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ABSTRACT
Bayesian Personalized Ranking (BPR), a collaborative filtering ap-
proach based on matrix factorization, frequently serves as a bench-
mark for recommender systems research. However, numerous stud-
ies often overlook the nuances of BPR implementation, claiming
that it performs worse than newly proposed methods across various
tasks. In this paper, we thoroughly examine the features of the BPR
model, indicating their impact on its performance, and investigate
open-source BPR implementations. Our analysis reveals inconsis-
tencies between these implementations and the original BPR paper,
leading to a significant decrease in performance of up to 50% for
specific implementations. Furthermore, through extensive experi-
ments on real-world datasets under modern evaluation settings, we
demonstrate that with proper tuning of its hyperparameters, the
BPR model can achieve performance levels close to state-of-the-art
methods on the top-n recommendation tasks and even outperform
them on specific datasets. Specifically, on the Million Song Dataset,
the BPR model with hyperparameters tuning statistically signifi-
cantly outperforms Mult-VAE by 10% in NDCG@100 with binary
relevance function.
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1 INTRODUCTION
The issue of information overload, coupled with the rise of online
services, has created a growing need for recommender systems
[42]. These systems have attracted significant interest from both
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Figure 1: Number of citations of BPR per year according to
Google Scholar, as of May 15, 2024.

academic [1, 28, 61, 64] and industrial researchers [12, 27, 37], who
have studied various methods associated with personalization.

Traditionally, recommender systems have relied on either ex-
plicit [7] or implicit [26] feedback. Explicit actions, such as user
ratings, are relatively limited. In contrast, implicit feedback, such
as views, clicks, and purchases, is vast in number, making it easier
to build recommender systems based on these logs [49]. However,
these models are less confident [26].

The advancements in simple linear models and matrix factoriza-
tion techniques have played a crucial role in the development of rec-
ommender systems, a subfield of machine learning. In recent years,
however, deep learning (DL) methods [35] have become dominant
in other areas of machine learning, such as natural language pro-
cessing (NLP) [10], computer vision (CV) [59], and reinforcement
learning (RL) [31]. Given these advances, one might expect similar
improvements in recommender systems. Contrarily, several stud-
ies on recommender systems suggest that linear models are more
effective than DL models for top-n recommendation [15, 36, 53].
These linear methods are easier and faster to train than many deep
learning models. Additionally, many neural network models that
claim superiority in specific tasks over simple linear models often
face reproducibility issues, as outlined in [23, 47].

An excellent example of a linear model, proven successful in
many recommendation systems tasks, is the Bayesian Personalised
Ranking (BPR) model [49]. The authors introduced pairwise rank-
ing loss in matrix factorization, arguing that it is better suited for
item recommendation tasks than pointwise loss functions, such as
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quadratic regression loss functions [26]. The idea of a pairwise tar-
get in BPR has attracted significant academic attention, evidenced
by the increasing number of BPR paper citations, as highlighted in
Figure 1. With 6624 citations as of May 15, 2024, the BPR paper is
one of the most cited in the field of recommender systems.

Two notable factors affect the citation rate of the BPR paper
and its popularity. First, BPR is a highly extendable model. Many
researchers have built upon it with additional ideas, such as GBPR
[45], VBPR [20], and CPLR [39]. In contrast, others have modified
it to address issues like popularity bias [13] and item fairness [11].
Second, numerous studies utilize the BPR loss as an objective func-
tion for other model architectures. Examples of such modifications
include LightGCN [21], GRU4Rec [25], FPMC [50], which incorpo-
rate different structures such as graphs, recurrent neural networks,
and Markov chains, respectively.

The widespread popularity of BPR has led to numerous third-
party implementations in well-known open-source frameworks
such as Implicit [17], Cornac [52], LightFM [34], RecBole [66], and
Elliot [4], despite the availability of the trustworthy implementa-
tion in MyMediaLite [18] library, provided by the authors of the
BPR paper [49]1. Unfortunately, the original implementation is im-
plemented in C#, which hinders its adoption and integration with
Python-based algorithms, which are dominant in the recommender
systems field. In addition, it does not support GPU acceleration,
making it slower than versions that benefit from it. These factors
have contributed to the accumulation of the BPR third-party im-
plementations.

However, recent reproducibility studies [23, 47] reveal that many
third-party implementations for linear and deep learning models
lack essential features, complicating comparisons with the original
implementations. Thus, despite its widespread adoption, the BPR
model might face similar challenges. Moreover, careful tuning of
hyperparameters in well-established matrix factorization-based
models has been shown to achieve performance near state-of-the-
art (SOTA) methods [15, 51]. This aspect further emphasizes the
importance of a thorough evaluation of BPR, as many recent papers
report a subpar performance of this model in several evaluation
settings.

