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Abstract
This paper introduces models developed for the ImageCLEFmed 2024 MEDVQA-GI task, aimed at leveraging
text-to-image generative models to create a comprehensive dataset of artificial colonoscopy images from textual
prompts. The task’s complexity arises from the novel and relatively uncharted nature of the provided training
dataset, its limited size, and the specificity required in the generated images. We explore multiple approaches,
including the efficient fine-tuning of large generative models such as Kandinsky and the modification of conditional
latent Diffusion Probabilistic Models (DDPMs) tailored to text prompts. Our model achieved first place, with a
Frechet Inception Distance (FID) score close to 0.1 on the official test set, reflecting the high quality and realism
of the generated images.
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1. Introduction

The development of artificial neural networks for healthcare applications has recently become one
of the most promising research directions within the field of artificial intelligence. Neural networks
are widely used in medicine for various tasks, such as medical image segmentation [1], disease and
anomaly detection, and diagnosis [2, 3, 4]. However, a major challenge in this area is the need for large
volumes of annotated data to train the models. The acquisition of such data is complicated by patient
confidentiality concerns and the necessity of involving qualified specialists for annotation.

Research in this field has been hindered for a long time by the lack of sufficient training data. Recently,
there has been an increasing interest in the idea of creating synthetic medical images using generative
neural networks. This represents an important area of study and has been explored in several papers
[5, 6, 7]. The ImageCLEFmed [8] MEDVQA-GI 2024 Image Synthesis challenge [9] aims to utilize
text-to-image generative models for creating medical images based on textual prompts. This involves
generating images of various medical conditions from provided text descriptions. For example, if given
a text description such as “An early-stage colorectal polyp”, models are expected to produce an image
that accurately reflects the given description.

This study addressed the ImageCLEFmed MEDVQA-GI 2024 task by investigating several generative
models. Our work focuses primarily on fine-tuning large generative models using parameter-efficient
fine-tuning techniques and modifying conditional diffusion models to better accommodate textual
prompts. The fine-tuning of the Kandinsky model [10] was divided into three stages: initial training of
the decoder model with a LoRa [11] rank of 32, followed by experiments with the Prior model using
various LoRa [11] ranks, and finally fine-tuning the decoder with the best-performing Prior model.
As an alternative approach, we proposed a model named MSDM based on Stable Diffusion [12] with
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two components — VAE [13] and U-Net [1] - and Text Encoder with CrossAttention within the U-Net
blocks. In addition, we explored several image and text augmentation techniques to enhance the dataset
provided by the organizers.

This article is organized as follows: Section 2 reviews relevant research, Section 3 details the re-
search problem and data, Section 4 outlines the models and architectures used, Section 5 presents the
experimental design and results, and Section 6 summarizes the findings and discusses future directions.

2. Related Work

For a significant period, generative adversarial networks (GANs) dominated this field, demonstrating
promising results [14, 15, 16, 17, 18]. However, the emergence of diffusion models [19, 20, 12, 1] has
significantly changed the landscape. Recent studies suggest that diffusion models can outperform GANs
in terms of quality or exhibit similar performance in most tasks, including medical image generation
[21, 22, 23, 24, 25, 26, 27]. Moreover, Savchenko et al. [28] demonstrate how leveraging textual clues
can significantly enhance the interpretation of images. Müller-Franzes et al. [29] summarizes various
studies comparing GANs and diffusion models in the context of medical image generation. It concludes
that diffusion models generally outperform GANS both in terms of image quality and addressing issues
associated with GANs, such as mode collapse and instability during training.

Recently, one of the most popular directions in this field has been the generation of medical images
through fine-tuning large generative models. Although these models, in their original configurations, do
not always perform well on highly specific tasks, they possess significant general generative capabilities
that can be leveraged to create higher-quality images.

