improvement of the Brascamp–Lieb inequality for maxi-
mizers of the Blaschke–Santaló functional on the set of even functions. Recall that a log-concave probability
measure

dµ =
e−V dx
∫

e−V dx

satisfies the famous Brascamp–Lieb inequality (see [14])

Varµf ≤
∫

〈(D2V )−1∇f,∇f〉dµ

for any smooth (in general, not symmetric) f , under the assumption that V ∈ C2(Rn) and D2V (x) is positive
definite for every x. The last inequality can be viewed as the infinitesimal version of the Prékopa–Leindler
inequality (see [6]). The Brascamp–Lieb inequality is sharp with equality case f = Vxi

.
Can be the Brascamp–Lieb inequality improved on the set of even functions in the spirit of inequality

(10)? One of the motivation for this question comes from the attempts to solve the so-called B-conjecture
(see [20]). In particular, it was shown in [23] that the following inequality is equivalent to the B-conjecture:

1

µ(K)

∫

K

〈∇V, x〉2dµ−
( 1

µ(K)

∫

K

〈∇V, x〉dµ
)2

≤ 1

µ(K)

∫

K

(〈∇V, x〉 + 〈∇2V x, x〉)dµ,

where K is an arbitrary even symmetric convex set. The latter inequality can be viewed as a particular
case of a strengthening of the Brascamp–Lieb inequality for measure 1

µ(K)IK · µ for specific function f(x) =

〈∇V (x), x〉.
A reasonable guess of what can be the strengthening of the Brascamp–Lieb inequality is the following:

let V be a p-homogeneous even convex function and µ = e−V dx∫
e−V dx

. Is it true that for every even function f

the following holds?

Varµf ≤
(

1− 1

p

)

∫

〈(D2V )−1∇f,∇f〉dµ. (11)

Note that the conjectured inequality turns to be equality for f(x) = 〈∇V (x), x〉 = pV (x).
As a consequence of Proposition 1.7 together with Theorem A, we derive the following strengthening of

the Brascamp-Lieb inequality:

Corollary 1.8. Let p > 1 and let V be an even strictly convex p-homogeneous C2 function on Rn. Assume
that V is an unconditional function, and that the function

x = (x1, . . . , xn) 7→ V
(

x
1
p

1 , ..., x
1
p
n

)

is concave in R
n
+. Then inequality (11) holds for every unconditional f .

Assume, in addition, that for every coordinate hyperplane H, with unit normal e and for every x′ ∈ H,
the function ϕ : [0,+∞) → R defined by

ϕ(t) = detD2V ∗(x′ + te)

is decreasing. Then inequality (11) holds for every even f .

Similarly to generalized Blaschke–Santaló inequality, inequality (11) fails to hold for arbitrary convex
even p-homogeneous V . In Section 8 we study strengthening of the Brascamp–Lieb inequality for a specific
family of measures.
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Theorem C. Let p, q > 1. Consider probability measure µ such that

dµ = Ce−
1
p
|x|pqdx = Ce−

1
p

(∑n
i=1 |xi|q

)
p
q

dx,

where C ≥ 0. Assume that

λ ≥ max
(

1− 1

p
, 1− 1

q
,

1

2(1 + q−2
n )

)

.

Then inequality

Varµf ≤ λ

∫

〈(D2V )−1∇f,∇f〉dµ, (12)

holds on the set of even functions. This inequality is sharp and holds with λ = 1− 1
p in the following cases:

1.
q ≥ 2, p ≥ q,

2.

q ≤ 2, p ≥ 2(n+ q − 2)

n+ 2(q − 2)
= 2− 2(q − 2)

n+ 2(q − 2)
.

Note that statement (1) of Theorem C follows from Corollary 1.5 and Proposition 1.7. Moreover, we
prove the following result (see Subsection 8.2).

Proposition 1.9. Let 1 < p < 2 and µ = Ce−
1
p
|x|ppdx. Then the best value of λ in inequality (12) satisfies

λ > 1− 1
p . In particular, inequality (5) fails to hold in this case.

Remark 1.10. Let us stress the presence of a big discrepancy between the unconditional and symmetric

cases. Indeed, according to Theorem A inequality (5) holds for µ = Ce−
1
p
|x|ppdx and all p on the set of

unconditional functions.

To conclude the discussion on the strong Brascamp–Lieb inequality, let us describe the main steps in the
proof of Theorem C. First we make the change of variables pushing forward measure µ into a measure of the
form

n
∏

i=1

|yi|
2
p
−1 ·m0,

wherem0 is a rotationally invariant measure. Then using homogeneity we show that our problem is equivalent
to the spectral gap problem for the following operator on Sn−1:

Lf = ∆Sn−1f +
(2

p
− 1
)

〈ω,∇Sn−1f〉,

where ∆Sn−1 ,∇Sn−1 are the spherical Laplacian and the spherical gradient, respectively, and

ω =
( 1

y1
, · · · , 1

yn

)

.

Note that a complete orthogonal system of eigenfunctions for L contains non-elementary functions. This is
true even for n = 2, in this case the eigenfunctions (after appropriate change of variables) belong to the family
of Legendre functions, which are non-elementary in general. Fortunately, it turns out that the eigenfunctions
we need for establishing the sharp spectral gap estimate on the set of even functions are elementary and the
expressions for corresponding eigenvalues have simple algebraic form.

The paper is organised as follows. Section 2 contains preliminary material. In Section 3 we study
finiteness and continuity of the Blaschke–Santaló functional. Section 4 is devoted to the symmetrization
approach and symmetric properties of the maximizers. In Section 5 we discuss the existence of maximizers
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for the Blaschke–Santaló functional, we present some counterexamples, and we prove Theorem A (Theorems
5.19 and 5.21). In Section 6 we present the reduction to the convex body case. In Section 7 we outline the
mass transport approach to the Blaschke-Santaló inequality and prove Theorem B (Theorem 7.9). Finally,
in Section 8 we deal with the strong Brascamp-Lieb type inequalities and we prove Theorem C (Theorem
8.8).
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Program. The second author was supported by the project Disuguaglianze analitiche e geometriche, funded
by the Gruppo per Analisi Matematica la Probabilità e le loro Applicazioni. The third named author is
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grateful to the workshop “Geometric inequalities, Convexity and Probability” at BIRS IMAG in Granada,
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2 Preliminaries

As a rule we will omit the domain of integration of an integral if this domain is entire Rn:

∫

fdx :=

∫

Rn

fdx.

2.1 Convex bodies

By a convex body, we mean a convex and compact subset of Rn with non empty interior. Our main reference
for properties of convex bodies is the monograph [61]. Given a convex body K we shall consider its support
function hK : Rn → R defined by

hK(x) = max
y∈K

〈x, y〉.

The support function of a convex body is 1-homogeneous and convex.
The radial function ρK of a convex body K containing the origin, is defined, for x ∈ R

n, by

ρK(x) = sup{t > 0 : tx ∈ K}.

If K is an origin symmetric convex body, then ρK = h−1
Ko .

We also recall the Minkowksi functional of an origin symmetric convex body K:

|x|K = ρ−1
K (x) ∀ x ∈ R

n.

2.2 Convex functions

We will consider convex functions Φ: Rn → R ∪ {+∞}. The space of these functions will be denoted by
Conv(Rn), Our general references on convex functions are the monographs [58] and [59]. Given a convex
function Φ we define its domain as

dom(Φ) = {x ∈ R
n : Φ(x) < +∞}.

A convex function Φ is said proper if its domain is not empty, and coercive if

lim
|x|→∞

Φ(x) = +∞.

On the set of convex functions we fix the topology induced by epi-convergence. A sequence Φk, k ∈ N,
epi-converges to Φ if:
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(i)
lim inf
k→+∞

Φk(x) ≥ Φ(x),

for every x ∈ Rn;

(ii) for every x ∈ Rn there exists a sequence xk, k ∈ N, converging to x and such that

lim inf
k→+∞

Φk(xk) = Φ(x).

We note that for sequences of finite convex functions, epi-convergence to a finite convex function is
equivalent to uniform convergence on compact subsets of Rn.

2.3 The Legendre transform

Given a function Φ: Rn → R ∪ {+∞}, Φ 6≡ +∞, we denote by Φ∗ its conjugate, or Legendre transform,
which is defined as follows:

Φ∗(y) = sup
x∈Rn

(

〈x, y〉 − Φ(x)
)

, ∀ y ∈ R
n.

We collect some properties of the Legendre transform that will be used in this paper.

Proposition 2.1. The following properties hold.

• Φ is a finite convex function defined in Rn if and only if Φ∗ is a super-coercive convex function, that
is:

lim
|x|→∞

Φ∗(x)

|x| = ∞.

• a sequence Φk, k ∈ N, of finite convex functions defined in Rn epi-converges to a finite convex function
Φ if and only if the sequence Φ∗

k epi-converges to Φ∗.

Remark 2.2. Let A : R → R be an invertible linear map, and b ∈ R. Given a finite convex function Φ,
consider the function Φ̄ : Rn → R defined by

Φ̄(x) = Φ(Ax) + b.

Clearly Φ̄ is a finite convex function as well. Its conjugate verifies the relation:

Φ̄∗(y) = Φ∗(A−T y)− b, y ∈ R
n,

where A−T is the inverse of the transpose of A.

Further important properties of the Legendre transform are contained in the following statement.

Proposition 2.3 (Legendre transform of smooth functions). Let V ∈ C2(Rn) be such that D2V (x) is positive
definite for every x. Then the following properties hold, for every x.

1. V (x) + V ∗(∇V (x)) = 〈x,∇V (x)〉,

2. ∇V (∇V ∗(x)) = x, in other words ∇V ◦ ∇V ∗ = Id.

3. ∇2V ∗(∇V (x)) = (∇2V )−1(x).

9



2.4 Optimal transportation

Let us consider two probability measures µ and ν on Rn with finite second moments. We assume that both
measures are absolutely continuous with respect to the Lebesgue measure, and we denote their respective
densities by ρµ and ρν . According to the celebrated Brenier theorem (see [63], [9]) there exists a lower
semi-continuous convex function U such that ∇U pushes forward µ onto ν:

∫

f(∇U)dµ =

∫

fdν

for any test function f .
The mapping T : x → ∇U(x) is known as the optimal transportation mapping. Note that T is well

defined almost everywhere with respect to the Lebesgue measure, since U is almost everywhere differentiable
as a convex function.

The optimal transport mapping ∇U is µ-a.e. unique, meaning that if T1 = ∇U1 and T2 = ∇U2 are
pushing forward µ onto ν and U1, U2 are convex, then

T1 = T2

µ-almost everywhere.
The regularity of U is in general a difficult issue (see [25]). However for many purposes it is sufficient to

know only the validity of the following change of variables formula, which holds in the non-smooth setting
(see [63] and [52] for explanations):

ρµ(x) = ρν(∇U(x)) detD2
aU(x). (13)

where D2
aU is the absolutely continuous part of the distributional Hessian D2U – in particular, D2

aU is a
symmetric and positive semi-definite matrix. Equation (13) holds for µ-almost all x.

Another important instrument related to optimal transportation is the so called Hessian metric. As-
sume that ρµ, ρν are smooth and positive and U is smooth and strictly convex. We consider the following
Riemannian metric

g(x) = D2U(x),

and the corresponding Dirichlet form

E(f) =
∫

〈(D2U)−1∇f,∇f〉dµ.

The generator of E
Lf = Tr

[

(D2U−1D2f
]

− 〈∇f,∇W (∇U)〉
is a second-order elliptic differential operator, naturally related to (µ, ν, T ). L is symmetric with respect to
µ: if f, g are smooth and supported on compact sets lying inside of supp(µ), then

−
∫

Lfgdµ =

∫

〈(D2U)−1∇f,∇g〉dµ.

This metric and its applications to convex geometry has been studied in [44], [46], [39], [40], [41], [42], [43],
[45], [16]. Its counterpart on the sphere together with related elliptic operator (Hilbert operator) is a natural
instrument for studying Minkowski-type problems (see [47], [45], [54], [55], [34], [35]). Finally, we remark
that g is a particular (degenerated) example of a complex Kähler metric.
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3 Finiteness and continuity conditions for the Blaschke-Santaló
functional

Let µ1 and µ2 be non-negative Borel measures on Rn. We will assume that µ1 and µ2 are absolutely
continuous with respect to the Lebesgue measure, and denote by ρ1 and ρ2 their respective densities. We
study the functional

BSα,β,ρ1,ρ2(Φ) =
(

∫

e−αΦρ1dx
)

1
α
(

∫

e−βΦ∗

ρ2dy
)

1
β

,

where α, β are positive numbers.

Definition 3.1. We define C as the class of convex functions Φ verifying the following properties.

1. Φ: Rn → R ∪ {+∞};

2. Φ is even and
int(dom(Φ)) 6= ∅,

where “int” denotes the interior;

3.
lim

|x|→∞
Φ(x) = +∞.

Remark 3.2. It can be proved that Φ ∈ C if and only if Φ∗ ∈ C.
Definition 3.3. Let µ be a Borel measure on Rn. We say that µ is admissible if

1. µ is absolutely continuous with respect to the Lebesgue measure on R
n, and its density ρ is positive on

Rn;

2. there exist positive constants A,B, p such that

ρ(x) ≤ A+B|x|p

for every x ∈ Rn.

Proposition 3.4. Let µ1 and µ2 be admissible measures, with density ρ1 and ρ2 respectively. Then for every
Φ ∈ C,

0 <

∫

Rn

e−Φdµ1,

∫

Rn

e−Φ∗

dµ2 < +∞.

In particular
0 < BSα,β,ρ1,ρ2 < +∞.

Proof. As Φ ∈ C, its domain contains a neighborhood of the origin; hence e−Φ is continuous (by the continuity
of Φ in the interior of its domain) and strictly positive in a neighborhood of 0. As ρ1 is positive everywhere,
we obtain

0 <

∫

Rn

e−Φdµ1.

The condition

0 <

∫

Rn

e−Φ∗

dµ2

is obtained via the same argument, as Φ∗ ∈ C and µ2 is admissible.
As Φ ∈ C, lim|x|→∞ Φ(x) = +∞. This implies that there exist a ∈ R and b > 0 such that Φ(x) ≥ a+ b|x|

for every x ∈ Rn (see for instance [19, Lemma 8]). By the growth condition verified by ρ1, we get
∫

Rn

e−Φdµ1 < +∞.
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In a similar way
∫

Rn

e−Φ∗

dµ2 < +∞

can be proved.

We will now show a continuity property of our functional.

Proposition 3.5. Let µ1 and µ2 be admissible measure with density ρ1 and ρ2, respectively. Let Φ, Φk,
k ∈ N, belong to C. Assume that Φk epi-converges to Φ. Then

lim
k→∞

BSα,β,ρ1,ρ2(Φk) = BSα,β,ρ1,ρ2(Φ).

Proof. As Φk, k ∈ N, and Φ are coercive, and Φk epi-converges to Φ, there exist a > 0 and b ∈ R such that

Φk(x) ≥ a|x|+ b (14)

for every x ∈ Rn and for every k ∈ N, and the same property is verified by Φ (see for instance [19, Lemma
8]). Moreover, as Φk epi-converges to Φ, Φk(x) converges to Φ(x) for every x in the interior of dom(Φ). On
the other hand, if x 6= dom(Φ), then

lim
k→+∞

Φk(x) = +∞ = Φ(x).

As the boundary of dom(Φ∗) has zero Lebesgue measure, we conclude that

lim
k→+∞

e−Φk(x) = e−Φ(x)

for almost every x ∈ R
n. By (14) and the dominated convergence theorem, we obtain

lim
k→+∞

∫

Rn

e−Φkdµ1 =

∫

Rn

e−Φdµ1.

Next, note that Φ∗
k epi-converges to Φ∗; moreover Φ∗ and Φ∗

k, k ∈ N, belong to C. Therefore, we may repeat
the same considerations of the previous part of this proof, and deduce that

lim
k→+∞

∫

Rn

e−Φ∗
kdµ2 =

∫

Rn

e−Φ∗

dµ2.

Finally, as Φ and Φ∗ belong to C,

0 <

∫

Rn

e−Φdµ1,

∫

Rn

e−Φ∗

dµ2 <∞.

This concludes the proof.

4 Symmetrization

The symmetrization technique is the main tool for proving inequality of the Blaschke–Santaló type, it is
therefore not surprising that they can be used also in the functional version of this result.

To symmetrize a function Φ we apply Steiner symmetrization to its level sets. It is a standard observation
that the symmetral ΦH (where H is the hyperplane with respect to which we symmetrize) has the same
distribution as Φ, thus the value of the integral

∫

e−Φdx is preserved under symmetrization. Moreover, we
will show that under some natural assumptions on density ρ1 (ρ1 must be in a sense decreasing) the value of

∫

e−Φρ1dx

12



is increasing under symmetrization. In addition, the value of
∫

e−Φ∗

ρ2dx

is increasing under symmetrization as well, if ρ2 is log-concave and admits appropriate symmetries.