Despite recent reviews of several popular models [15, 23, 47, 51],
a comprehensive reproducibility study of the BPR model has yet
to be conducted. The literature employing BPR as a baseline often
omits a detailed description of its implementation, with key features
such as sampling methods, learnable item biases, optimizer selec-
tion, and separate regularization factors missing from many open-
source frameworks. These factors could impact BPR’s performance,
necessitating further investigation into their effects. Furthermore,
the current evaluation standard for top-n recommendations relies
on a global timeline method with ranking quality metrics [30], di-
verging from the approach outlined in the BPR paper [49]. These
observations emphasize the demand for a reassessment of BPR to
gain deeper insights into its performance and the factors shaping it.

To address this, we present an extensive set of experiments
examining various features of the BPR model, open-source imple-
mentations, and datasets. Our contributions are threefold. First, we

1We find this implementation of BPR to be the most credible one because the original
authors are involved in its development.

thoroughly investigate open-source implementations of BPR to as-
sess their consistency with the original implementation, revealing
differences in the sets of features included. Second, we analyze the
importance of each component of BPR on two real-world datasets,
offering insights into the model’s behavior and performance. Third,
through careful hyperparameters tuning, we show that BPR can
achieve better results than anticipated by existing implementations,
even surpassing SOTA methods in some cases. Particularly, on the
Million Song Dataset, the BPR model statistically significantly out-
performs Mult-VAE by 10% in NDCG@100. The source code of the
experiments can be found on our GitHub repository2.

2 BACKGROUND
Top-n Recommendations. Collaborative filtering is a common
approach for generating top-n recommendations based on implicit
or explicit feedback data [55]. This method often relies on user-
item interaction data and employs various learning methodologies,
including rule-based approaches [38], heuristics [29], and neighbor-
hood methods [41, 60]. The Netflix Prize competition [7] notably fa-
cilitated the development of matrix factorization techniques for rec-
ommender systems based on user behavior, leading to the introduc-
tion of new methods such as Implicit ALS (iALS) [26], SVD++ [62].

Since then, the task of top-n recommendation has seen wide-
spread applications in implicit feedback scenarios. Novel methods
continue to emerge, leveraging diverse methods such as linear meth-
ods [44, 54], variational autoencoders [37], graph convolutional
networks [21], diffusion models [63]. Many studies associated with
these approaches have demonstrated improvements over previ-
ous methods. Notably, the Bayesian Personalized Ranking (BPR)
[49], often employed as a matrix factorization-based baseline, is
frequently reported to be surpassed by these models [21, 37, 63].

Interestingly, recent studies have reported that simple linearmod-
els can outperform complex architectures. For instance, one study
[15] evaluated several deep learning methods against well-tuned
baselines, finding that many linear models, similar to BPR, serve
as competitive baselines to deep learning models. Another recent
study found that the linear model EASE outperformed numerous
state-of-the-art methods across several datasets [3, 53]. Thus, linear
methods continue demonstrating robust performance on tasks with
implicit feedback despite the latest advancements in deep learning.
Reproducibility Studies. The study of Dacrema et al. [15] has
led to a widespread discussion of reproducibility, creating a new
research track that focuses on revisiting previously known meth-
ods. This area has gained considerable recognition, with numerous
papers submitted each year. For example, the author of the popular
sequential model GRU4Rec reviewed various open-source imple-
mentations, revealing that third-party implementations often lack
certain features and contain bugs, impacting performance [23]. An-
other comprehensive study [47] revisited BERT4Rec [56], where
authors found that various implementations yielded different qual-
ity metrics. Similarly, a study on iALS [26] reproducibility reported
thatminor changes to the original implementation greatly improved
quality, emphasizing the importance of hyperparameters tuning
[51]. However, to our knowledge, studies have yet to re-examine
BPR despite being a highly cited model and often used as a baseline.

2https://github.com/nemexur/revisit-bpr
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Revisiting BPR: A Replicability Study of a Common Recommender System Baseline RecSys ’24, October 14–18, 2024, Bari, Italy

The development of evaluation protocols has also highlighted
issues with data leakage [16, 30, 43]. Recent studies suggest that
global temporal split is one of the most reliable ways of conduct-
ing offline experiments [43], and an evaluation protocol without it
might lead to incorrect conclusions [30]. Consequently, assessing
BPR in a global temporal split evaluation setup is necessary against
the most advanced top-n recommendation methods.

3 BAYESIAN PERSONALIZED RANKING
3.1 Matrix Factorization
Matrix Factorization (MF)models operate by factoring the user-item
rating matrix R : U × I , where U is the set of all users and I is the set
of all items. They associate each user and item with distinct sets of
features, represented as real-valued vectors or latent factors. Each
latent factor, denoted as 𝑝𝑢 for users and 𝑞𝑖 for items, comprises an
𝑓 -dimensional vector R𝑓 . To estimate the interaction 𝑟𝑢𝑖 within the
matrix R, MF computes an inner product 𝑟 (𝑢, 𝑖) = 𝑝𝑢𝑞

𝑇
𝑖
between

the corresponding latent factors.

argmin
𝑃,𝑄

∑︁
(𝑢,𝑖 ) ∈R

𝐿(𝑟 (𝑢, 𝑖), 𝑟𝑢𝑖 ) (1)

The model parameters of MF are the embedding matrices P and Q,
which are learned by minimizing the objective function 𝐿 (1).