One of the most popular and effective fine-tuning techniques is the LoRa (Low-Rank Adaptation)
method, which was first proposed by Hu et al. [11]. Rather than training all parameters in a model,
the LoRa technique involves adding low-rank matrices to the weights of the model. This allows us to
approximate changes in the weights using a smaller number of parameters, which has been shown to
be highly efficient and has become widely popular.

Another popular method for adapting large models for specialized tasks is the Textual Inversion
approach, which was presented by Gal et al. [30]. This approach aims to train a model to associate new
concepts with specific textual tokens. The idea is to introduce “virtual“ tokens that represent specific
visual concepts or styles and then train these tokens such that they can be used in text prompts to
generate images with desired characteristics.

De Wilde et al. [31], Chambon et al. [32] applied the aforementioned techniques to fine-tune the
Stable Diffusion model [12] on small specialized datasets. Both techniques demonstrated high flexibility
and efficiency. However, ultimately, the authors concluded that direct fine-tuning of the model is
preferable compared to using the Textual Inversion method.

3. Task and Dataset Description

3.1. Task

In this study, we address a task in the domain of developing innovative approaches for creating
artificial medical images — ImageCLEFmedical Visual Question Answering for Colonoscopy Images
2024 (ImageCLEFmed MEDVQA-GI) [9] , proposed at the international ImageCLEF 2024 task [8].

Our focus is on the first of two subtasks in this competition — ImageCLEFmed MEDVQA-GI 2024
Image Synthesis. This subtask involves developing a machine learning algorithm that transforms textual
descriptions into pictures to create a set of artificial medical images simulating the results of procedures
such as colonoscopy and gastroscopy.

Participants are required to provide a model capable of generating images from textual queries that
closely resemble real images of the human digestive system (esophagus, stomach, intestines), both
pathological changes and normal conditions.



3.2. Dataset

(a) Generate an image with 1
polyp.

(b) Generate an image with polyps
of size 5-10mm and 11-20mm.

(c) Generate an image with an ab-
normality located in the upper-
right, lower-right, and center-
right.

Figure 1: An example of images (with the original proportions preserved) and their corresponding text queries
from the Development Dataset.

The participants were provided with two datasets for this task: the development and testing datasets.
The development dataset consists of 20,241 pairs of "text-images". The texts in these pairs represent

examples of queries that the final model should be able to process, and they generally reflect the content
of the corresponding images. It is important to note that not all data in the dataset are unique. There
are a total of 2,000 different images and 483 unique text queries in the dataset. Accordingly, each pair
represents a diverse combination of these elements, with each image having an average of approximately
10 different suitable descriptions (ranging from 7 to 14). Examples of images and their descriptions are
presented in Figure 1. We divided the development dataset into a training and a validation set. The
validation set consists of 200 images with approximately 2,000 associated descriptions, while the training
subset includes the remaining 1,800 images, along with approximately 18,000 related descriptions. We
used the train set to train models and the validation set to correctly evaluate their quality in terms of
the loss function.

The testing dataset, in contrast, only contains text queries that will be used for image generation by
the final model. This dataset contains 5,000 queries, of which 260 are unique. Each of these test queries
also appears in the training dataset, ensuring that the model has seen them before.

4. Methodology

In this study, we tested two different approaches to solving the task.

4.1. Fine-tuning Large Models

The initial hypothesis of this research posited that pre-trained large generative models would be the
most effective in generating the required images. These models exhibit a high capability for image
creation due to their training on diverse and extensive datasets, which enables them to capture complex
patterns and structures. To adapt such models to this specific task, it was necessary to fine-tune them
on the available data. However, large generative models typically possess a large number of trainable
parameters and require substantial computational resources for complete retraining. Therefore, the
most feasible approach was to employ efficient fine-tuning tools, with the most advanced method being
LoRA (Low-Rank Adaptation) [11].

For fine-tuning, the Kandinsky model family [10] was selected. This choice was driven by several
factors. Firstly, Kandinsky is one of the most powerful image generation models, ranking among the
best in the world [33]. Secondly, its weights have been made publicly available by the developers,
significantly simplifying the process of working with the model.