Let H be a hyperplane of Rn, passing through the origin. Given a convex set C ⊂ Rn, we denote by CH

the Steiner symmetral of C, with respect to H
Let Φ be a convex and coercive function defined in Rn. We denote by ΦH the Steiner symmetral of Φ

with respect to H . One way of defining ΦH is through its level sets:

{x : ΦH(x) ≤ s} = ({x : Φ(x) ≤ s})H , ∀ s ∈ R

(with the convention that the Steiner symmetral of the empty set is the empty set).

4.1 Monotonicity results for
∫

Rn e
−Φ

∗
dµ

The main result of this part is the following theorem.

Theorem 4.1. Let H be an hyperplane passing through the origin in R
n. Let µ = ρdx be a log-concave

measure in Rn. Assume that
ρ(te + y) = ρ(te − y) (15)

for every t ∈ R and y ∈ H, where e is a normal unit vector to H. Then for every even, proper, coercive
convex function Φ defined on Rn, we have

∫

Rn

e−Φ∗

dµ ≤
∫

Rn

e−(ΦH)∗dµ.

We proceed with some corollaries. The next statements follow from Theorem 4.1 applied to the Lebesgue
measure, and more generally to radially symmetric log-concavemeasures, and to measures with unconditional
density.

Corollary 4.2. Let Φ: Rn → (−∞,∞] be convex, even and coercive. Then, for every hyperplane H,
∫

Rn

e−Φ∗(x)dx ≤
∫

Rn

e−(ΦH)∗(x)dx.

Corollary 4.3. Let µ be a log-concave measure on Rn, with a radially symmetric density with respect to the
Lebesgue measure. Let Φ: Rn → (−∞,∞] be convex, even and coercive. Then, for every hyperplane H,

∫

Rn

e−Φ∗

dµ ≤
∫

Rn

e−(ΦH)∗dµ.

For the next result, we say that a function ρ : Rn → R is unconditional, if

ρ(x1, . . . , xn) = ρ(±x1, . . . ,±xn)

for every choice of the signs + and − on the right hand side. This is equivalent to say that the graph of ρ is
symmetric with respect to each coordinate hyperplane. Note that, if ρ is unconditional and H is a coordinate
hyperplane, then condition (15) is verified.

Corollary 4.4. Let µ be a log-concave measure on Rn, with unconditional density with respect to the Lebesgue
measure. Let Φ: Rn → (−∞,∞] be convex, even and coercive. Then, for every coordinate hyperplane H,

∫

Rn

e−Φ∗

dµ ≤
∫

Rn

e−(ΦH)∗dµ.
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4.1.1 Proof of Theorem 4.1

The idea of the proof of Theorem 4.1 is inspired by the argument of Meyer and Pajor in [53].
Given a function f : Rn → (−∞,+∞], we denote by epi(f) its epigraph:

epi(f) = {(x, z) ∈ R
n+1 : z ≥ f(x)}.

Lemma 4.5. Let Φ be a proper convex function defined in Rn. Then

epi(Φ∗) = {(y, w) ∈ R
n × R : w + z ≥ 〈x, y〉, ∀ (x, z) ∈ epi(Φ)}.

Proof. Let
X = {(y, w) ∈ R

n ×R : w + z ≥ 〈x, y〉, ∀ (x, z) ∈ epi(Φ)}.
Let (y, w) ∈ epi(Φ∗); then

w ≥ Φ∗(y) = sup
x
〈y, x〉 − Φ(x),

whence
w +Φ(x) ≥ 〈y, x〉 ∀x.

If z ≥ Φ(x), then
w + z ≥ 〈y, x〉.

This proves that (y, w) ∈ X . Assume now that (y, z) ∈ X . Then, for every x ∈ R
n,

w +Φ(x) ≥ 〈y, x〉,

so that
w ≥ sup

x
〈y, x〉 − Φ(x) = Φ∗(y).

This proves that (y, z) ∈ epi(Φ∗).

In the sequel, we choose a coordinate system so that

H = {x = (x1, . . . , xn) ∈ R
n : xn = 0}.

The points of Rn will be written in the form

(X, x) ∈ H × R or (Y, y) ∈ H × R.

Similarly, the points of Rn+1 will be written as

(X, x, z) ∈ H × R× R or (Y, y, w) ∈ H × R× R.

We also set
H ′ = {(X, 0, z) : X ∈ H, z ∈ R} ⊂ R

n+1.

Given the function Φ as in the statement of Theorem 4.1, we denote by PΦ the orthogonal projection of
epi(Φ) onto H ′. We also note that the epigraph of ΦH is the Steiner symmetral of the epigraph of Φ with
respect to H ′:

epi(ΦH) = (epi(Φ))H′ .

We have

epi(ΦH) =

{

(X, x, z) : (X, z) ∈ PΦ, x =
x2 − x1

2
, (X, x1, z), (X, x2, z) ∈ epi(Φ)

}

.

From Lemma 4.5 we know that

epi(Φ∗) = {(Y, y, w) : zw ≥ 〈X,Y 〉+ zw, ∀ (X, x, z) ∈ epi(Φ)}.

14



Clearly here 〈X,Y 〉 denotes the scalar product in H = Rn−1. Moreover

epi((ΦH)∗) =

{

(Y, y, w) : zw ≥ 〈X,Y 〉+ y

(

x2 − x1
2

)

, ∀ (X, xi, w) ∈ epi(Φ), i = 1, 2

}

.

For a general set A ⊂ Rn+1, and y ∈ R, we set

A(y) = {(Y, 0, w) ∈ H ′ : (Y, y, w) ∈ A}.

Proposition 4.6. In the previous notations, for every y ∈ R:

1

2
epi(Φ∗)(y) +

1

2
epi(Φ∗)(−y) ⊂ epi((ΦH)∗)(y).

Proof. Let
(Y ′, w′) ∈ epi(Φ∗)(y), (Y ′′, w′′) ∈ epi(Φ∗)(−y),

and let
(X, x1, z), (X, x2, z) ∈ epi(Φ).

Then
w′z ≥ 〈Y ′, X〉+ yx2, w′′z ≥ 〈Y ′′, X〉 − yx1,

whence
(

w′ + w′′

2

)

z ≥ 〈
(

Y ′ + Y ′′

2

)

, X〉+ y

(

x2 − x1
2

)

.

It follows that
(

Y ′ + Y ′′

2
,
w′ + w′′

2

)

∈ epi((ΦH)∗)(y).

Let g be a function defined in Rn = H × R; for every y ∈ R we denote by gy the function defined on H
by

gy(Y ) = g(Y, y).

Clearly
epi(gy) = (epi(g))(y).

Proof of Theorem 4.1. By Proposition 4.6, we have

1

2
epi((Φ∗)y) +

1

2
epi((Φ∗)−y) ⊂ epi(((ΦH)∗)y)

for every y ∈ R. Now let Φ̄∗ be the function defined by:

Φ̄∗(Y, y) = Φ∗(Y,−y).

Note that as Φ is even, Φ∗ and Φ̄∗ are even as well.
Given (Y,w) ∈ H ′, we have (Y,w) ∈ epi((Φ∗)−y) if and only if

w ≥ Φ∗(Y,−y) = Φ∗(−Y, y) = Φ̄(Y, y),

that is, if and only if (Y,w) ∈ epi((Φ̄∗)y). Therefore

1

2
epi((Φ∗)y) +

1

2
epi((Φ̄∗)y) ⊂ epi(((ΦH)∗)y) ∀ y ∈ R.
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The set on the left hand side of the previous relation is the graph of the function

H ∋ Y 7→ sup
{1

2
Φ∗(Y1, y) +

1

2
Φ̄∗(Y − 2, y) :

Y1 + Y2
2

= Y
}

=
1

2
· (Φ∗)y �

1

2
· (Φ̄∗)y,

where � denotes the sup convolution operation, and · the corresponding product by non-negative coefficients
(see [58], Section 16]).

Hence

((ΦH)∗)y ≤ 1

2
· (Φ∗)y �

1

2
· (Φ̄∗)y,

so that
e−((ΦH)∗)y ≥ e−( 1

2 ·(Φ
∗)y �

1
2 ·(Φ̄

∗)y). (16)

We recall that µ has a density ρ with respect to the Lebesgue measure; let µy be the measure on H , with
density ρy (with respect to the (n− 1) dimensional Lebesgue measure on H). Using the log-concavity of µ,
and then of µy, the inequality (16) and the Prékopa-Leindler inequality, we get

∫

H

e−((ΦH)∗)ydµy ≥
(∫

H

e−(Φ∗)ydµy

)1/2 (∫

H

e−(Φ̄∗)ydµy

)1/2

.

On the other hand
∫

H

e−(Φ̄∗)ydρy =

∫

H

e−Φ∗(−Y,y)ρ(Y, y)dY

=

∫

H

e−Φ∗(−Y,y)ρ(−Y, y)dY

=

∫

H

e−Φ∗(Y,y)ρ(Y, y)dY.

We conclude that
∫

H

e−((ΦH)∗)ydµy ≥
∫

H

e−(Φ∗)ydµy

for every y. That is
∫

Rn−1

e−(ΦH)∗(Y,y)ρ(Y, y) ≥
∫

Rn−1

e−Φ∗(Y,y)ρ(Y, y), ∀ y ∈ R
n.

The claim of the theorem follows from Fubini’s theorem.

4.2 Monotonicity results for
∫

Rn e
−Φdµ

The following statements are probably well-known within the area of rearrangements of functions; we include
their proofs for completeness.

Proposition 4.7. Let µ be a measure on Rn, which is absolutely continuous with respect to the Lebesgue
measure, with density ρ. Let H be a hyperplane through the origin with unit normal vector e. Assume that
for every x′ ∈ H, the function ϕ : R → R defined by

ϕ(t) = ρ(x′ + te)

is even (in R), and decreasing in [0,∞). Then, for every Φ ∈ C,
∫

Rn

e−Φ(x)dµ(x) ≤
∫

Rn

e−ΦH(x)dµ(x).
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The next two results are consequences of Proposition 4.7 (the first one can be obtained also as an
application of the Hardy-Littlewood inequality for decreasing rearrangements).

Proposition 4.8. Let µ be a measure on Rn, which is absolutely continuous with respect to the Lebesgue
measure, with density ρ of the form

ρ = ρ(x) = ϕ(|x|)
where ϕ : [0,+∞) → [0,+∞) is decreasing. Let Φ ∈ C and let H be an hyperplane in Rn, passing though the
origin. Then

∫

Rn

e−Φ(x)dµ(x) ≤
∫

Rn

e−ΦH(x)dµ(x).

Proposition 4.9. Let µ be a measure on Rn, which is absolutely continuous with respect to the Lebesgue
measure, with unconditional density ρ. Assume that for every coordinate hyperplane H with unit normal
vector e, and for every x′ ∈ H, the function ϕ : [0,+∞) → R defined by

ϕ(t) = ρ(x′ + te)

is decreasing. Let Φ ∈ C and let H be a coordinate hyperplane. Then
∫

Rn

e−Φ(x)dµ(x) ≤
∫

Rn

e−ΦH(x)dµ(x).

4.2.1 Proof of Proposition 4.7

We will need the following one dimensional result.

Lemma 4.10. Let µ be a measure on R, absolutely continuous with respect to the Lebesgue measure; assume
that the density of µ is a function ψ : R → [0,+∞) which is even and decreasing in [0,+∞). Then, for every
a, b ∈ R with a ≤ b,

µ([a, b]) ≤ µ

([

−b− a

2
,
b− a

2

])

.

Proof. Let, for x ∈ R,

F (x) =

∫ x

0

ψ(t)dt,

with the convention
∫ x

0

ψ(t)dt = −
∫ −x

0

ψ(x)dx if x ≤ 0.

Note that F is odd in R, and it is concave in [0,+∞), as ψ is decreasing in [0,+∞). If

a ≤ 0 ≤ b

then

µ([a, b]) =

∫ b

a

ψ(t)dt = F (b)− F (a) = F (b) + F (−a).

On the other hand,

µ

([

−b− a

2
,
b− a

2

])

=

∫
b−a
2

− b−a
2

ψ(t)dt = 2

∫
b−a
2

0

ψ(t)dt

= 2F

(

b − a

2

)

.

The inequality then follows from the concavity of F . The case 0 ≤ a ≤ b can be reduced to the previous
one, observing that

µ([a, b]) ≤ µ

([

0,
b− a

2

])

as ψ is decreasing in [0,+∞). The case a ≤ b ≤ 0 is completely analogous.
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Lemma 4.11. Let µ be a measure on Rn, which is absolutely continuous with respect to the Lebesgue measure,
with density ρ. Let H be a hyperplane through the origin with unit normal vector e. Assume that for every
x′ ∈ H, the function ϕ : R → R defined by

ϕ(t) = ρ(x′ + te)

is even, and decreasing in [0,+∞). Then, for every convex body K in R
n,

µ(K) ≤ µ(KH).

Proof. We may assume that

H = {x = (x1, . . . , xn) = (x′, xn) : xn = 0}.

Let K ′ be the orthogonal projection of K onto H . Them, by Fubini’s theorem

µ(K) =

∫

K′

∫

Kx′

ρ(x′, t)dtdx′,

where
Kx′ = {t ∈ R : (x′, t) ∈ K}.

The assert follows from Lemma 4.10, and the fact that for every x′ ∈ K ′ the function t → ρ(x′, t) is even
and decreasing for t ≥ 0.

Proof of Proposition 4.7. Use the Layer Cake Principle and Lemma 4.11.

4.3 Applications to the Blaschke-Santaló functional

Let us turn back to our functional BSα,β,ρ1,ρ2 . We will derive from the previous results some consequences
on the behavior of BSα,β,ρ1,ρ2 under the action of Steiner symmetrizations, in the radially symmetric,
unconditional, and 1-symmetric cases.

4.3.1 The radially symmetric case

Let us assume that ρ1, ρ2 : R
n → R satisfy the following assumptions:

(R1) ρ1 is of the form
ρ = ρ(x) = ϕ(|x|)

where ϕ : [0,+∞) → [0,+∞) is decreasing;

(R2) ρ2 is radially symmetric and log-concave.

The next results follows from Corollary 4.3 and Proposition 4.8.

Proposition 4.12. Assume that ρ1 and ρ2 verify assumptions (R1) and (R2). Then, for every hyperplane
H through the origin, and for every Φ ∈ C

BSα,β,ρ1,ρ2(Φ) ≤ BSα,β,ρ1,ρ2(ΦH).
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4.3.2 The unconditional case

Let us assume that ρ1, ρ2 : R
n → R satisfy the following assumptions:

(U1) ρ1 is unconditional, and for every coordinate hyperplane H , with unit normal e, for every x′ ∈ H , the
function ϕ : [0,+∞) → R defined by

ϕ(t) = ρ1(x
′ + te)

is decreasing;

(U2) ρ2 is unconditional and log-concave.

From Corollary 4.4 and Proposition 4.9 we deduce the following statement.

Proposition 4.13. Assume that ρ1 and ρ2 verify assumptions (U1) and (U2). Then, for every coordinate
hyperplane H and for every Φ ∈ C

BSα,β,ρ1,ρ2(Φ) ≤ BSα,β,ρ1,ρ2(ΦH).

Example 4.14. If ρ1 and ρ2 are densities of the form

ρ(x) = ρ(x1, . . . , xn) = e−(|x1|p+···+|xn|p)

with p ≥ 1, then they verify the assumptions.

4.3.3 The 1-symmetric case.

We recall that set or a function are said to be 1-symmetric if they possess all the symmetries of the cube.
More precisely, we give the following definition.

Definition 4.15. A convex body K is 1-symmetric if for every x = (x1, . . . , xn) ∈ K, we have (ǫ1x1, ..., ǫnxn) ∈
K for any choice of signs ǫi ∈ {−1, 1}, and also (xσ(1), ..., xσ(n)) ∈ K for any permutation σ.

A function Φ ∈ C is 1-symmetric if

Φ(x1, . . . , xn) = Φ(ǫ1x1, ..., ǫnxn) = Φ(xσ(1), ..., xσ(n))

for every x = (x1, . . . , xn) ∈ R
n and every permutation σ.

Let us denote by C1s the class of all functions Φ ∈ C that are 1-symmetric.

Let H = {H1, . . . , HN} be a set of hyperplanes through the origin, in Rn, such that a set (respectively,
a function) is 1-symmetric if and only if it is symmetric (respectively, even) with respect to every H ∈ H.
Let us assume that ρ1, ρ2 : R

n → R satisfy the following assumptions:

(S1) ρ1 is 1-symmetric, and for every hyperplane H ∈ H, with unit normal e, for every x′ ∈ H , the function
ϕ : [0,+∞) → R defined by

ϕ(t) = ρ1(x
′ + te)

is decreasing;

(S2) ρ2 is 1-symmetric and log-concave.

The following proposition is a consequence of Theorem 4.1 and Proposition 4.7.

Proposition 4.16. Assume that ρ1 and ρ2 verify assumptions (S1) and (S2). Then, for every H ∈ H and
for every Φ ∈ C

BSα,β,ρ1,ρ2(Φ) ≤ BSα,β,ρ1,ρ2(ΦH).
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5 Existence of maximizers

In this section we present some results which guarantee the existence of maximizers of the Blaschke-Santaló
functional BSα,β,ρ1,ρ2 , under specific conditions on ρ1, ρ2, α, β. The picture is completed by examples,
collected at the end of this section, showing that existence of maximizers under too general conditions can
not be expected.

We start with a very special case, that is when µ1 and µ2 both coincide with the Lebesgue measure. We
prove that functional BSα,β,ρ1,ρ2 is bounded from above and maximizers exist. Note that the existence of
maximizers, and their characterisation, follow from the functional Blaschke-Santaló inequality. On the other
hand we include our proof as it might be of independent interest and, jointly with the subsequent results of
this paper, provides an alternative proof of the functional Blaschke-Santaló inequality.

Theorem 5.1. Let BS = BS1,1,1,1 be the classical Blaschke–Santaló functional. There exists Φ ∈ C such
that

BS(Φ) =M := sup
Ψ∈C

BS(Ψ).

Making appropriate linear change of variables and normalization, one can assume that the measure µ with
density e−Φ (with respect to the Lebesgue measure) is an isotropic probability measure and Φ∗ satisfies the
inequality

Φ∗(y) ≥ 1

2n

n
∑

i=1

|yi| − c(n) (17)

The proof of the previous result will be given in the sequel of this section. Our next result concerns the
homogeneous case.

Theorem 5.2. Assume ρ1 is s-homogeneous and ρ2 is t-homogeneous for s, t > −n such that

α

β
=
n+ s

n+ t
.

Then BSα,β,ρ1,ρ2 attains a maximum on the set of 1-symmetric functions.

The following corollary can be deduced.

Corollary 5.3. If V is a p-homogeneous convex function then the functional BSp,V attains a maximum on
the set of 1-symmetric functions.

The proof of the last two results will be given in the sequel of this section. Note that Corollary 5.3 does
not say anything about the precise form of maximizers.

Our next result concerns the existence of maximizers of BSα,β,ρ1,ρ2 , when ρ1 and ρ2 are homogeneous, and
radially symmetric, and it is an application of our results on symmetrization, and in particular of Proposition
4.12. In order to apply the latter result, we would need to assume that ρ2 is log-concave. As the unique
log-concave and homogeneous functions defined on R are (positive) constant functions, we assume that

ρ2 ≡ 1,

that is, µ2 is the Lebesgue measure. Next, we choose

ρ1 = ρ2(x) = ϕ(|x|)

with ϕ : (0,+∞) → R defined by

ϕ(r) =
1

rγ
, 0 ≤ γ < n.

In particular the measure with density ρ1 is locally finite (which can be seen using polar coordinates).
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Theorem 5.4. Let γ ∈ (0, n) and let ρ : Rn \ {0} → R be defined by ρ(x) = 1
|x|γ . Let α, β > 0 be such that

α = β n−γ
n . Then the functional defined by

BSα,β,ρ,1(Φ) =

(∫

e−αΦρdx

)
1
α
(∫

e−βΦ∗

dy

)
1
β

,

admits a radially symmetric maximizer.

Remark 5.5. Theorem 5.4 is a particular case of Theorem A. However, the proof given below is of indepen-
dent interest, because it is based only on symmetrization techniques and does not use the Prékopa–Leindler
theorem.

Proof of Theorem 5.4. By Proposition 4.12 (see also the proof of the following Theorem 5.6) we may assume
that there exists a maximizing sequence Φk, k ∈ N, such that Φk is radially symmetric for every k. This
means that

sup
C

BSα,β,ρ,1 = sup
C1,s

BSα,β,ρ,1.

The proof can be completed applying Theorem 5.2.

Using the results on symmetrization established in Section 4, we prove that under natural geometric
assumptions (symmetry, monotonicity and log-concavity) on densities any symmetric BSα,β,ρ1,ρ2 functional
having maximizers must have, in particular, symmetric maximizers.

Theorem 5.6. Let us assume that ρ1, ρ2 : R
n → R satisfy the following assumptions:

(R1) ρ1 is of the form
ρ = ρ(x) = ϕ(|x|)

where ϕ : [0,+∞) → [0,+∞) is decreasing;

(R2) ρ2 is radially symmetric and log-concave.

If the functional BSρ1,ρ2 admits a maximizer in some subset of C, invariant under symmetrizations with
respect to hyperplanes through the origin, then it admits a radially symmetric maximizer.

Proof. It is well known (see [38]) that for every Φ ∈ C there exists a sequence of hyperplanes Hk, k ∈ N,
such that the sequence of functions φk defined recursively as follows:

Φ1 = Φ, Φk+1 = (Φk)Hk
∀ k ≥ 1,

is contained in C and epi-converges to a radially symmetric function Φ∞ ∈ C. In view of this fact, of
Proposition 4.12 and of the continuity of BSρ1,ρ2 we conclude the proof.

Theorem 5.7. Assume that ρ1 and ρ2 verify assumptions

(U1) ρ1 is unconditional, and for every coordinate hyperplane H, with unit normal e, for every x′ ∈ H, the
function ϕ : [0,+∞) → R defined by

ϕ(t) = ρ1(x
′ + te)

is decreasing;

(U2) ρ2 is unconditional and log-concave.

If the functional BSρ1,ρ2 admits a maximizer in some subset of C, invariant under symmetrizations with
respect to coordinate hyperplanes, then it admits an unconditional maximizer.

Proof. Let Hi, i = 1, . . . , n be the coordinate hyperplanes in Rn. Given Φ ∈ C, the function

Φu = (. . . ((ΦH1)H2 ) . . . )Hn

belongs to C and it is unconditional. The proof is completed using Proposition 4.13.
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5.1 Proof of Theorem 5.1

We recall that a probability measure µ on Rn is said to be isotropic if
∫

Rn

〈x, θ〉2dµ = 1

for every unit vector θ. Also we recall that in this subsection BS is the classical Blaschke–Santaló functional:

BS(Φ) =
∫

Rn

e−Φdx

∫

Rn

e−Φ∗

dy.

We start with a remark. Let Φ ∈ C. Without changing the value of BS(Φ), we can assume that the
measure µ with density e−Φ is an isotropic probability measure. This is possible because, by Remark 2.2, BS
is invariant with respect to transformations of the form Φ(x) → Φ(Ax) + b, where b ∈ R and A : Rn → Rn is
an invertible linear transformation. So, we first reduce to a probability density adding a suitable constant,
and then, taking a linear image, we make the measure isotropic.

Lemma 5.8. Let Φ ∈ Conv(Rn) be coercive and assume that the measure µ with density e−Φ is an isotropic
probability measure. There exists a constant c = c(n) > 0 depending on n such that

Φ(x) ≤ c(n)

for every x ∈ B = {x : |x| ≤ 1
2}.

Proof. As Φ is convex on B, there exists x0 ∈ ∂B such that

m = min
x∈B

e−Φ(x) = e−maxx∈B Φ(x) = e−Φ(x0).

Hence x0 = θ
2 , for some θ ∈ Sn−1. Let L = {x ∈ Rn : |〈x, θ〉| ≤ 1

2}. Clearly, e−Φ ≤ m on Rn \ L. Since

1 =

∫

L

〈x, θ〉2dµ+

∫

Rn\L
〈x, θ〉2dµ ≤ 1

4
+

∫

Rn\L
〈x, θ〉2dµ,

one has

3

4
≤
∫

Rn\L
〈x, θ〉2dµ ≤

∫

Rn\L
|x|2dµ ≤

(

∫

Rn\L
|x|n+5dµ

)
1
2
(

∫

Rn\L

1

|x|n+1
dµ
)

1
2

≤
(

∫

Rn

|x|n+5dµ
)

1
2
(

∫

Rn\L

dx

|x|n+1

)
1
2√

m.

Using the well-known moment equivalence result for log-concave measures (see Theorem 3.5.11 in [1]) and the
isotropicity of µ, one gets that

∫

Rn |x|n+5dµ is bounded by a number depending on n. Clearly,
∫

Rn\L
dx

|x|n+1 =

C(n) <∞. Thus we get m ≥ c(n) > 0. This completes the proof.

Corollary 5.9. Let Φ ∈ Conv(Rn) be coercive, and assume that the measure with density e−Φ is an isotropic
probability measure. Then Φ∗ satisfies the inequality

Φ∗(y) ≥ 1

2n

n
∑

i=1

|yi| − c(n)

for every y = (y1, . . . , yn) ∈ Rn.

Proof. Let {ei : i = 1, . . . , n} be the standard orthonormal basis in Rn. Apply inequality

Φ∗(y) ≥ 〈x, y〉 − Φ(x)

to x = ± 1
2ei. The previous lemma implies Φ∗(y) ≥ 1

2 |yi| − c(n). The result immediately follows.
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Proof of Theorem 5.1. Let Φk, k ∈ N, be a sequence of coercive functions in Conv(Rn) such that

lim
k→+∞

BS(Φk) = sup{BS(U) : U ∈ Conv(Rn;R)}.

As already remarked, we may assume that for every k ∈ N, the measure µk with density e−Φk is a probability
measure and it is isotropic.

By Chebyshev inequality, we have
∫

|x|>R

e−Φkdx ≤ 1

R2

∫

|x|>R

|x|2e−Φkdx

for every R > 0. By the same argument used in the proof of Lemma 5.8, we obtain from the last inequality
that the sequence of measures µk is tight, and then Prokhorov theorem can be applied (see, for instance,
[8]). Therefore µk admits a subsequence which is weakly convergent to a probability measure µ.

As µk is log-concave and isotropic for every k, it is easy to see that µ is log-concave and isotropic, as well.
By a well-known theorem of Borell (see [10]), the log-concavity of µ implies that it is absolutely continuous
with respect to the Lebesgue measure, and its density is of the form e−Φ, where Φ ∈ Conv(Rn). As µ is a
probability measure, V is coercive; moreover, by Lemma 5.8, Φ(x) <∞ for every x such that |x| ≤ 1

2 .
The weak convergence of µk to µ implies that

limΦk(x) = Φ(x), ∀x ∈ R
n \ ∂dom(Φ).

By [59, Theorem 7.17], Φk epi-converges to Φ. By Proposition 3.5,

BS(Φ) = lim
k→∞

BS(Φk) =M.

Note that Φ∗ verifies (17), so that, in particular, M < +∞.

Remark 5.10. Theorem 5.1 is used in the proof of the classical Blaschke–Santaló inequality by transportation
method without symmetrization arguments (see Remark 7.12).

5.2 Proof of Theorem 5.2 and Corollary 5.3

Proof of Theorem 5.2. Write M = supΦ∈C1s
BSα,β,ρ1,ρ2(Φ), and choose a sequence {Φk} ⊆ C1s such that

BSα,β,ρ1,ρ2(Φk) →M .
First observe that for every Φ ∈ C and every λ ∈ R we have BSα,β,ρ1,ρ2(Φ + λ) = BSα,β,ρ1,ρ2(Φ), so we

may assume without loss of generality that Φk(0) = 0 for all k. This means in particular that Φk ≥ 0. Next,
for Φ ∈ C and λ > 0 we set (HλΦ) (x) = Φ(λx), and recall that (HλΦ)

∗
= H1/λΦ

∗. It follows that

BSα,β,ρ1,ρ2(HλΦ) =

(∫

Rn

e−αΦ(λx)ρ1(x)dx

)
1
α
(∫

Rn

e−βΦ∗(y/λ)ρ2(y)dy

)
1
β

=

(

1

λn

∫

Rn

e−αΦ(z)ρ1

( z

λ

)

dz

)
1
α
(

λn
∫

Rn

e−βΦ∗(w)ρ2 (λw) dw

)
1
β

=

(

1

λn+s

∫

Rn

e−αΦ(z)ρ1 (z) dz

)
1
α
(

λn+t

∫

Rn

e−βΦ∗(w)ρ2 (w) dw

)
1
β

= λ
n+t
β

−n+s
α BSα,β,ρ1,ρ2(Φ) = BSα,β,ρ1,ρ2(Φ).

For every k the set [Φk ≤ 1] is a 1-symmetric convex body. We observe that for arbitrary 1-symmetric
body L the corresponding John ellipsoid E is a ball. Indeed, if T is a linear transformation satisfying
T (L) = L, then T (E) is the John ellipsoid as well. By uniqueness of E one has T (E) = E. Hence E is
1-symmetric. This means that E is a ball. Therefore by replacing Φk with HλΦk for a suitable λ > 0 we
may assume that [Φk ≤ 1] is in John position. In particular Bn

2 ⊆ [Φk ≤ 1] ⊆ √
nBn

2 .
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By passing to a subsequence we may assume without loss of generality that {Φk} epi-converges to a
lower semi-continuous convex function Φ : Rn → [−∞,∞] (such a converging subsequence always exists).
Clearly minΦ = Φ(0) = 0 and Φ is 1-symmetric, so in order to prove that Φ ∈ C1s it is enough to show that
int (dom(Φ)) 6= ∅ and that lim|x|→∞ Φ (x) = ∞.

We know that [Φk ≤ 1] → [Φ ≤ 1] in the Hausdorff sense (see the proof of Lemma 5 of [19]), so in
particular Bn

2 ⊆ [Φ ≤ 1] ⊆ √
nBn

2 . This immediately shows that int (dom(Φ)) ⊇ int (Bn
2 ) 6= ∅. On the other

hand for all x ∈ Rn with |x| ≥ √
n we have

1 ≤ Φ

(√
nx

|x|

)

= Φ

(√
n

|x| x+

(

1−
√
n

|x|

)

0

)

≤
√
n

|x| Φ(x) +
(

1−
√
n

|x|

)

Φ(0) =

√
n

|x| Φ(x),

or Φ(x) ≥ |x|√
n
. This shows that lim|x|→∞ Φ (x) = ∞ and so Φ ∈ C.

Now the arguments of Proposition 3.5 show that BSα,β,ρ1,ρ2 is continuous on C with respect to epi-
convergence, so BSα,β,ρ1,ρ2(Φ) =M as claimed.

Proof of Corollary 5.3. We have BSp,V = BSα,β,ρ1,ρ2 where α = 1, β = 1
p−1 , ρ1 = 1 and ρ2 = detD2V ∗.

Since V is p-homogeneous we know that V ∗ is p∗-homogeneous, with 1
p + 1

p∗ = 1. Therefore D2V ∗ is

(p∗ − 2)-homogeneous and ρ2 is homogeneous of degree

t = n(p∗ − 2) =
n

p− 1
− n.

Of course ρ1 is homogeneous of degree s = 0. Since

n+ s

n+ t
=

n

n/(p− 1)
= p− 1 =

α

β

the previous theorem applies and a maximizer exists in C1s.

5.3 Inequalities for radially symmetric measures

In this subsection we compute the radially symmetric maximizer of the functional appearing in Theorem
5.4. Note that the result is a particular case of Theorem A, which be proved at the end of this section by
reduction to the unconditional case.

We assume that β ≥ α > 0 and set λ = α+β
β . One can easily verify that convex potential

U(y) =
1

λ
|x|λ =

β

α+ β
|x|α+β

β

pushes forward the Lebesgue measure onto the measure with density

detD2U =
λ− 1

|x|γ =
α

β
|x|−γ .

We remind the reader that U∗(y) = 1
λ∗ |y|λ

∗

, where λ∗ = α+β
α . According to Theorem 5.4, the functional

(

∫

e−αΦ(∇U∗(y))dy
)

1
α
(

∫

e−βΦ∗(y)dy
)

1
β

=
(

∫

e−αΦ(|y|
β
α

−1y)dy
)

1
α
(

∫

e−βΦ∗(y)dy
)

1
β

=
(α

β

)
1
α
(

∫

e−αΦ(x)

|x|γ dx
)

1
α
(

∫

e−βΦ∗(y)dy
)

1
β

admits a radially symmetric maximizer, which is λ-homogeneous, by Theorem 7.9 (note that we need the
assumption α ≤ β to unsure that the weight |x|−γ is decreasing). Thus the choice Φ = U is optimal and we
get the following result.
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Corollary 5.11. Let β ≥ α ≥ 0. Then for every convex and even function Φ the following inequality holds:

(

∫

e−αΦ(|y|
β
α

−1y)dy
)

1
α
(

∫

e−βΦ∗(y)dy
)

1
β ≤

(

∫

e−
αβ

α+β
|y|1+

β
α
dy
)

1
α
+ 1

β

.

The equivalent weighted version is:

(

∫

e−αΦ(x)

|x|γ dx
)

1
α
(

∫

e−βΦ∗(y)dy
)

1
β ≤

(

∫

e−
αβ

α+β
|x|

α+β
β

|x|γ dx
)

1
α
(

∫

e−
αβ

α+β
|y|

α+β
α
dy
)

1
β

, γ = n
(

1− α

β

)

.