4.1.1. Kandinsky 2.2

Initially, the Kandinsky 2.2 model [10] was tested, as it demonstrated high-quality results while requiring
fewer training resources compared to the more recent Kandinsky 3.0 model [34]. The architecture of
Kandinsky 2.2 consists of the following components:

1. Image Prior Model: The DiffusionMapping [35] model, which generates a visual embedding
using CLIP [36] from a given text prompt or CLIP text embedding, all while remaining within the
paradigm of latent visual space. The CLIP model used is CLIP-ViT-G.

2. Image Decoder: A U-Net [1] diffusion model employed for the generation of images.
3. Sber-MoVQGAN [37]: A modified version of VQGAN [38] developed by the authors, which has

demonstrated high quality in experiments.

The Image Prior model synthesizes a visual embedding from a given text, which is subsequently used
in the image decoder’s training process. This way, the reverse diffusion mechanism learns to reconstruct
the latent representation of an image not only from textual input but also from visual embeddings,
thereby enhancing the overall quality. During the course of working with the model, checkpoints
[39, 40] provided by the authors on the Hugging Face [41] platform were utilized.

4.1.2. Kandinsky 3.0

Kandinsky 3.0 [34] is a newer version of the Kandinsky model. It is significantly larger in size and has
been trained on a much larger dataset than previous versions. Its developers claim that this model
can achieve better results when used with LoRa than its predecessors. Therefore, we have decided to
include it in this study.

In Kandinsky 3.0, the developers have abandoned the two-stage generation process that was used
in Kandinsky 2.2 and adopted a more traditional approach by directly feeding text into the model.
This change was made possible by the development of new large language models that have a better
understanding of text than the CLIP text encoder used in previous versions. As a result, the new
architecture consists of three main components:

1. FLAN-UL2 [42]: A large language model based on the T5 architecture [43]. In Kandinsky 3.0,
only the Encoder of this model is utilized.

2. U-Net with a modified architecture: A U-Net model, which primarily consists of BigGAN-deep
blocks [44], allowing for a doubling of the architecture’s depth while maintaining the same overall
number of parameters.

3. Sber-MoVQGAN: The same decoder as used in version 2.2.

These architectural modifications significantly simplified the training and fine-tuning processes.
Only the U-Net requires training, while all other models are used in a frozen state. As with the previous
version, for fine-tuning Kandinsky 3.0, the weights [45] provided by the authors on Hugging Face [41]
were used.

4.2. MSDM: Medical Synthesis with Diffusion Models

4.2.1. MSDM Architecture

In addition to efficient training of large models, we propose a denoising diffusion probabilistic model
(DDPM) designed for text-guided medical image generation. Our proposed model named MSDM is based
on the Medfusion model [29], which is based on Stable Diffusion [12] and comprises two components
— VAE [13] and U-Net [1], which need to be trained sequentially. In its initial configuration, the
Medfusion model was not designed for text-to-image generation, as Müller-Franzes et al. [29] worked
with class labels. Therefore, we extend this architecture with the following modifications (Figure 2):



(a) MSDM U-Net architecture (b) MSDM U-Net blocks

Figure 2: MSDM architecture

1. Integration of CrossAttention layers within the U-Net blocks, which facilitates the extraction
of information from text embeddings during training;

2. FeedForward layer after each CrossAttention layer.

For text encoding, the CLIP ViT-L/14 model [46] was employed. This model was chosen because
it demonstrates good performance while maintaining a relatively small size and is recommended as
a standard solution by the Hugging Face community [41]. Despite the trend towards replacing CLIP
with larger language models, the uniformity and simplicity of texts in the utilized dataset render the
application of such models excessive for this study.