Taking, in particular, p ≥ 2

α =
1

p− 1
, β = 1

(by homogeneity the general case can be reduced to this situation), one gets the following result

(

∫

e−
1

p−1Φ(|x|p−2x)dx
)p−1(

∫

e−Φ∗(y)dy
)

≤
(

∫

e−
1
p
|x|pdx

)p

. (18)

Remark 5.12. One may ask whether (18) holds also for 1 < p < 2. We will see that this is not true. Indeed,

Proposition 7.7 implies that if it is the case, then the probability measure µ = Ce−
1
p
|x|pdx must satisfy the

strong Brascamb–Lieb inequality with constant 1− 1
p . As we will see in Section 8, this is not true for p < 2.

Remark 5.13. The following inequality of Blaschke–Santaló type, with a radially symmetric maximizer, has
been proved by Fradelizi and Meyer in [29]. Given a decreasing function ρ on R+ and positive even functions
f, g satisfying

f(x)g(y) ≤ ρ2(〈x, y〉),
for all x, y such that 〈x, y〉 ≥ 0, one has

∫

fdx

∫

gdy ≤
(

∫

ρ(|x|2)dx
)2

. (19)

Though in this paper we do not analyse relations between our result and inequality of Fradelizi and Meyer,
we observe that the strong Brascamp–Lieb inequality deduced from (18) (see Proposition 7.7) is weaker than
an infinitesimal version of (19). The latter coincides with an improvement of the Brascamp–Lieb inequality
obtained by Cordero-Erausquin and Rotem in [23]. The relation between (19) and the result of Cordero-
Erausquin and Rotem was noticed in [28] (see Theorem 4.1).

5.4 Examples of non-existence of maximizers

Example 5.14. Let ρ1 = 1 and ρ2 be 0-homogeneous. Let M = maxy∈Sn−1 ρ2(y) and assume that the
restriction of ρ2 to Sn−1 admits exactly two maximum points: y0 and −y0. For simplicity, we may assume
that y0 = e1. Then for every admissible Φ

∫

e−Φdx

∫

e−Φ∗

ρ2dy < M

∫

e−Φdx

∫

e−Φ∗

dy < M(2π)n.

Let Φε =
1
2x

2
1 +

ε
2

∑n
i=2 x

2
i . Then

∫

e−Φεdx = (2π)
n
2 ε−

n−1
2 and

∫

e−Φεdx

∫

e−Φ∗
ερ2dy = (2π)

n
2 ε−

n−1
2

∫

e−
1
2y

2
1− 1

2ε

∑n
i=2 y2

i ρ2dy

= (2π)
n
2

∫

e−
1
2 |t|

2

ρ2(t1, εt2, · · · εtn)dt.
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Clearly

lim
ε→0

∫

e−Φεdx

∫

e−Φ∗
ερ2dy = (2π)nM.

Thus we get that

sup

∫

e−Φdx

∫

e−Φ∗

ρ2dy =M,

but
∫

e−Φdx

∫

e−Φ∗

ρ2dy

does not attain the supremum.

The following example is related to Theorem 5.2.

Example 5.15. Without the compatibility condition α
β = n+s

n+t the functional BSα,β,ρ1,ρ2 clearly is not

bounded in general, even in dimension n = 1 (or equivalently, in dimension n even if we assume all densities
and functions are not only 1-symmetric but even rotation invariant). This is obvious from the proof in the
previous example, but as a concrete example consider

BSα,β,ρ1,ρ2(Φ) =

∫

e−Φdx ·
∫

e−Φ∗

x2dx

(i.e. α = β = 1, ρ1 = 1, ρ2 = x2, s = 0 and t = 2). Then α
β = 1 6= 1+0

1+2 = n+s
n+t . And indeed, choosing e.g.

Φλ(x) = λx2

2 we see that

BSα,β,ρ1,ρ2(Φλ) =

∫

e−λx2

2 dx ·
∫

e−
1
λ

x2

2 x2dx = 2πλ
λ→∞−−−−→ ∞.

Example 5.16. If ρ1 and ρ2 are not assumed to be homogeneous then it is possible for BSα,β,ρ1,ρ2 to be

bounded and still not attain a maximum. For instance, in the example above replace ρ2 with ρ2(x) = e−
1
2x

2

.
Then

BSα,β,ρ1,ρ2(Φλ) =

∫

e−λx2

2 dx ·
∫

e−
1
λ

x2

2 e−
x2

2 dx =
2π√
λ+ 1

λ→0−−−→ 2π.

On the other hand, since ρ2(x) < 1 for all x 6= 0 we have, for all Φ ∈ C,

BSα,β,ρ1,ρ2(Φ) =

∫

e−Φdx ·
∫

e−Φ∗

e−
x2

2 dx <

∫

e−Φdx ·
∫

e−Φ∗

dx ≤ 2π.

This shows that supΦ∈C BSα,β,ρ1,ρ2(Φ) = 2π, but this supremum is not attained.

5.5 Blaschke–Santaló inequality for unconditional functions : Theorem A(2)

In this section we derive Blaschke–Santaló inequality for unconditional functions from the Prékopa–Leindler
inequality. The arguments go back to [29].

For x, y ∈ Rn
+ and for s, t ∈ R define

xsyt = (xs1y
t
1, ..., x

s
ny

t
n).

Lemma 5.17. Let V be a function, which is twice continuously differentiable and p-homogeneous on (0,∞)n,
p ≥ 1. Then the following properties are equivalent:

1. for every a, b ∈ (0,∞)n

〈a,∇V (b)〉 ≥ 〈a 1
p b

p−1
p ,∇V (a

1
p b

p−1
p )〉 = pV (a

1
p b

p−1
p ).
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2. the following function is concave:

x→ V (x
1
p ).

Proof. Assume that 1. holds. Let a = b+ εc. One has:

〈b + εc,∇V (b)〉 ≥ pV
(

(

b+ εc
)

1
p b

p−1
p

)

.

Expanding in ε, one gets
(

b+ εc
)

1
p b

p−1
p = b+ ε

pc+
(1−p)ε2

2p2 c2b−1 + o(ε2) and

pV
(

(

b+ εc
)

1
p b

p−1
p

)

= pV (b) + ε〈c,∇V (b)〉+ (1 − p)ε2

2p2
〈

diag
(Vxi

(b)

bi

)

c, c
〉

+
ε2

2p2
〈(D2V )(b)c, c〉+ o(ε2).

Finally, we obtain that V must satisfy

D2V (x) ≤ (p− 1)diag
(Vxi

(x)

xi

)

. (20)

To see the equivalence to concavity of Vp(x) = V (x
1
p ), we note that

D2Vp(x) =
1

p2
diag

(

x
1−p
p

i

)

D2V (x
1
p )diag

(

x
1−p
p

i

)

+
1− p

p2
diag

(

x
1−2p

p

i Vxi
(x

1
p )
)

=
1

p2
diag

(

x
1−p
p

i

)

[

D2V (x
1
p ) + (1− p)diag

(Vxi
(x

1
p )

x
1/p
i

)

]

diag
(

x
1−p
p

i

)

.

Thus we get that D2Vp ≤ 0 if and only if (20) holds.

Let us assume 2. Note that function f(a) = V (a
1
p bp−1) is a composition of Vp with diagonal linear

mapping diag(b
p−1
p

i ), hence f is concave. In particular, g(t) = f(b+ t(a− b) is concave and consequently it

satisfies g(1) ≤ g(0) + g′(0). One can easily compute g(1) = f(a) = V (a
1
p b

p−1
p ), g(0) = f(b) = V (b),

g′(0) = 〈a− b,∇f(b)〉 = 1

p
〈a− b,∇V (b)〉 = 1

p
〈a,∇V (b)〉 − V (b).

This completes the proof.

Example 5.18. Let V = 1
p |x|pr . Then V satisfies assumptions of the previous lemma if r ≤ p.

Theorem 5.19. Let Φ, V be unconditional functions. Let, in addition, V satisfy the following assumptions:

1. V is p-homogeneous for some p > 1;

2. the function x→ V (x
1
p ) is concave.

Then
(
∫

Rn

e−Φdx

)
1
p
(
∫

Rn

e−
1

p−1Φ
∗(∇V )dx

)
p−1
p

≤
∫

Rn

e−V dx.

If, in addition, V is convex, then the inequality is sharp and Φ = V is the maximum point.

Proof. Using change of variables x = er and Prékopa–Leindler inequality, one gets
∫

Rn

e−Φ(x)dx
[

∫

Rn

e−
1

p−1Φ
∗(∇V (x))dx

]p−1

= 2np
∫

Rn
+

e−Φ(x)dx
[

∫

Rn
+

e−
1

p−1Φ
∗(∇V (x))dx

]p−1

= 2np
∫

Rn

e−Φ(et)e
∑n

i=1 tidt
[

∫

Rn

e−
1

p−1Φ
∗(∇V (es))e

∑n
i=1 sids

]p−1

≤ 2np
[

∫

Rn

e
− inf

r=
t+(p−1)s

p

(

Φ(et)+Φ∗(∇V (es))
p

−
∑

i=1 ti+(p−1)si
p

)

dr
]p

.
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Apply the assumptions on V and the previous lemma:

Φ(et) + Φ∗(∇V (es)) ≥ 〈et,∇V (es)〉
≥ 〈e

t+(p−1)s
p ,∇V (e

t+(p−1)s
p )〉

= 〈er,∇V (er)〉
= pV (er).

Thus
∫

Rn

e−Φ(x)dx
[

∫

Rn

e−
1

p−1Φ(∇V (x))dx
]p−1

≤ 2np
[

∫

Rn

e−V (er)+
∑n

i=1 ridr
]p

=
[

∫

Rn

e−V (x)dx
]p

.

Corollary 5.20. Let p > 1, r > 1, r ≤ p and V = 1
p |x|pr . Then the Blaschke–Santaló inequality

(

∫

e−Φdx
)

1
p
(

∫

e−
1

p−1Φ
∗(∇V (y))dy

)1− 1
p ≤

∫

e−V dx

holds on the set of unconditional functions.

5.6 Theorem A: the general case

In this section we prove some sufficient conditions for V to be the maximizer of BSp,V . Our proof is based
on symmetrization arguments and the result of the previous section on maximization of BSp,V on the set of
unconditional functions.

Theorem 5.21. Let p > 1 and V be an even convex function satisfying the following assumptions:

• V is p-homogeneous;

• V is unconditional and the function

x = (x1, . . . xn) 7→ V
(

x
1
p

1 , ..., x
1
p
n

)

is concave in Rn
+;

• for every coordinate hyperplane H, with unit normal e, for every x′ ∈ H, the function ϕ : [0,+∞) → R

defined by
ϕ(t) = detD2V ∗(x′ + te)

is decreasing.

Then inequality (5) holds for any convex even function Φ.

Proof. Let Φ be even convex function. We observe that

BSp,V (Φ) ≤ BSp,V ((Φ)Hk
)

for every 1 ≤ k ≤ n, where (Φ)Hk
is symmetrization of Φ with respect to the hyperplane {xk = 0}. This

follows from Proposition 4.13. Applying consecutively the symmetrizations H1, · · · , Hn to Φ, one obtains
an unconditional function Φ̃ such that

BSp,V (Φ) ≤ BSp,V (Φ̃).

On the other hand, inequality (5) holds for unconditional functions, according to Corollary 5.20; this com-
pletes the proof.
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Theorem 5.22. Let p ≥ r ≥ 2 and V = 1
p |x|pr . Then the generalized Blaschke–Santaló inequality

(

∫

e−Φdx
)

1
p
(

∫

e−
1

p−1Φ
∗(∇V (y))dy

)1− 1
p ≤

∫

e−V dx

holds on the set of even functions.

Proof. It is sufficient to check that detD2V ∗ satisfies assumption (U1) of Proposition 4.13. Indeed, one has

V ∗(x) =
1

q
|x|qr∗ ,

where q = p
p−1 , r

∗ = r
r−1 . Next we compute (for the sake of simplicity let xi > 0):

∇V ∗(x) = |x|q−r∗

r∗
(

xr
∗−1

i

)

,

and

D2V ∗(x) = (q − r∗)|x|q−2r∗

r∗
(

xr
∗−1

i xr
∗−1

j

)

+ (r∗ − 1)|x|q−r∗

r∗ xr
∗−2

i δij

= |x|q−2r∗

r∗

[

(q − r∗)xr
∗−1

i xr
∗−1

j + (r∗ − 1)|x|r∗r∗xr
∗−2

i δij

]

.

We set Λ = |x|
r∗

2
r∗ diag(x

r∗

2 −1
i ). Then

D2V ∗ = |x|q−2r∗

r∗ Λ
[

(r∗ − 1)Id + (q − r∗)a⊗ a
]

Λ,

where a = 1
|x| r∗

2

(x
r∗

2

i ). Thus one has (for all x = (x1, . . . , xn), xi ∈ R \ {0})

detD2V ∗ = (q − 1)(r∗ − 1)n−1|x|n(q−r∗)
r∗

n
∏

i=1

|xi|r
∗−2.

We obtain that the measure D2V ∗ satisfies assumption (U2) provided q ≤ r∗ and r∗ ≤ 2. Equivalently,
r ≥ 2 and p ≥ r.

6 The geometric approach: an equivalence between functional in-
equalities and inequalities about convex bodies

In this section we will see that for a given p-homogeneous convex function V , the inequality

∫

Rn

e−Φ(x)dx ·
(∫

Rn

e−
1

p−1Φ
∗(∇V )dx

)p−1

≤
(∫

Rn

e−V dx

)p

for arbitrary convex functions Φ, is equivalent to the following geometric inequality

|K| · |∇V ∗(K◦)|p−1 ≤
∣

∣

∣

{

V ≤ 1

p

}∣

∣

∣

p

.

In particular, in the next subsection, we prove Proposition 1.3.
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6.1 The reduction of the functional inequality to a geometric one

For p ≥ 1, consider V = |x|pM/p, whereM is a symmetric convex body, and | · |M is the associated Minkowski
functional. Then V is p-homogeneous and all of its level sets are homothetic to M. For a set K in Rn we
shall use the notation

∇V (K) = {∇V (x) : x ∈ K}.
Note that the volume of the set ∇V (K) is given by

|∇V (K)| =
∫

K

det(∇2V (x))dx.

Proposition 6.1. Fix a symmetric convex body M and let V = |x|pM/p. Suppose that for any symmetric
convex body K, one has:

|K| · |∇V ∗(K◦)|p−1 ≤
∣

∣

∣

∣

{

V ≤ 1

p

}∣

∣

∣

∣

p

= |M |p,

with equality when K =M. Then for any even strictly convex Φ : Rn → R we have

∫

Rn

e−Φ(x)dx ·
(∫

Rn

e−
1

p−1Φ
∗(∇V )dx

)p−1

≤
(∫

Rn

e−V dx

)p

.

Proof. We follow the scheme of Artstein-Avidan, Klartag and Milman [2] and Keith Ball [4]. Note (in view
of the definition of the Legendre transform) that for any x ∈ {Φ∗(∇V ) ≤ s} and any y ∈ {Φ(y) ≤ t} one
has 〈∇V, y〉 ≤ s+ t; therefore

∇V ({Φ∗(∇V ) ≤ s}) ⊂ (s+ t){Φ ≤ t}o.

By the 1
p−1 -homogeneity of ∇V ∗ and the relation ∇V = (∇V ∗)−1, the above is equivalent to

{Φ∗(∇V ) ≤ s} ⊂ ∇V ∗ ((s+ t){Φ ≤ t}o) = (s+ t)
1

p−1∇V ∗ ({Φ ≤ t}o) . (21)

Using the “layer-cake” representation, we write

∫

Rn

e−Φ(x)dx ·
(∫

Rn

e−
1

p−1Φ
∗(∇V )dx

)p−1

=

∫ ∞

0

e−t|{Φ ≤ t}|dt ·
(∫ ∞

0

e−s|{Φ∗(∇V ) ≤ s(p− 1)}|ds
)p−1

. (22)

Consider the functions

f(t) = e−t|{Φ ≤ t}|, g(s) = e−s|{Φ∗(∇V ) ≤ s(p− 1)}| and h(τ) = e−τ |{V ≤ τ}|.

Letting Kt = {Φ ≤ t}, by (21) and the assumption of the Proposition, we get

|Kt|
1
p · |{Φ∗(∇V ) ≤ s(p− 1)}| p−1

p ≤ (s(p− 1) + t)
n
p |Kt|

1
p · |∇V ∗(Ko

t )|
p−1
p

≤ (s(p− 1) + t)
n
p

∣

∣

∣

∣

{

V ≤ 1

p

}∣

∣

∣

∣

=

∣

∣

∣

∣

{

V ≤ s(p− 1) + t

p

}∣

∣

∣

∣

.

Therefore,

h

(

1

p
t+

p− 1

p
s

)

≥ f(t)
1
p g(s)

p−1
p ,

and the conclusion follows by (22) combined with the Prékopa-Leindler inequality.
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Remark 6.2. Note that the assumption of proposition 6.1 is equivalent to the inequality

|K| ·
(∫

Ko

detD2V ∗(x)dx

)p−1

≤
∣

∣

∣

∣

{

V ≤ 1

p

}∣

∣

∣

∣

p

.

Let us finally prove that inequality (6) follows from our generalized weighted functional Blaschke–Santaló
inequality.

Lemma 6.3. Let Φ be a convex p-homogeneous function: Φ = |x|pK . Here K is a convex symmetric set.
Then

∫

Rn

e−Φ(x)dx ·
(∫

Rn

e−
1

p−1Φ
∗(∇V (x))dx

)p−1

= c(n, p)|K| · |∇V ∗(K◦)|p−1

for some constant c(n, p) depending only on n and p.

Proof. The proof is based on direct computations. First we apply polar coordinates:

∫

Rn

e−Φdx =

∫

Rn

e−|x|p
Kdx =

∫ ∞

0

(

∫

Sn−1

e−rp|y|p
Kσ(dy)

)

rn−1dr =

∫

Sn−1

(

∫ ∞

0

e−rp|y|p
Krn−1dr

)

σ(dy)

=

∫

Sn−1

1

|y|nK

(

∫ ∞

0

e−spsn−1ds
)

σ(dy) = nVol(K) ·
∫ ∞

0

e−spsn−1ds.

As one may check:

Φ∗(y) =
p1−q

q
|y|qK◦ .

Hence
1

p− 1
Φ∗(∇V (x)) =

p1−q

p
|∇V (x)|qK◦

Applying definition of the Minkowski functional and homogeneity of V , one gets

|∇V (x)|K◦ = inf{t : ∇V (x) ∈ tK◦} = inf{t : x ∈ ∇V ∗(tK◦)} = inf{t : x ∈ t
1

p−1∇V ∗(K◦)}
= inf{sp−1 : x ∈ s∇V ∗(K◦)} = |x|p−1

∇V ∗(K◦).

Thus we get
1

p− 1
Φ∗(∇V (x)) = p−q|x|q(p−1)

∇V ∗(K◦) = p−q|x|p∇V ∗(K◦).

Applying polar coordinates again we deduce:

∫

Rn

e−
1

p−1Φ
∗(∇V (x))dx =

∫

Rn

e
−p−q|x|p

∇V ∗(K◦)dx = nVol(∇V ∗(K◦)) · pnq
p

∫ ∞

0

e−spsn−1ds.

Finally
(

∫

e−
1

p−1Φ
∗(∇V (x))dx

)p−1

=
(

nVol(∇V ∗(K◦))
)p−1

· pn
(

∫ ∞

0

e−spsn−1ds
)p−1

.

Corollary 6.4. Let V be a p-homogeneous convex symmetric function. Inequality (5) holds for arbitrary
convex symmetric Φ if and only if inequality (6) holds for arbitrary symmetric convex body K.

Proof. Implication (6) =⇒ (5) was proved in Proposition 6.1. To prove (5) =⇒ (6) let us take a symmetric
convex body K and define Φ = |x|pK . One has

BSp,V (Φ) ≤ BSp,V (V ) = BSp,V (αV ),
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where α is arbitrary positive constant. Note that in the last equality we used the invariance of BSp,V with
respect to homotheties and the homogeneity of V . Applying Lemma 6.3 one gets

|K| · |∇V ∗(K◦)|p−1 ≤ |Kα| · |∇V ∗(K◦
α)|p−1

where Kα =
{

V ≤ 1
α

}

. The result follows from the observation (the proof is left to the reader as an exercise)
that

∇V ∗(K◦
p ) = Kp.

6.2 The case of rotation-invariant measures revisited

In this subsection we show that Theorem A in the case of rotationally invariant measures follows from the
classical Blaschke–Santaló inequality.

Suppose V = |x|p
p and V ∗ = |x|q

q , with p and q conjugate to each other. Then

∇2V ∗(x) = |x|q−2Id + (q − 2)|x|q−4x⊗ x,

and thus det(∇2V ∗(x)) = (q−1)|x|n(q−2). Therefore, the condition of Proposition 6.1 in the case V (x) = |x|p
p

is: for any symmetric convex K and for p, q ≥ 1, with 1
p + 1

q = 1,

(q − 1)p−1|K| ·
(∫

Ko

|x|n(q−2)

)p−1

≤ |Bn
2 |p,

which becomes, in view of the fact that q = p
p−1 :

(q − 1)
1

q−1 |K| ·
(∫

Ko

|x|n(q−2)

)
1

q−1

≤ |Bn
2 |

q
q−1 .

Therefore, the rotationally invariant case of Theorem A follows immediately from Proposition 6.1 and the
following result.

Proposition 6.5. For any symmetric convex K and any q ∈ (1, 2], we have

(q − 1)
1

q−1 |K| ·
(∫

Ko

|x|n(q−2)

)
1

q−1

≤ |Bn
2 |

q
q−1 .

Remark 6.6. Note that the condition p ≥ 2 in (1) of Theorem A corresponds to the assumption q ∈ [1, 2],
since p and q are conjugate.

We show that Proposition 6.5 follows immediately from the classical Blaschke–Santaló inequality.

Lemma 6.7. For a convex body K we have

∫

Ko

|x|n(q−2)dx =
1

(q − 1)n

∫

Sn−1

h
(1−q)n
K (θ)dθ.

Proof. Using the polar coordinates, we write

∫

Ko

|x|n(q−2)dx =

∫

Sn−1

∫ ρKo

0

tn−1+n(q−2)dt,

and the equality follows from the fact that h−1
K = ρKo .
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Proof. Proof of Proposition 6.5] Using Lemma 6.7 combined with Hölder’s inequality, we write

(q − 1)
1

q−1 |K| ·
(∫

Ko

|x|n(q−2)

)
1

q−1

= (q − 1)
1

q−1 |K| ·
(

1

(q − 1)n

∫

Sn−1

h
(1−q)n
K (θ)dθ

)
1

q−1

≤ C(n, q)|K| ·
∫

Sn−1

h−n
K (θ)dθ

= C′(n, q)|Bn
2 |2,

where in the last step we used the Blaschke-Santaló inequality. Here C(n, q) and C′(n, q) are appropriate
constants depending on n and p, such that equality is attained in all the inequalities above when K is Bn

2 .
This completes the proof of the Proposition.

6.3 A counterexample to the generalized Blaschke–Santaló inequality

Let

V (x) =
1

p
|x|pp =

1

p

n
∑

i=1

|xi|p.

Then

V ∗(y) =
1

q
|y|qp =

1

q

n
∑

i=1

|yi|q

and

detD2V ∗(x) = (q − 1)n
n
∏

i=1

|yi|q−2 = (q − 1)n
n
∏

i=1

|yi|
2−p
p−1 .

Thus Proposition 6.1 implies that the weighted Blaschke–Santaló inequality for V is equivalent to the fol-
lowing inequality for sets

(q − 1)n(p−1)|K|
(

∫

Ko

n
∏

i=1

|yi|
2−p
p−1 dy

)p−1

≤ |Bn
p |p.

Equivalently

|K| ·
(∫

Ko

∏

|yi|
2−p
p−1 dy

)p−1

≤ (p− 1)(p−1)n|Bn
p |p. (23)

Letting p tend to 1 we get:

|K| · sup
y∈Ko

n
∏

i=1

|yi| ≤
2n

n!
. (24)

This equality is not true in general. Indeed, the left hand side of (24) is not invariant under linear transfor-
mations. By considering K = KR to be a thin “needle” of length R pointing in the direction (1, 1, ..., 1), we
see that

lim
R→∞

(

|KR| · sup
y∈Ko

R

n
∏

i=1

|yi|
)

= ∞.

We conclude that the assumption of Proposition 6.1 is false for V (x) =
|x|pp
p when p is close to 1.

We conclude that inequality (5) fails to hold for values of p close to 1. We will show in the last section
that (5) fails to hold for 1 < p < 2.

We show, however, that the inequality for sets in question holds when Φ is 1-symmetric and p = 1; this
also follows from the unconditional part of Theorem A.

Proposition 6.8. Let K be a 1-symmetric convex body. Then

|K| · sup
y∈Ko

n
∏

i=1

|yi| ≤
2n

n!
.
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Proof. By the arithmetic-geometric mean inequality,

sup
y∈Ko

n
∏

i=1

|yi| ≤ sup
y∈Ko

( |y|1
n

)n

=

(

supy∈Ko, x∈Bn
∞
〈x, y〉

n

)n

.

Suppose that the largest centered cube contained in K is RBn
∞, R > 0. Then Ko is contained in 1

RB
n
1 , and

therefore the above is bounded by

(

supy∈Bn
1 , x∈Bn

∞
〈x, y〉

Rn

)n

=
1

(Rn)n
.

On the other hand, since the largest centered cube that K contains is RBn
∞, and K is 1-symmetric, we

conclude that K ⊂ RnBn
1 , and therefore

|K| ≤ (Rn)n
2n

n!
.

These facts imply the statement.

7 The mass transport approach to the Blaschke-Santaló-type in-
equalities

7.1 The Euler-Lagrange equation of BS
In this subsection we derive the Euler-Lagrange equation of the Blaschke-Santaló functional. We realise that
this is an equation of the Monge–Ampère type. In the following subsection we prove a kind of more precise
statement: a monotonicity property of our functional, which also leads to this equation.

The following lemma is known to experts; we include it for the reader’s convenience.

Lemma 7.1. Let V ∈ C3(Rn) be such that D2V (x) is positive definite for every x, and let f ∈ C1(Rn) be
compactly supported. Then

Vε = V + εf.

Then V ∗
ε can be expanded in the following way:

V ∗
ε = V ∗ − εf(∇V ∗) +

ε2

2
〈D2V ∗∇f(∇V ∗),∇f(∇V ∗)〉+ o(ε2).

The dependence of the term o(ε2) on x in this expansion is uniform on ∇V (supp(f)).

Proof. Expand V ∗
ε :

V ∗
ε = V ∗ + εa+

ε2

2
b+ o(ε2)

and apply relation V ∗
ε (∇Vε) = 〈x,∇Vε〉 − Vε. In this way we obtain

V ∗(∇Vε) + εa(∇Vε) +
ε2

2
b(∇Vε) + o(ε2) = 〈x,∇Vε〉 − Vε

= V ∗(∇V ) + ε(〈x,∇f〉 − f). (25)

The final result follows from the expansions:

V ∗(∇Vε) = V ∗(∇V ) + ε〈x,∇f〉+ ε2

2
〈D2V ∗(∇V )∇f,∇f〉+ o(ε2)

a(∇Vε) = a(∇V ) + ε〈∇a(∇V ),∇f〉+ o(ε2).

34



Indeed, expanding both sides of (25) one gets

a(∇V ) = −f, 1

2
〈D2V ∗(∇V )∇f,∇f〉+ 〈∇a(∇V ),∇f〉+ 1

2
b(∇V ) = 0.

Expressing a and b from these equation and changing variables one gets the statement.

Proposition 7.2. Let µ1 and µ2 be admissible measure. Let Φ be a maximizer of BSα,β,ρ1,ρ2 in C, and
assume that

Φ ∈ C2(Rn) and D2Φ(x) > 0 ∀x ∈ R
n.

Then
e−αΦρ1

∫

Rn e−αΦρ1dx
=
e−βΦ∗(∇Φ) det(D2Φ)ρ2(∇Φ)

∫

Rn e−βΦ∗ρ2dy
.

Proof. Let τ ∈ C∞
c (Rn) (where the lower index c means compact support); that is, τ is a test function. For

ε > 0 suffcinetly small in absolute value, the function

Φε = Φ + ετ

belongs to C (here we are using the assumption that D2Φ > 0 and that τ has compact support). Hence the
function

ε → BSα,β,ρ1,ρ2(Φε)

has a maximum for ε = 0. Therefore

d

dε
BSα,β,ρ1,ρ2(Φε)

∣

∣

∣

∣

ε=0

= 0.

On the other hand

d

dε
BSα,β,ρ1,ρ2(Φε)

∣

∣

∣

∣

ε=0

=
d

dε

(

∫

Rn

e−αΦερ1dx
)

1
α

∣

∣

∣

∣

ε=0

·
(

∫

Rn

e−βΦ∗

ρ2dx
)

1
β

+

(

∫

Rn

e−αΦρ1dx
)

1
α · d

dε

(

∫

Rn

e−βΦ∗
ερ2dx

)
1
β

∣

∣

∣

∣

ε=0

= −
∫

Rn

τe−αΦρ1dx
(

∫

Rn

e−αΦερ1dx
)

1
α
−1(

∫

Rn

e−βΦ∗

ρ2dx
)

1
β

+

∫

Rn

τ(∇Φ∗)e−βΦ∗

ρ2dy
(

∫

Rn

e−αΦερ1dx
)

1
α
(

∫

Rn

e−βΦ∗

ρ2dx
)

1
β
−1

where we have used Lemma 7.1. By the change of variable ∇Φ∗(y) = x we get

∫

Rn

τ(∇Φ∗)e−βΦ∗

ρ2dy =

∫

Rn

τe−βΦ∗(∇Φ) det(D2Φ)ρ2(∇Φ)dx

We deduce that
∫

Rn

τ
[

I2e
−αΦρ1 − I1e

−βΦ∗(∇Φ) det(D2Φ)ρ2(∇Φ)
]

dx = 0,

where

I1 =

∫

Rn

e−αΦρ1dx, I2 =

∫

Rn

e−βΦ∗

ρ2dx.

As τ is arbitrary, the conclusion follows.
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7.2 A comparison result for Blaschke–Santaló functional via optimal trans-
portation

In this section we present a comparison result for the Blaschke-Santaló functional, involving optimal trans-
portation. We will show that the functional

BSα,β,ρ1,ρ2(Φ) =
(

∫

e−αΦρ1dx
)

1
α
(

∫

e−βΦ∗

ρ2dy
)

1
β

admits a remarkable monotonicity property related to optimal transportation. This property was already
mentioned in [48] for α = β = 1. The idea of the proof is essentially the same. However, the statement
about maximum points of the Blaschke–Santaló functional that we prove here is more precise even for values
α = β = 1.

Let µ1, µ2 be non-negative Borel measures on R
n, absolutely continuous with respect to the Lebesgue

measure, with strictly positive densities ρ1 and ρ2, respectively. Let Φ: Rn → R∪{∞} be a convex function;
assume that

Ω := int(dom(Φ)) and Ω∗ := int(dom(Φ∗))

are non-empty, and

0 <

∫

Rn

e−Φdµ1,

∫

Rn

e−Φ∗

dµ2 <∞.

Let α > 0, β > 0 and ∇U : Ω → Ω∗ be the optimal transportation of the measure µ with density

1
∫

Rn e−αΦdµ1
e−αΦρ1

onto the measure ν with density
1

∫

Rn e−βΦ∗dµ2
e−βΦ∗

ρ2.

Let us assume that

1. U(0) = Φ(0),

2. Φ and U are lower semi-continuous,

3. Φ = +∞ on {U = +∞}.

Remark 7.3. It is easy to verify that there exists a unique function U satisfying assumptions 1)-3). Note
that uniqueness for optimal transportation guarantees only that T = ∇U is uniquely determined µ-a.e. In
particular, potentials Ui giving the same mapping T can be different outside of support µ. But in our case
the support of µ is convex and U is supposed to take infinite values outside of it. This implies the uniqueness
of U .

We set
∇U(Ω) = {∇U(x) : x ∈ Ω, ∂U(x) contains a unique element} .

Proposition 7.4. In the previous assumptions

BSα,β,ρ1,ρ2(Φ) ≤ BSα,β,ρ1,ρ2(U). (26)

Moreover, equality holds if and only if
Φ = U in Ω,

and ∇U(Ω) coincides with {U∗ <∞} up to a set of Lebesgue measure zero.
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Proof. Obviously

∫

Rn

e−αΦρ1dx =

∫

Ω

e−αΦρ1dx,

∫

Rn

e−Φ∗

ρ2dy =

∫

Ω∗

e−βΦ∗

ρ2dy.

By convexity, Φ and Φ∗ are continuous on Ω and Ω∗, respectively. By the change of variables formula (13)

e−αΦ(x)ρ1(x)
∫

Ω
e−αΦdµ1

=
e−βΦ∗(∇U(x))ρ2(∇U)
∫

Ω∗ e−βΦ∗dµ2
detD2

aU(x)

almost everywhere in Ω.
Take the power α

α+β of both sides of the last equality:

(

∫

Ω∗ e
−βΦ∗

dµ2
∫

Ω e
−αΦdµ1

)
α

α+β

e−
α2

α+β
Φ(x)ρ

α
α+β

1 (x) = e−
αβ

α+β
Φ∗(∇U(x))ρ

α
α+β

2 (∇U)
(

detD2
aU(x)

)
α

α+β .