4.2.2. Text Diversity Enhancement with Paraphrasing

Insufficient text diversity in the training dataset might lead to model overfitting, causing the generation
of homogeneous images for each given text. To address this issue, we utilize two potential approaches:

1. Implementing the context dropout technique, which randomly drops descriptions during training
with a certain probability, thus replacing conditional generation with unconditional generation.

2. Increasing the diversity of the existing set of texts using a generative language model.

We used the GPT Turbo 3.5 model [47] to generate new texts. Using this model, we prepared a set of
paraphrased original texts, increasing the number of unique elements from 483 to over 11,000.

We experimented with several strategies:

1. Adding paraphrased descriptions to the original texts.
2. Randomly replacing some of the original texts with paraphrased ones.
3. Completely replacing all original texts with paraphrased versions.

Our experiments on the validation set show that the best result was achieved in the first experiment by
adding paraphrased texts to the originals (Section 5.1.4). In the other two cases, the model’s performance
on original texts deteriorated.

5. Experiments and Results

5.1. Experiments on the Development Dataset

5.1.1. Experimental Setup

To evaluate the performance of the model, we considered several metrics. First, we examined the
Fréchet Inception Distance (FID) score [48], which was mentioned by the organizers as a key metric for



this task. In addition, we assessed the quality and variety of images using Precision and Recall metrics
adapted for image evaluation [49, 50], as well as F1-score metrics that combine these measures.

To calculate the metrics, we used all 2,000 images from the development dataset as a set of real data,
as the FID metric heavily relies on the number of images under evaluation. We generated artificial
images for evaluation within 150 generation steps, as this number of iterations is optimal in terms of
balance between time spent and metric quality, as shown in the paper [29] and confirmed through our
own experiments. The TorchMetrics module [51] was used for the metric calculation.

During the training and validation of the models, images of size 256 × 256 pixels were utilized,
as this size was found to be optimal in terms of striking a balance between memory requirements
for calculations and the final image quality. Additionally, the model architectures employed are well-
suited for working with this resolution. For the training and fine-tuning of each model, the AdamW
optimizer [52] was employed with default parameters unless otherwise specified. In the course of each
of the experiments described, the selection of the optimal value for the learning rate parameter (lr) was
carried out. However, in all cases, the value of lr=10−4 was found to be optimal. Therefore, it can be
assumed, by default, that this value of the parameter is used unless specified otherwise.

Each of the Kandinsky models was trained for a default of 100 epochs, with the model demonstrating
the best performance during this training period being selected for further evaluation. In contrast, the
MSDM model underwent an extended training regime of 500 epochs, and similarly, the model exhibiting
superior performance post-training was selected for subsequent analysis.

The experiments were conducted on the HSE University cHARISMa supercomputer cluster [53]. For
all experiments, we used 1 to 4 NVIDIA A100 GPUs.

5.1.2. Kandinsky 2.2

The main challenge in fine-tuning the Kandinsky 2.2 model was the need to simultaneously fine-tune
both its components in order to achieve optimal results and accurate metric calculations. Therefore, the
fine-tuning process was divided into three stages.

In the first stage, the decoder model with a LoRa rank of 32 was trained for 40 epochs. During this
training, metrics were not calculated. In the second stage, we used this already fine-tuned decoder
model to conduct experiments with the Prior model. The primary parameter adjusted during these
experiments was the LoRa rank. The rank value varied, starting from 4, then from 8 to 64 in steps of 8.
Additionally, a rank of 128 was considered. The results of these experiments are presented in Table 1.
Overall, we observed a consistent improvement in the metrics as the rank increased. However, there
was a relatively minor change in the FID metric when we transitioned from a rank of 64 to 128, which
was interpreted as indicating that further increases in the rank would not significantly improve the
results.

The next step involved fine-tuning the Decoder model using the best-performing Prior model with a
rank of 128. The rank selection for the Decoder model was carried out in a similar manner. The results
are presented in Table 2. In this case, the effect of the rank value on the final image quality was less
significant. Based on the obtained data, it can be inferred that the prior model has the greatest influence
on the quality of the generated images.