Multiply this identity by e−
αβ

α+β
Φρ

β
α+β

1 :

(

∫

Ω∗ e
−βΦ∗

dµ2
∫

Ω e
−αΦdµ1

)
α

α+β

e−αΦ(x)ρ1(x) = e−
αβ

α+β

[

Φ(x)+Φ∗(∇U(x))
]

ρ
β

α+β

1 ρ
α

α+β

2 (∇U)
(

detD2
aU(x)

)
α

α+β .

Integrating over Ω, we obtain

(

∫

Ω

e−αΦρ1dx
)

β
α+β
(

∫

Ω∗

e−βΦ∗

ρ2dy
)

α
α+β

=

∫

Ω

e−
αβ

α+β

[

Φ(x)+Φ∗(∇U(x))
]

ρ
β

α+β

1 ρ
α

α+β

2 (∇U)
(

detD2
aU(x)

)
α

α+β dx.

As
Φ∗(∇U(x)) + Φ(x) ≥ 〈x,∇U(x)〉,

while
U∗(∇U(x)) + U(x) = 〈x,∇U(x)〉,

for every x ∈ Ω, we get

(

∫

Ω

e−αΦρ1dx
)

β
α+β
(

∫

Ω∗

e−βΦ∗

ρ2dy
)

α
α+β ≤

∫

Ω

e−
αβ

α+β

[

U(x)+U∗(∇U(x))
]

ρ
β

α+β

1 ρ
α

α+β

2 (∇U)
(

detD2
aU(x)

)
α

α+β dx

≤
(

∫

Ω

e−αUρ1dx
)

β
α+β
(

∫

Ω

e−βU∗(∇U)ρ2(∇U) detD2
aUdx

)
α

α+β

=
(

∫

Ω

e−αUρ1dx
)

β
α+β
(

∫

∇U(Ω)

e−βU∗

ρ2dy
)

α
α+β

≤
(

∫

Rn

e−αUρ1dx
)

β
α+β
(

∫

Rn

e−βU∗

ρ2dy
)

α
α+β

,

where we have used Hölder inequality in the second step, and the change of variable formula in the third
one. This proves (26).

Assume now that
BSα,β,ρ1,ρ2(Φ) = BSα,β,ρ1,ρ2(U).

This is possible only if
Φ∗(∇U(x)) + Φ(x) = 〈x,∇U(x)〉, (27)
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on Ω. On the other hand, if x ∈ Ω and Φ is differentiable at x, then

Φ∗(∇Φ(x)) + Φ(x) = 〈x,∇Φ(x)〉, (28)

and ∇Φ(x) is the only vector for which (28) is valid. Hence

∇U(x) = ∇Φ(x)

for almost every x ∈ Ω. Together with assumption V (0) = Φ(0) and lower semi-continuity, this clearly
implies Φ = U .

In addition, by the argument used in the first part of this proof, equality is possible if and only if
∇U(Ω) = {U∗ <∞} up to a set of zero measure, this implies the last statement of the Theorem.

Theorem 7.5. Let α, β > 0 be numbers and ρ1, ρ2 be positive functions. Assume that Φ is a maximum
point of the functional BSα,β,ρ1,ρ2 . Then ∇Φ is the optimal transportation pushing forward measure µ onto
ν, where

dµ =
e−αΦρ1dx
∫

e−αΦρ1dx
, dν =

e−βΦ∗

ρ2dy
∫

e−βΦ∗ρ2dy
.

In addition,
∇Φ(Ω) = {Φ∗ <∞}

up to a set of Lebesgue measure zero.

Proof. The result follows immediately from Proposition 7.4.

Remark 7.6. Another remarkable monotonicity property in of the Blaschke–Santaló functional in terms
of a Gaussian diffusion semigroup has been recently obtained by Nakamura and Tsuji in [56]. This result
provides an alternative and purely analytical proof of the classical Blaschke–Santaló inequality.

7.3 Brascamp–Lieb type inequality for maximizers

In this subsection we derive partial differential inequality for the maximum point of BSα,β,ρ1,ρ2 and we
observe that this is an inequality of the Brascamp–Lieb type.

Proposition 7.7. Let Φ be the maximum point of BSα,β,ρ1,ρ2 . Assume, in addition, that Φ is strictly convex
and twice continuously differentiable inside of {Φ <∞}. Then the measure µ with density

e−αΦρ1
∫

e−αΦρ1dx

satisfies

Varµf ≤ 1

α+ β

∫

〈(D2Φ)−1∇f,∇f〉dµ.

for every function f ∈ C1(Rn).

Proof. Take f satisfying
∫

fe−αΦρ1dx = 0. One has

1

α
log

∫

e−αΦερ1dx+
1

β
log

∫

e−βΦ∗
ερ2dy ≤ 1

α
log

∫

e−αΦρ1dx +
1

β
log

∫

e−βΦ∗

ρ2dy,

where Φε = Φ + εf . Lemma 7.1 implies

log

∫

e−αΦερ1dx = log

∫

e−αΦ
(

1− εαf +
ε2α2

2
f2 + o(ε2)

)

ρ1dx

= log

∫

e−αΦ
(

1 +
ε2α2

2
f2 + o(ε2)

)

ρ1dx

= log

∫

e−αΦρ1dx+
ε2α2

2

∫

f2e−αΦρ1dx
∫

e−αΦρ1dx
+ o(ε2),
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log

∫

e−βΦ∗
ερ2dx = log

∫

e−βΦ∗

eβ
(

εf(∇Φ∗)− ε2

2 〈D2Φ∗∇f(∇Φ∗),∇f(∇Φ∗)〉+o(ε2)
)

ρ2dy

= log

∫

e−βΦ∗
(

1 + εβf(∇Φ∗)− ε2β

2
〈D2Φ∗∇f(∇Φ∗),∇f(∇Φ∗)〉+ ε2β2

2
f2(∇Φ∗) + o(ε2)

)

ρ2dy.

Since ∇Φ∗ sends the measure e−βΦ∗
ρ2dy∫

e−βΦ∗ρ2dy
to the measure e−αΦρ1dx∫

e−αΦρ1dx
, one gets

∫

f(∇Φ∗)e−βΦ∗

ρ2dy = C

∫

fe−αΦρ1dx = 0.

Thus

log

∫

e−βΦ∗
ερ2dy = log

∫

e−βΦ∗
(

1− ε2β

2
〈D2Φ∗∇f(∇Φ∗),∇f(∇Φ∗)〉+ ε2β2

2
f2(∇Φ∗) + o(ε2)

)

ρ2dx

= log

∫

e−βΦ∗

ρ2dy +
ε2

2
∫

e−βΦ∗ρ2dy

∫

(

β2f2(∇Φ∗)− β〈D2Φ∗∇f(∇Φ∗),∇f(∇Φ∗)〉
)

e−βΦ∗

ρ2dy + o(ε2)

= log

∫

e−βΦ∗

ρ2dy +
ε2

2
∫

e−αΦρ1dx

∫

(

β2f2 − β〈(D2Φ)−1∇f,∇f〉
)

e−αΦρ1dx+ o(ε2).

Finally, one gets the relation

1

α
log

∫

e−αΦερ1dx +
1

β
log

∫

e−βΦ∗
ερ2dy =

1

α
log

∫

e−αΦρ1dx+
1

β
log

∫

e−βΦ∗

ρ2dy

+
ε2

∫

e−αΦρ1dx

(

∫

(α+ β

2
f2 − 1

2
〈(D2Φ)−1∇f,∇f〉

)

e−αΦρ1dx
)

and the claim follows.

Let p > 1 and V be a p-homogeneous convex function. The latter means, in particular,

V =
1

p− 1
V ∗(∇V ). (29)

Consider functional
∫

e−Φdx ·
(

∫

e−
1

p−1Φ
∗

ρdy
)p−1

=

∫

e−Φdx ·
(

∫

e−
1

p−1Φ
∗(∇V )dx

)p−1

,

where ρdy is the image of the Lebesgue measure under ∇V , in particular

ρ = detD2V ∗.

Note that ∇V is the optimal transportation mapping of e−V dx∫
e−V dx

onto e
− 1

p−1
V ∗

ρdy
∫
e
− 1

p−1
V ∗

ρdy
This follows from (29)

and the fact that ρdy is the image of Lebesgue measure under ∇V .
Thus we get that V is a natural candidate to maximize BSp,V . The expected inequality reads as:

∫

e−Φdx ·
(

∫

e−
1

p−1Φ
∗(∇V )dx

)p−1

≤
(

∫

e−V dx
)p

.

In particular, V satisfies the corresponding Euler–Lagrange equation. The second order condition ob-
tained in Proposition 7.7 means that if V is a maximizer, it must satisfy the inequality.

Varµf ≤
(

1− 1

p

)

∫

〈(D2V )−1∇f,∇f〉dµ,

where µ = e−V dx∫
e−V dx

.
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7.4 Homogeneity of maximizers of BS-functional
In this section we consider a smooth (say, C3(Rn)) and strictly convex function V : Rn → R; we will refer to
V as a potential. It will be assumed throughout that V is a p-homogeneous convex function for some fixed
p > 1. The proof of the following properties will be left to the reader as an exercise.

Proposition 7.8. Let V ∈ C3(Rn) be a convex, even p-homogeneous function. Then V verifies the following
properties.

1. 〈∇V (x), x〉 = pV (x);

2. (p− 1)V = V ∗(∇V );

3. (p− 1)∇V (x) = D2V (x) · x;
4. for every vector e one has (D2V (x))e · x = (p− 2)D2V (x) · e

(where (·)e indicates partial differentiation along e).

We consider the Blaschke-Santaló functional

BSp,V (Φ) =

∫

e−Φdx ·
(

∫

e−
1

p−1Φ
∗

ρdy
)p−1

=

∫

e−Φdx ·
(

∫

e−
1

p−1Φ
∗(∇V )dx

)p−1

,

where ρdy is the image of Lebesgue measure under∇V . Note that ∇V is the optimal transportation mapping

of e−V dx∫
e−V dx

onto e
− 1

p−1
V ∗

ρdy
∫
e
− 1

p−1
V ∗

ρdy
This follows from (29) and the fact that ρdy is the image of Lebesgue measure

under ∇V .

Theorem 7.9. Any symmetric maximum point of the functional

BSp,V (Φ) =

∫

e−Φdx ·
(

∫

e−
1

p−1Φ
∗(∇V )dx

)p−1

is p-homogeneous (up to addition of a constant).

We start with some preliminary considerations. If Φ is a maximum point, Theorem 7.5 implies that:

1. ∇Φ is the optimal transportation mapping between the measures

µ =
e−Φdx

∫

Rn e−Φdx
and ν =

e−
1

p−1Φ
∗

detD2V ∗dy
∫

Rn e
− 1

p−1Φ
∗

detD2V ∗dy
,

2. ∇Φ(Rn) = {Φ∗ <∞}.
Without loss of generality we assume

Φ(0) = Φ∗(0) = 0.

First we observe that Φ,Φ∗ are smooth on Rn \{0} provided V is smooth on Rn \{0} (we can not assume
that V is smooth on entire Rn, because V is p-homogeneous). Indeed, to prove this we apply local Hölder
estimates for solution to the Monge–Ampère equation. We refer to [41], proof of Lemma 5.2. We choose a
neighbourhood U of a point y0 6= 0 which does not contain the origin. Using that detD2V ∗ is smooth inside
of U , we consider equation

C detD2V ∗e−
1

p−1Φ
∗

= e−Φ(∇Φ∗) detD2Φ∗,

where C is the corresponding normalizing constant, and apply the Forzani–Maldonado estimate (see [27])
to ensure that ∇Φ∗ is locally Hölder and then the Trudinger–Wang estimates (see [62]) to prove higher
regularity. See details in [41]. Applying standard bootstrapping arguments we can conclude that Φ∗ is
smooth on Ω∗ \ {0} and the similar statement holds for Φ.

Next we prove a lemma about behaviour of Φ near the boundary of {Φ <∞}.
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Lemma 7.10. ∂Φ(x) is empty for every x ∈ ∂Ω and ∂Φ∗(x) is empty for every y ∈ ∂Ω∗. In particular,
|∇Φ(xn)| → ∞ for every sequence xn → x, where x ∈ ∂Ω.

Proof. Assume that a ∈ ∂Φ(x), x ∈ ∂Ω. Then a+ tn ∈ ∂Φ(x) for every t ≥ 0, where n is the outer normal
to ∂Ω at x. In one hand, we note that by strict convexity of Φ one has: La = {a + tn ∈ ∂Φ(x), t > 0} ⊂
Rn \ ∇Φ(Ω). In the other hand, we note that

Φ∗(a+ nt) = 〈x, a+ nt〉 − Φ(x) <∞.

Hence Φ∗ is finite on La and by convexity Φ∗ is finite in some neighborhood L̃ of La. Hence there exists an
open set L̃ ⊂ Rn \∇Φ(Ω) with the property L ⊂ Ω∗. But this contradicts to the fact that ∇Φ(Ω) = Ω∗ (up
to a set of measure zero), see Theorem 7.5.

In what follows we consider function

W (x) = 〈x,∇Φ(x)〉 − pΦ(x).

In a sense,W “measures the homogeneity” of Φ. If Φ is p-homogeneous, thenW = 0 according to Proposition
7.8.

We work with the operator

Lf = Tr
[

(D2Φ)−1D2f
]

−
〈

∇f, x

p− 1
− [∇ log detD2V ∗] ◦ ∇Φ

〉

,

described in Section 2. Recall that L is symmetric with respect to µ: for every smooth g vanishing in a
neighbourhood of ∂Ω ∪ {0} one has

−
∫

Lfgdµ =

∫

〈(D2Φ)−1∇f,∇g〉dµ.

The following lemma is proved by direct computations (and differentiation of change of variables).

Lemma 7.11. The following equation holds for all x ∈ Ω \ {0}:

LW (x) = 0.

Proof. One has
∇W (x) = D2Φ(x) · x+ (1− p)∇Φ(x).

For every e ∈ Rn

D2W · e = (2 − p)D2Φ · e+ (D2Φ)e · x,
(where (·)e indicates partial differentiation along e). Therefore, for every ei, ej ∈ Rn,

Weiej = 〈D2W · ei, ej〉 = (2− p)Φeiej + 〈∇Φeiej , x〉 = (2 − p)Φeiej +

n
∑

k=1

Φeiejekxk.

Thus

LW =

n
∑

k=1

〈(D2Φ)−1(D2Φ)ek · x, ek〉 − 〈D2Φ · x+ (1− p)∇Φ,
x

p− 1
− [∇ log detD2V ∗] ◦ ∇Φ〉+ (2− p)n.

Let ek, k ∈ {1, . . . , n}, be a basis of eigenvectors for D2Φ(x) at x:

D2Φ(x)ek = λkek,
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where λ1, . . . , λn are the eigenvalues of D2Φ(x). One gets the following expression for LW :

LW =

n
∑

k,j=1

Φekekej · xj
λk

− 〈D2Φ · x+ (1− p)∇Φ,
x

p− 1
− [∇ log detD2V ∗] ◦ ∇Φ〉+ (2− p)n. (30)

Taking logarithms in the transport equation for ∇Φ we get

Φ =
Φ∗(∇Φ)

p− 1
− log detD2Φ− log detD2V ∗(∇Φ) + C

for some constant C. Differentiating this equation along the vector field x we get

∇Φ =
1

p− 1
D2Φ · x−

n
∑

j=1

Tr(D2Φ)−1(D2Φ)ej · ej −D2Φ · [∇ log detD2V ∗] ◦ ∇Φ.

Here we have used the differentiation formula for determinants: ∂e log detD
2Φ = Tr(D2Φ)−1(D2Φ)e.

Whence

〈∇Φ, x〉 = 1

p− 1
〈D2Φ · x, x〉 −

n
∑

k,j=1

Φekekejxj

λk
· xj − 〈D2Φ · [∇ log detD2V ∗] ◦ ∇Φ, x〉.

Putting this expression into (30) one gets

LW =
1

p− 1
〈D2Φ · x, x〉 − 〈∇Φ, x〉 − 〈D2Φ · [∇ log detD2V ∗] ◦ ∇Φ, x〉

− 〈D2Φ · x+ (1− p)∇Φ,
x

p− 1
− [∇ log detD2V ∗] ◦ ∇Φ〉

=(1− p)〈∇Φ, [∇ log detD2V ∗] ◦ ∇Φ〉+ n(2− p)

=(1− p)〈x,∇ log detD2V ∗〉 ◦ ∇Φ + n(2− p).

The claim follows from the observation that detD2V ∗ is a n 2−p
p−1 -homogeneous function, hence

〈x,∇ log detD2V ∗〉 = n
2− p

p− 1
.

Proof of Theorem 7.9. We prove that W is constant. Set:

B = {x ∈ ∂Ω,Φ(x) <∞},

B∞ = {x ∈ ∂Ω,Φ(x) = +∞}.
Note that W = +∞ on B by Lemma 7.10, because |∇Φ|(xn) → ∞ as xn → x ∈ ∂Ω.

In what follows we consider a smooth, convex, non negative and decreasing function f , which vanishes
on [a,+∞) for some a. In addition, we assume that −f ′ ≤ C for some C > 0. Using the condition LW = 0,
which comes from the previous Lemma, one gets

Lf(W ) = f
′′

(W )〈(D2Φ)−1∇W,∇W 〉.

Note that f(W ) vanishes on some neighbourhood of B.
Let gN,ε be a family of smooth nonnegative functions, satisfying the following assumptions: gN,ε(t) = 0

for t ≤ ε
2 , gN,ε(t) is increasing on [ ε2 , ε], gN,ε = 1 on [ε,N ], gN,ε is decreasing on [N, 2N ], gN,ε = 0 on

[2N,∞).
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Note that gN,ε(Φ) vanishes in neighborhoods of B∞ and of the origin. Hence the product f(W )gN,ε(Φ)
vanishes on ∂Ω and has compact support not containing the origin. Thus one can integrate by parts
∫

f
′′

(W )gN,ε(Φ)〈(D2Φ)−1∇W,∇W 〉dµ =

∫

Lf(W )gN,ε(Φ)dµ = −
∫

f ′(W )g′N,ε(Φ)〈(D2Φ)−1∇W,∇Φ〉dµ.

Let us consider two monotone functions: g1N,ε and g2N,ε such that g1N,ε = gN,ε on −(∞, N ] and g1N,ε = 1 on

[N,+∞); g2N,ε = 1 on −(∞, N ] and g1N,ε = gN,ε on [N,+∞). Note that g1N,ε is non-decreasing and g2N,ε is
non-increasing. Note that

g′N,ε = (g1N,ε)
′ + (g2N,ε)

′.

In particular, the following holds
∫

f
′′

(W )gN,ε(Φ)〈(D2Φ)−1∇W,∇W 〉dµ =−
∫

f ′(W )(g1N,ε)
′(Φ)〈(D2Φ)−1∇W,∇Φ〉dµ (31)

+

∫

f(W )L
(

g2N,ε(Φ)
)

dµ.

We will choose gN,ε in such a way that limε,N gN,ε = 1 and the limit of the right-hand side of (31) is not
positive.

We estimate the first term of the right-hand side of (31) Using that f is decreasing and g1N,ε is increasing
we observe

−
∫

f ′(W )(g1N,ε)
′(Φ)〈(D2Φ)−1∇W,∇Φ〉dµ =−

∫

f ′(W )(g1N,ε)
′(Φ)〈x,∇Φ(x)〉dµ

+ (p− 1)

∫

f ′(W )(g1N,ε)
′(Φ)〈(D2Φ)−1∇Φ,∇Φ〉dµ

≤−
∫

f ′(W )(g1N,ε)
′(Φ)〈x,∇Φ(x)〉dµ

≤C
∫

(g1N,ε)
′(Φ)〈x,∇Φ(x)〉dµ.

Using approximations one can relax smoothness assumption and suppose that g1N,ε(t) = 2
ε t − 1 on [ε/2, ε]

for all N . Thus

−
∫

f ′(W )(g1N,ε)
′(Φ)〈(D2Φ)−1∇W,∇Φ〉dµ ≤ 2C

ε
∫

e−Φdx

∫

{Φ≤ε}
〈x,∇Φ(x)〉e−Φdx.

Then we estimate

1

ε

∫

{Φ≤ε}
〈x,∇Φ(x)〉e−Φdx ≤ 1

ε

∫

{Φ≤ε}
〈x,∇Φ(x)〉dx =

1

ε

(

−n
∫

{Φ≤ε}
Φ(x)dx +

∫

Φ=ε

Φ〈x, ν〉dHn−1
)

≤
∫

Φ=ε

〈x, ν〉dHn−1 = n|{Φ ≤ ε}|.

Thus we get

lim
ε→0

(

−
∫

f ′(W )(g1N,ε)
′(Φ)〈(D2Φ)−1∇W,∇Φ〉dµ

)

≤ 0.

Let us analyse the second term
∫

f(W )L
(

g2N,ε(Φ)
)

dµ

of the right-hand side of (31).
The function g2N,ε will not depend on ε and we will write

gN = g2N,ε.
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Recall that gN is supposed to be non-increasing and satisfying

0 ≤ gN ≤ 1, gN |(−∞,N ] = 1, gN |[2N,+∞) = 0.

We fix a decreasing smooth function ψ satisfying ψ(t) = 1 for t ≤ 0 and ψ(t) = 0 for t ≥ 1. Then we set

gN (t) = ψ
( t

N
− 1
)

for t ≥ N .
We observe that for some C > 0 one has

|g′

N (t)| ≤ C

N
, |g′′

N (t)| ≤ C

N2
e−

t
N .

One has

LgN(Φ) = g′N(Φ)
(

n(p− 1)− 1

p− 1
〈∇Φ(x), x〉

)

+ g
′′

N(Φ)〈(D2Φ)−1∇Φ,∇Φ〉 := I + II.

On the set {x : f(W (x)) > 0}, one has 〈x,∇Φ(x)〉 ≤ a+ pΦ(x). Finally, we obtain

I = f(W )|g′N (Φ)|
∣

∣

∣n(p− 1)− 1

p− 1
〈∇Φ(x), x〉

∣

∣

∣ ≤ c1
N

(1 + |W |) ≤ c2
N

(1 + Φ).

for some c1, c2 > 0. Since Φ ∈ L1(µ) we immediately conclude that
∫

f(W )Ie−Φdx→ 0 as N → ∞.

Next we use the bound |g′′

N (t)| ≤ C
N2 e

− t
N :

f(W )|g′′

N(Φ)| ≤ c

N2
e−

〈x,∇Φ(x)〉
pN

and
∫

f(W )IIe−Φdx =

∫

f(W )|g′′

N(Φ)|〈(D2Φ)−1∇Φ,∇Φ〉e−Φdx

≤ c

N2

∫

〈(D2Φ)−1∇Φ,∇Φ〉e−
〈x,∇Φ(x)〉

pN e−Φ(x)dx

=

∫

e−Φdx
∫

e−
Φ∗

p−1 dy

c

N2

∫

〈D2Φ∗y, y〉e−
〈y,∇Φ∗(y)〉

pN e−
Φ∗(y)
p−1 dy.

Finally, we get that for some constant d

∫

f(W )|g′′

N (Φ)|〈(D2Φ)−1∇Φ,∇Φ〉e−Φdx ≤ − d

N

∫

〈∇e−
〈y,∇Φ∗(y)〉

pN , y〉e−
Φ∗(y)
p−1 dy.

Integrating by parts we get

∫

f(W )|g′′

N (Φ)|〈(D2Φ)−1∇Φ,∇Φ〉e−Φdx ≤ − d

N

∫

Ω∗

〈∇e−
〈y,∇Φ∗(y)〉

pN , y〉e−
Φ∗(y)
p−1 dy

=
d

N

(

∫

Ω∗

(n− 〈∇Φ∗(y), y〉
p− 1

)

e−
〈y,∇Φ∗(y)〉

pN e−
Φ∗(y)
p−1 dy − d

N

∫

∂Ω∗

〈ν, y〉e−
〈y,∇Φ∗(y)〉

pN e−
Φ∗(y)
p−1 dHn−1.

Note that by Proposition 7.10 (applied to Φ∗) one has 〈y,∇Φ∗(y)〉 = +∞ on Ω∗, hence

∫

∂Ω∗

〈ν, y〉e−
〈y,∇Φ∗(y)〉

pN e−
Φ∗(y)
p−1 dvoln−1 = 0.
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Then we use that 〈∇Φ∗(y), y〉 ≥ 0 (because Φ∗ is even) and obtain

∫

f(W )|g′′

N (Φ)|〈(D2Φ)−1∇Φ,∇Φ〉e−Φdx ≤ dn

N

∫

e−
Φ∗(y)
p−1 dy → 0.

Finally

∫

f
′′

(W )〈(D2Φ)−1∇W,∇W 〉dµ = lim
N

∫

f
′′

(W )gN (Φ)〈(D2Φ)−1∇W,∇W 〉dµ ≤ 0.

From this we get ∇W = 0. The proof is complete.

Remark 7.12. Theorem 7.9 provides an alternative proof of the classical Blaschke–Santaló inequality (4)
without application of symmetrization argiments. Indeed, according to Theorem 5.1 there exists a maximizer
Φ of the classical functional BS. According to Theorems 7.5 and 7.9, Φ is a 2-homogeneous solution to the
corresponding Monge–Ampère equation. Then following the arguments from [16] one can prove that Φ is a
quadratic function. This establishes inequality (4).

Remark 7.13. Theorem 7.9 can be used to establish the precise form of maximizers in (5) in the rotationaly
invariant case (see Subsection 5.3). Unfortunately, we do not know any other examples of closed-form
solutions apart of the radially symmetric cases, where Theorem 7.9 can be used. We show in the following
subsection that homogeneity of the maximizers allows to reduce the problem to Lq-Minkowski problem, which
is in general ill-posed.

7.5 Relations to Lq-Minkowski problems

Lemma 7.14. Let Φ: Rn → R be α-homogeneous and convex, for some α ≥ 1. Then

• Φ ≥ 0 in Rn;

• φ = Φ1/α is a 1-homogeneous convex function, i.e. is the support fonction of a convex body (containing
the origin).

Proof. Let u be a unit vector. The function Φu : R → R defined by Φu(t) = Φ(tu) is a α-homogeneous
convex function on the real line. Hence it must be of the form ctα, for some c ≥ 0. This proves that Φ is
non-negative.

Let φ = Φ1/α. By convexity, for every s ≥ 0

{Φ ≤ s}

is convex. This proves that for every τ ≥ 0, the set

{φ ≤ τ}

is convex. This implies that
φ((1 − t)x0 + tx1) ≤ min{φ(x0), φ(x1)} (32)

for every x0, x1 ∈ Rn, for every t ∈ [0, 1]. Let x0, x1 ∈ Rn and let t ∈ [0, 1]. Set

x̄0 =
x0

φ(x0)
, x̄1 =

x1
φ(x1)

, t̄ =
tφ(x1)

(1− t)φ(x0) + tφ(x1)
.

Applying (32) to x̄0, x̄1 and t̄, and using the fact that φ is 1-homogeneous, one gets:

φ((1 − t)x0 + tx1) ≤ (1− t)φ(x0) + tφ(x1),

that is, φ is convex.
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The following computational result should be known to the experts, we give the proof for completeness
of the picture.

Let us fix a point ν ∈ Sn−1. We create a local coordinates system θ = (θ1, θ2, · · · , θn−1) in a neigh-
bourhood U0 ⊂ Sn−1 of ν as described below. Fix any orthogonal frame (e1, · · · , en−1) in the hyperplane
L = {θ : θ⊥ν} orthogonal to ν. Let θ = (θ1, · · · , θn−1) be the corresponding coordinate system with
orthonormal frame (e1, · · · , en−1) in L and

ν(θ) =
ν + θ√
1 + θ2

.

This θ → ν(θ) is a parametrization of a neighborhood of θ ∈ Sn−1 In particular, it is easy to check the
following relations: at the point ν one has

∂eiei = −ν, ∂eiej = 0, i 6= j.

This implies, in particular, that the Levi-Civita connection Γi
jk of Sn−1 vanishes at ν and, in particular, the

spherical Hessian ∇2
Sn−1 of a function f : Sn−1 → R at ν coincides with the matrix ∂θiθjf .

Next we consider the polar coordinate system (r, θ) on the cone C0 = R+ × U0:

C0 ∋ x = r · ν(θ).

Lemma 7.15. Let Φ be a function defined on the neighbourhood of x0 = r0 · ν. The Euclidean Hessian of Φ
has the following representation in the frame (ν, e1, e2, · · · , en−1) ant the point x0:

D2Φ =













Φrr
Φrθ1

r − Φθ1

r2 · · · Φrθn−1

r − Φθn−1

r2
Φrθ1

r − Φθ1

r2 a1,1 · · · a1,n−1

...
... ai,j

...
Φrθn−1

r − Φθn−1

r2 an−1,1 · · · an−1,n−1













,

where

A = (ai,j)(n−1)×(n−1) =
Φr

r
δij +

1

r2
∇2

Sn−1Φ.

and ∇2
Sn−1Φ is the spherical Hessian of the function θ → Φ(r0 · θ).

Proof. To prove the Lemma we perform the following computations at x = x0 = r0 · ν:

∂2rrΦ(x) = ∂r(〈∇Φ(x), ν〉) = ∂ν〈∇Φ(x), ν〉 = 〈D2Φ(x)ν, ν〉 + 〈∇Φ(x), ∂νν〉 = 〈D2Φ(x)ν, ν〉,

∂2rθiΦ(x) = ∂r
(

∂θiΦ(x)
)

= ∂r
(

r · ∂eiΦ(x)
)

= ∂eiΦ(x) + r∂r
(

∂eiΦ(x)
)

= ∂eiΦ(x) + r∂ν 〈ei,∇Φ(x)〉
= ∂eiΦ(x) + r〈∂νei,∇Φ(x)〉 + r〈ei, D2Φ(x) · ν〉 = ∂eiΦ(x) + r〈ei, D2Φ(x) · ν〉

=
∂θiΦ(x)

r
+ r〈ei, D2Φ(x) · ν〉,

∂2θiθjΦ(x) = ∂θi
(

∂θjΦ(x)
)

= r∂ei
(

r∂ejΦ(x)) = r2∂ei
(

〈ej ,∇Φ(x)〉) = r2
(

〈∂eiej,∇Φ(x)〉 + 〈ej , D2Φ(x) · ei〉
)

= r2
(

−∂νΦ(x)
r

δij + 〈ej, D2Φ(x) · ei〉
)

= −r∂rΦ(x) + r2〈ej , D2Φ(x) · ei〉.

Using these formulas one can easily get the desired expression forD2Φ. We remind the reader that ∇2
Sn−1Φ =

(∂2θiθjΦ).
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Corollary 7.16. Let Φ = rαφα be a α-homogeneous convex function, where φ is the restriction of Φ
1
α onto

Sn−1. Then
detD2Φ = (α− 1)αnrn(α−2)φ(α−1)n+1 det(φδij +∇2

Sn−1φ).

Proof. Apply previous Lemma. One has

Φrr = α(α − 1)rα−2φα

Φrθi

r
− Φθi

r2
= α(α − 1)rα−2φα−1φθi

A = rα−2
(

αφαδij + αφα−1∇2
Sn−1φ+ α(α − 1)φα−2∇Sn−1φ⊕∇Sn−1φ

)

.

Assume that the frame (e1, · · · , en−1) is chosen in such a way that the matrix φδij +∇2
Sn−1φ is diagonal with

eigenvalues λi. Then D
2Φ takes the form D2Φ = αrα−2φα−1C, where

C =











(α − 1)φ (α− 1)φθ1 · · · (α− 1)φθn−1

(α − 1)φθ1 b1,1 · · · b1,n−1

...
... bi,j

...
(α− 1)φθn−1 bn−1,1 · · · bn−1,n−1











,

and

bi,j = λi · δij +
α− 1

φ
φθiφθj .

Elementary computations give detC = (α − 1)φ
∏n−1

i=1 = (α − 1)φdet(φδij +∇2
Sn−1φ). This completes the

proof.

Now let p > 1, and assume that the potential V is p-homogeneous. In particular, V and V ∗ have the
following forms

V (x) = |x|pvp
( x

|x|
)

, V ∗(x) = |x|p∗

ṽp
∗
( x

|x|
)

,

where
p∗ =

p

p− 1
.

According to Theorem 7.9, any symmetric maximum point Φ of the functional BSp,V is p-homogeneous.
Thus the similar representation holds

Φ(x) = |x|pφp
( x

|x|
)

, Φ∗(x) = |x|p∗

φ̃p
∗
( x

|x|
)

.

Applying the change of variables formula

1
∫

e−
Φ∗

p−1 dy
e−

Φ∗

p−1 detD2V ∗ =
1

∫

e−Φdx
e−Φ(∇Φ∗) detD2Φ∗,

the relation Φ = 1
p−1Φ

∗(∇Φ) and Corollary 7.16, we get the following result.

Theorem 7.17. The following equation holds

φ̃(p
∗−1)n+1 det(φ̃δij +∇2

Sn−1 φ̃) = Cṽ(p
∗−1)n+1 det(ṽδij +∇2

Sn−1 ṽ), (33)

where C =
∫
e
− Φ∗

p−1 dy∫
e−Φdx

.
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The above Theorem establishes that any maximizer of BSp,V is a solution to a corresponding Lq-
Minkowski problem. This fact gives in a sense more precise information about relation between the functional
and the set versions of the problem (see Proposition 1.3).

In particular, uniqueness of solution to (33) (for fixed C, ṽ and unknown φ̃) would imply an affirmative
answer to Question 1.2. Unfortunately, it is known that in general equation (33) has many (possibly, infinitely
many) solutions for those values of p which are of interest for us (see [18], [33], [36], [57]).