Additionally, experiments were conducted to select the batch size and the alpha parameter value for
LoRa and LoRa modifications such as DoRa [54] and rsLoRa [55]. However, these experiments resulted
in only a slight quality improvement.

5.1.3. Kandinsky 3.0

As with Kandinsky 2.2, initial experiments were conducted by varying the rank values for LoRa during
training. Analysis of the resulting images showed that they became much more diverse compared to
Kandinsky 2.2, as confirmed by an increase in the Recall metric to values approaching 0.5 across all
experiments. However, a visual analysis also revealed shortcomings in the model’s photorealism, as the
images had an unusual texture resembling drawings on paper or those created in a 3D editor. Examples



Table 1
Kandinsky 2.2 Image Prior model fine-tuning with LoRa results on the development dataset

LoRa Rank Number of parameters FID (↓) Precision (↑) Recall (↑) F1 (↑)
4 1,310,720 112.543 0.442 0.248 0.317
8 2,621,440 106.061 0.479 0.271 0.346
16 5,242,880 91.256 0.486 0.263 0.341
24 7,864,320 88.971 0.504 0.280 0.360
32 10,485,760 87.266 0.543 0.283 0.372
40 13,107,200 85.732 0.572 0.298 0.391
48 15,728,649 81.563 0.609 0.315 0.415
56 18,350,080 78.145 0.628 0.359 0.456
64 20,971,520 76.988 0.677 0.362 0.471
128 41,943,040 75.835 0.701 0.385 0.497

Table 2
Kandinsky 2.2 Image Decoder model fine-tuning with LoRa results on the development dataset

LoRa Rank Number of parameters FID (↓) Precision (↑) Recall (↑) F1 (↑)
4 823,296 75.713 0.651 0.371 0.472
8 1,646,592 73.176 0.668 0.373 0.478
16 3,293,184 71.241 0.673 0.382 0.487
24 4,939,776 70.351 0.681 0.391 0.496
32 6,586,368 67.407 0.687 0.397 0.503
40 8,232,960 68.221 0.709 0.413 0.521
48 9,879,552 68.332 0.714 0.429 0.535
56 11,526,144 70.012 0.6985 0.426 0.529
64 13,172,736 66.968 0.731 0.435 0.545
128 26,345,472 66.869 0.745 0.421 0.537

Figure 3: Examples of images obtained after fine-tuning Kandinsky 3.0. As can be observed, these images
exhibit an unusual texture reminiscent of 3D graphics or hand-drawn illustrations, which results in a lack of
photorealism.

of the generated images and the issues related to their photorealism are presented in Figure 3. This
negatively affected the FID metric values, which ranged between 90 and 110, significantly lower than
those achieved with the Kandinsky 2.2 model. We experimented with increasing the batch size and
reducing the parameter 𝜖 of the AdamW optimizer from 10−8 to a range between 10−15 and 10−10.
Corresponding experiments were conducted but did not lead to a noticeable improvement in results.

5.1.4. MSDM

Implementation of MSDM is based on the code provided by the Medfusion developers on GitHub [56].
Weights for CLIP 14 were obtained from Hugging Face [57].

The MSDM model immediately demonstrated significantly improved quality and higher textual
comprehension abilities compared to the Kandinsky models. After 100,000 training steps, the FID score
was reduced to 35, and the Precision value increased to 0.82. However, the Recall parameter remained
relatively low at 0.35, indicating insufficient diversity in the generated images.

One possible reason for the lack of variability in the generated images could be the limited size
of the training dataset and, consequently, insufficient diversity in the training examples. In such
cases, additional random data augmentations are often employed. However, for this dataset, the use of



(a) Original images from the Developing Dataset

(b) Kandinsky 2.2 + LoRa, rank 128

(c) MSDM

Figure 4: Examples of images generated using Kandinsky 2.2 and MSDM compared to the original images from
the development dataset.

common augmentation methods such as horizontal and vertical flips or changes in color palette proved
problematic. This is due to the fact that text prompts contained information about the placement of
elements in specific parts of the image and required colors. Altering these parameters could negatively
impact the model’s text perception. However, we applied augmentations that randomly altered the
brightness and contrast of the images.

Another method for increasing the diversity of generated images is the “self-conditioning” technique.
This approach allows the model to consider its own results from previous steps in the generation
process. Thus, the model receives a more comprehensive context for its work, which contributes to
improved consistency, variability, and quality of the final images. The “self-conditioning” technique
was integrated into MSDM and tested in combination with other methods.

Additionally, one potential cause of reduced image generation quality could be model overfitting
due to a small amount of data. To combat this phenomenon, dropout [58] is employed, which helps
reduce the risk of overfitting and improves the model’s generalization capability. The optimal dropout
probability value from the experiments was found to be 0.1. The combination of all three aforementioned
approaches resulted in an increase in the Recall metric to 0.437 without a noticeable loss in quality.
Regarding experiments with paraphrased texts, we achieved the following results for the development
dataset with the first strategy: FID is 33.58, precision is 0.929, recall is 0.498, and the F1 score is 0.648.

5.2. Official Results on the Testing Dataset

The competition organizers conducted submissions testing using data from both single-center and
multi-center sources as sets of real images. We were provided with a list of prompts for which we
generated one image per prompt and sent it to the organizers.

As the final solution, we submitted three sets of images, each containing 5,000 images that were
generated based on prompts from the test dataset. We used the following three models for the final
generation:

• Kandinsky 2.2 model, both parts of which were fine-tuned using LoRa with a rank of 128.
• Two versions of the MSDM model — one trained without adding paraphrased texts, and the other

including them.



Table 3
The results of the evaluation of the three final models on the test dataset provided by the competition
organizers. The results for the FID and Inception Score (IS) metrics are shown.

Model Name Dataset Type FID (↓) IS (avg) (↑) IS (med) (↑)
single 0.086 1.624 1.633

Kandinsky 2.2 + LoRa, rank 128 multi-center 0.064 1.624 1.633
both 0.066 1.624 1.633
single-center 0.120 1.791 1.792

MSDM multi-center 0.117 1.791 1.792
both 0.114 1.791 1.792
single-center 0.125 1.773 1.775

MSDM + paraphrases multi-center 0.121 1.773 1.775
both 0.119 1.773 1.775

Examples of the images generated by these models, as well as their comparison with the original
images, can be seen in Figure 4. Table 3 presents the evaluation results of the models based on the FID
and Inception Score metrics. As can be seen, the models demonstrated significantly higher quality scores
on the test dataset according to the FID metric compared to the results obtained during development.
Interestingly, the Kandinsky 2.2 model (4.6 billion parameters in total, 68 million trainable parameters)
ultimately demonstrated better FID results on the test set compared to the MSDM model (463 million
parameters in total, 326 million trainable parameters), contrary to the trend observed during the dev
phase. At the same time, MSDM turned out to be slightly better in terms of Inception Score.

6. Conclusion

In this paper, we present our solution to the ImageCLEFmed [8] MEDVQA-GI 2024 Image Synthesis
task [9]. The task involved developing a generative neural network to create artificial colonoscopy
images from textual descriptions. We experimented with several approaches during the research process,
each demonstrating their effectiveness. The resulting models showed excellent quality, achieving an
FID score of approximately 0.1 on the test dataset and receiving high praise from the organizers of the
ImageCLEFmed 2024 competition [8].

The findings of this study could be beneficial for future developments in the field of medical imaging.
There is significant potential for further research in this area. Future research could involve experiment-
ing with other architectures, such as large models or autoencoders, on the same dataset or applying the
studied methods to different types of medical images, such as MRI, CT scans, or X-rays.
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