Remark 7.18. Note that a variational problem related to equation (9) is known in the literature about
Lq-Minkowski problem. Usually it is stated in the following form: maximize the functional

∫

Sn−1

hqfdx

with constraint |Kh| = 1, where h is the support function of Kh. Then the solution satisfies equation (9).
This problem is equivalent to our maximization problem (6) for sets.

8 Strong Brascamp-Lieb inequalities

In this section we study the following strengthening of BSp,V on the set of even functions:

Varµf ≤ λ

∫

〈(D2V )−1∇f,∇f〉dµ, (34)

with λ < 1. Here µ = e−V (x)dx∫
e−V (x)dx

. As we have seen in Subsection 7.3, the maximizers of the generalized

Blaschke–Santaló functional satisfy (34) with λ = 1 − 1
p . We estimate the best value of λ in (34) for log-

concave measures with potential of the form V = c|x|pq . We prove that in general (34) fails to hold with

λ = 1− 1
p . This proves, in particular, that V is not always maximizer for BSp,V

8.1 Powers of lq-norms

In this subsection we study strong Brascamp–Lieb inequality for measure

µ =
e−

|x|
p
q

p dx
∫

e−
|x|

p
q

p dx

=
e−

1
p

(∑n
i=1 |xi|q

)
p
q

dx
∫

e−
|x|

p
q

p dx

.

All the functions below are assumed to be even.

Remark 8.1. Due to homogeneity invariance the constant λ in (34) remains the same for V = c|x|pq with
any c > 0.

At the first step we do the following change of variables:

xi = sign(yi)|yi|
2
q .

The reader can easily verify that the image of µ under the mapping x→ y(x) coincides with

ν =
1

C
e−

1
p
|y|

2p
q
(

n
∏

i=1

|yi|
)

2
q
−1

dy.

The measure ν can be represented in polar coordinates as follows:

ν = γ(dr)m(dθ),
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where

γ =
e−

1
p
r

2p
q

r
2n
q
−1dr

∫∞
0 e−

1
p
r

2p
q

r
2n
q
−1dr

and m is a probability measure on Sn−1 which has the form

m =
|y1 · · · yn|

2
q
−1 · σ

∫

Sn−1 |y1 · · · yn|
2
q
−1dσ

,

where σ is the normalized probability surface measure on Sn−1.
We are interested in the best estimate of λ in the strong Brascamb–Lieb inequality for µ

Varµf ≤ λ

∫

〈(D2V )−1∇f,∇f〉dµ, (35)

where V = 1
p

(
∑n

i=1 |xi|q
)

p
q .

Remark 8.2. Note that the best value of λ we can hope for is 1 − 1
p . Indeed, let V be p-homogeneous and

convex. One can easily prove that f = 〈∇V (x), x〉 satisfies equality Varµf = λ
∫

〈(D2V )−1∇f,∇f〉dµ, with
λ = 1− 1

p .

Indeed, one has f = pV , ∇f = p∇V and 〈(D2V )−1∇f,∇f〉 = p2〈(D2V )−1∇V,∇V 〉 = p2

(p−1) 〈x,∇V (x)〉.
Integrating by parts one gets

∫

fdµ =

∫

〈∇V (x), x〉dµ = n,

∫

f2dµ = p

∫

V (x)〈x,∇V (x)〉dµ = np

∫

V dµ+ p

∫

〈x,∇V (x)〉dµ = (n+ p)

∫

〈x,∇V (x)〉dµ = n(n+ p).

Thus Varµf = np. On the other hand
∫

〈(D2V )−1∇f,∇f〉dµ = p2

p−1

∫

〈x,∇V (x)〉dµ = np2

p−1 . This proves the
claim.

One has ∇V =
(
∑n

i=1 |xi|q
)

p
q
−1
a,

D2V (x) =
(

n
∑

i=1

|xi|q
)

p
q
−1
[

(q − 1)diag(|xi|q−2) + (p− q)
a⊕ a

∑n
i=1 |xi|q

]

=
(

n
∑

i=1

|xi|q
)

p
q
−1

diag(|xi|
q
2−1)

[

(q − 1)I + (p− q)
b⊕ b

∑n
i=1 |xi|q

]

diag(|xi|
q
2−1)

where a = (sign(xi)|xi|q−1) and b = (sign(xi)|xi|
q
2 ).

Let us make the change of variables. Apply inequality (35) to f = g(sign(xi)|xi|
q
2 ). One has

Varµf = Varνg

and

〈(D2V )−1∇f,∇f〉 = q2

4|y|2(p
q
−1)

〈
[

(q − 1)I + (p− q)
y ⊕ y

|y|2
]−1

∇g(y),∇g(y)〉.

Thus we get that (35) is equivalent to the following inequality:

Varνg ≤ λq2

4(q − 1)

∫

1

|y|2( p
q
−1)

〈

(I +
(p− q

q − 1

)y ⊕ y

|y|2
)−1∇g(y),∇g(y)

〉

dν.
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In what follows we denote by ∇Sn−1g the projection of ∇g onto Sn−1:

∇Sn−1g(y) = g −
〈

∇g(y), y
r

〉y

r
.

Note that

∇θg =
∇Sn−1g

r
.

Thus ∇g = gr · y
r +∇Sn−1g, where |y| = r. We get that in polar coordinates the last inequality looks like

Varνg ≤ λq2

4(q − 1)

∫ ∫

1

r2(
p
q
−1)

(q − 1

p− 1
g2r +

|∇θg|2
r2

)

γ(dr)m(dθ). (36)

Let gr(θ) =
∫∞
0 g(r, θ)dγ. One has

Varνg = Varν(g − gr(θ)) + Varν(g
r(θ)).

To estimate the first term we apply the following one-dimensional Poincaré-type inequality and the Fubini
theorem.

Vare−udr(g) ≤
∫ +∞

0

(g′)2

u′′ + u′

r

e−udr. (37)

Inequality (37) is the 1-dimensional case of the result obtained by Cordero-Erausquin and Rotem (see
Theorem 3 in [23]). Note that one can extend measures and functions symmetrically to get an equivalent
inequality on R, and then apply the result from [23] for n = 1.

In particular, one gets

Varν(g − gr(θ)) ≤ q2

4p

∫

g2r

r2(
p
q
−1)

dν.

To estimate the second term we apply Poncaré inequality for measure m for even functions with the best
constant Cm

Varν(g
r(θ)) = Varm(gr(θ)) ≤ Cm

∫

|∇θg
r(θ)|2dm

= Cm

∫

r2
∣

∣

∣

∫

∇Sn−1gdγ
∣

∣

∣

2

dm ≤ Cm

∫

r
2p
q dγ

∫ |∇Sn−1g|2

r2
(

p
q
−1
) dν.

Next we compute

∫

r
2p
q dγ =

∫∞
0
e−

1
p
r

2p
q

r(
2n
q
−1)+ 2p

q dr

∫∞
0 e−

1
p
r

2p
q

r(
2n
q
−1)dr

= − q
2

∫∞
0

(

e−
1
p
r

2p
q )′

r
2n
q dr

∫∞
0 e−

1
p
r

2p
q

r(
2
nq

−1)dr

= n.

Finally, we get that every even g satisfies

Varνg ≤ q2

4p

∫

g2r

r2(
p
q
−1)

dν + nCm

∫ |∇Sn−1g|2

r2
(

p
q
−1
) dν.

Thus comparing this result with (36) we obtain get the following

Proposition 8.3. Assume that

λ ≥ 1− 1

p
, Cm ≤ λq2

4n(q − 1)
.

Then inequality (35) holds on the set of even functions.
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Thus we have reduced our problem to the following question: what is the best Poincaré inequality on the
set of even functions for the measure m?

The associated weighted Laplacian for m has the form

Lf = ∆Sn−1f +
(2

q
− 1
)

〈ω,∇Sn−1f〉,

where ∆Sn−1 ,∇Sn−1 are the spherical Laplacian and gradient,

ω =
( 1

x1
, · · · , 1

xn

)

.

Thus we have to find the first non-zero eigenvalue on the domain of even functions for operator L.

Remark 8.4. Making appropliate change of variables one can show that for n = 2 equation Lf = −λf
can be reduced to the so-called Legendre equation and the corresponding eigenvalue functions are known as
Legendre functions. In general, they are not elementary,

For the sake of simplicity the computations below are done on {xi > 0}. Recall that Euclidean and
spherical Laplacians are related by

∆ = ∂2r +
n− 1

r
∂r +

1

r2
∆Sn−1 .

Using this representation, we get immediately

Lxi = −
(2n

q
− 1
)

xi +
2− q

qxi

Lx2i = −4n

q

(

x2i −
1

n

)

L(xixj) = −4n

q
xixj +

(2

q
− 1
)(xi

xj
+
xj
xi

)

, i 6= j.

Lemma 8.5. Let i 6= j. Then

L
[

(xixj)
N
]

= −4N
[n

q
+N − 1

]

(xixj)
N +N

[

N +
2

q
− 2
]

(xixj)
N−1(x2i + x2j ).

In particular

L(x2ix
2
j )

1− 1
q = −8

(

1− 1

q

)(

1 +
n− 2

q

)

(x2i x
2
j )

1− 1
q .

Proof. One has

L
[

(xixj)
N
]

= N(xixj)
N−1L(xixj) +N(N − 1)(xixj)

N−2|∇Sn−1(xixj)|2.

One can easily verify:
∇Sn−1(xixj) = xjei + xiej − 2xixj · x

and
|∇Sn−1(xixj)|2 = x2i + x2j − 4x2ix

2
j .

Thus

L
[

(xixj)
N
]

= N(xixj)
N−1

[

−4n

q
xixj +

(2

q
− 1
)(xi

xj
+
xj
xi

)]

+N(N − 1)(xixj)
N−2

[

x2i + x2j − 4x2ix
2
j

]

= −N(xixj)
N
[4n

q
+ 4(N − 1)

]

+N(xixj)
N−1

[(2

q
− 1
)

+N − 1
]

(x2i + x2j ).

This completes the proof.
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We observe that L preserves even and unconditional functions. Using this observation and the above
computations, we obtain the following corollary.

Corollary 8.6. The following functions are eigenfunctions of L:

•

x2i −
1

n

with eigenvalue − 4n
q .

•

|xixj |2
(

1− 1
q

)

with eigenvalue −8
(

1− 1
q

)(

1 + n−2
q

)

.

Theorem 8.7. The best constant Cm of measure m in the Poincarè inequality on the set of even functions
satisfies

Cm = max
( q

4n
,

q2

8(q − 1)(n+ q − 2)

)

.

Proof. Given even function f we represent it as follows

f =
∑

a∈{0,1}n

fa, (38)

where every function fa(x1, · · · , xn) is even in xi if ai = 0 and odd in xi if ai = 1. For instance, if all ai are
zero, then fa is unconditional. Note that if a = (a1, · · · , an) contains odd amount of 1, then fa = 0, because
f is even.

To obtain this representation we use the operators

σi(x) = (x1, · · · ,−xi, xn)

and

T+
i f =

f(x) + f(σi(x))

2
, T−

i f =
f(x)− f(σi(x))

2
.

Note that f(x) = T+
i f + T−

i f , where T
+
i f is even in xi and T

−
i f is odd in xi. Consequently applying the

operators
T±
1 , T

±
2 , · · · , T±

n ,

we obtain representation (38), where
fa = T b1

1 · · ·T bn
n f.

Here bi = 1, if ai = 1 and bi = −1 if ai = 0.
Next we note that

Varmf =
∑

a∈{0,1}n

Varmfa.

This is because fafb is odd at least in one variable for a 6= b, hence
∫

fafbdm = 0, because measure m is
unconditional.

Similarly
∫

Sn−1

|∇Sn−1f |2dm =
∑

a∈{0,1}n

∫

Sn−1

|∇Sn−1fa|2dm.
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Indeed, let a 6= b. There exists j such that fa (say) is even in xj and fb is odd in xj . Then ∂xi
fa · ∂xi

fa is
odd in xj for all i. Indeed, if i 6= j, then ∂xi

fa is even in xj and ∂xi
fb is odd in xj . If i = j, then ∂xi

fa is
odd in xj and ∂xi

fb is even in xj Finally,
∫

∂xi
fa · ∂xi

fadµ = 0 and

∫

〈∇fa,∇fb〉dµ =

n
∑

i=1

∫

∂xi
fa · ∂xi

fb dµ = 0.

Thus we have reduced the statement to the case of fa for arbitrary f, a.
For an unconditional function f0 we have

Varmf0 ≤ q

4n

∫

Sn−1

|∇Sn−1f0|2dm. (39)

Indeed, Theorem 5.19 and Proposition 1.7 imply inequality (34) for unconditional functions for q > 1 with
λ = 1 − 1

q . Then we deduce (39) applying (34) to homogeneous functions (see computations in the next

subsection).
Let a contain a non-zero amount of 1. We have shown above that this is an even number. For simplicity

let us assume that a1 = a2 = 1. Then fa = 0 on the sets {x1 = 0}, {x2 = 0}. Using this observation and

identity Lg = −λg, where g = |xixj |2(1−
1
q
), λ = −8

(

1− 1
q

)(

1 + n−2
q

)

one gets

λVarmfa = λ

∫

Sn−1

f2
adm = −

∫

Sn−1

f2
a

Lg

g
dm = 2

∫

Sn−1

〈∇Sn−1g,∇Sn−1fa〉
g

fadm−
∫

Sn−1

f2
a

|∇Sn−1g|2
g2

dm

≤
∫

Sn−1

|∇Sn−1fa|2dm.

This completes the proof.

Theorem 8.8. Assume that

λ ≥ max
(

1− 1

p
, 1− 1

q
,

1

2(1 + q−2
n )

)

.

Then inequality (35) holds on the set of even functions.
In particular, if p ≤ q, then one can take

λ = 1− 1

q
, if q ≥ 2,

λ =
1

2(1 + q−2
n )

, if q ≤ 2.

Inequality (35) is sharp and holds with λ = 1− 1
p if

p ≥ q, p ≥ 2(n+ q − 2)

n+ 2(q − 2)
= 2− 2(q − 2)

n+ 2(q − 2)
.

Proof. The estimate of λ follows from Proposition 8.3 and Theorem 8.7. The sharpness result follows from
the observation that the value 1 − 1

p in inequality Varµf ≤
(

1 − 1
p

) ∫

〈(D2V )−1∇f,∇f〉dµ, where V is p-

homogeneous can not be improved, because Varµf =
(

1− 1
p

) ∫

〈(D2V )−1∇f,∇f〉dµ for f = 〈∇V (x), x〉.

8.2 Counterexamples to the strong Brascamp–Lieb inequality

Theorem 8.8 gives, in particular, sharp inequalities Varµf ≤
(

1− 1
p

) ∫

〈(D2V )−1∇f,∇f〉dµ for

V =
1

p
|x|pq
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if
p ≥ q ≥ 2

and

q < 2, p ≥ 2− 2(q − 2)

n+ 2(q − 2)
.

Note that in both cases the best constant in the inequality (34) is strictly bigger than 1
2 except the Gaussian

case p = q = 2.
Unfortunately, we can not claim that the values of λ in other cases are optimal. However, we are able to

answer the following natural questions:

1. Is it true that inequality (34) holds with p = q < 2 and λ = 1− 1
q ?

2. Is it true that inequality (34) holds with p = 2, λ = 1
2 , and some q 6= 2?

The answers to both questions are negative. Indeed, in the first case the inequality in question is
equivalent (see (36)) to

Varνg ≤ q

4

∫ ∫

(

g2r +
|∇θg|2
r2

)

γ(dr)m(dθ)

with

γ =
e−

1
q
r2r

2n
q
−1dr

∫∞
0
e−

1
q
r2r

2n
q
−1dr

, m =
|y1 · · · yn|

2
q
−1 · σ

∫

Sn−1 |y1 · · · yn|
2
q
−1dσ

.

Apply this inequality to g = r2ω(θ) with
∫

ωdm = 0. One gets

Varνg =

∫

r4dγ ·
∫

ω2dm

q

4

∫ ∫

(

g2r +
|∇θg|2
r2

)

γ(dr)m(dθ) =
q

4

∫

r2dγ ·
(

4

∫

ω2dm+

∫

|∇θω|2dm
)

Applying integration by parts, we get

∫

r4dγ =
q

2

(

2 +
2n

q

)

∫

r2dγ.

After rearrangement of the terms we get inequality Varmω ≤ q
4n

∫

|∇θω|2dm for arbitrary symmetric ω. But

this contradicts Theorem 8.7, because the best constant in the Poincarè inequality is q2

8(q−1)(n+q−2) >
q
4n .

To prove that inequality

Varµf ≤ 1

2

∫

〈(D2V )−1∇f,∇f〉dµ,

where p = 2, does not hold for all values of q except 2 we use the same arguments: apply the corresponding
equivalent inequality (36) to function f with appropriate degree of homogeneity (this is 4

q ) and show that it
contradicts the sharp estimate obtained in Theorem 8.7. We omit the computations here.
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