Objective functions to learn MF model parameters can be cate-
gorized into three groups: pointwise, pairwise, and listwise [40].

3.1.1 Pointwise. The pointwise approach estimates the discrep-
ancy between the predicted score 𝑟 (𝑢, 𝑖) and the actual score 𝑟𝑢𝑖 . It
may be represented in the form of a squared loss objective:

argmin
𝑃,𝑄

∑︁
(𝑢,𝑖 ) ∈R

(𝑟𝑢𝑖 − 𝑟 (𝑢, 𝑖))2 + Ω(𝑃,𝑄) (2)

Here, the second term, Ω, penalizes the complexity of the model,
often represented as an L2 regularization. The main limitation of
pointwise approaches is the demand for a direct item relevance
estimation instead of the item comparison for a user, which is a
crucial aspect in recommendation tasks.

3.1.2 Pairwise. The pairwise objective function aims to optimize
the relative ranking of items for a user, in contrast to predicting
individual interactions in pointwise approaches, which addresses
one of the main limitations of the previous approach. The main
idea behind it is to correctly order pairs of items within the context
of a user, achieved by comparing items in the user history I+ (𝑢) =
{𝑖 : (𝑢, 𝑖) ∈ R} with the remaining items 𝑗 ∈ 𝐼 \ 𝐼+ (𝑢). The objective
function (4) then penalizes the model if the item 𝑗 is ranked higher
than the selected item from the user history using the function 𝜙 .

(𝑢, 𝑖, 𝑗) ∈ DR :⇔ 𝑖 ∈ I+ (𝑢) ∧ 𝑗 ∈ 𝐼 \ 𝐼+ (𝑢) (3)

argmin
𝑃,𝑄

∑︁
(𝑢,𝑖, 𝑗 ) ∈DR

𝜙 (𝑟 (𝑢, 𝑖) − 𝑟 (𝑢, 𝑗)) + Ω(𝑃,𝑄) (4)

3.1.3 Listwise. The listwise group of functions looks at the whole
ranked list of items for each user r𝑢 = [𝑟𝑢1, . . . , 𝑟𝑢𝐼 ] and optimizes
it based on the ranking metric. One significant advantage of the
listwise approach over other methods is its ability to distinguish
the position of an item within the ranked list. It aids the model in
understanding that items at the top of the list are more important

than those at the bottom, which is lacking in the pairwise approach.
However, these objective functions (5) are more computationally
extensive due to the direct optimization of the ranking quality of
the entire recommendation list for a user r̂𝑢 = [𝑟 (𝑢, 1), . . . , 𝑟 (𝑢, 𝐼 )].

argmin
𝑃,𝑄

∑︁
𝑢∈U

𝐿(r̂𝑢 , r𝑢 ) + Ω(𝑃,𝑄) (5)

3.2 Bayesian Personalized Ranking Features
Bayesian Personalized Ranking (BPR) [49] is a popular version of
the matrix factorization model with a pairwise objective function.
What sets BPR apart from other pairwise models is its objective
function. The goal of the function is to minimize the log-likelihood
of the correct ordering in the form of:

argmin
𝑃,𝑄

∑︁
(𝑢,𝑖, 𝑗 ) ∈DR

− log𝜎 (𝑟 (𝑢, 𝑖) − 𝑟 (𝑢, 𝑗)) (6)

During the training phase, it receives the tuple of a user 𝑢, a pos-
itive item 𝑖 , and a negative item 𝑗 and then computes the objective
(6) using the function 𝑟 (.). While 𝑟 (.) frequently utilizes a Matrix
Factorization model, it can be represented by any algorithm that
calculates the score between a user and an item, such as KNN algo-
rithms andWeighted MF utilized in [49]. Although the choice of the
scoring function impacts the model’s performance, we adhere to
the matrix factorization version for our experiments. Additionally,
five more features of BPR might influence its behavior:
Regularization. Authors of the original BPR paper [49] intro-
duced three separate regularization parameters: user regularization,
positive item regularization, and negative item regularization in
the form of Ω(𝑃,𝑄) = ∑

(𝑢,𝑖, 𝑗 ) ∈DR 𝜆𝑢𝑝
2
𝑢 + 𝜆𝑖𝑞2𝑖 + 𝜆 𝑗𝑞

2
𝑗
, where 𝜆. are

regularization terms for specific embeddings.
Optimizer. The original implementation utilizes standard Sto-
chastic Gradient Descent (SGD) for training. Hence, it is reasonable
to expect potential performance improvements by integrating the
latest optimization techniques, such as Momentum SGD [57], RM-
SProp [58], and Adam [33].
Negative Sampling. In [48], the authors of BPR observed that
uniform sampling is not the best choice of negative sampling algo-
rithm for the model. As the training progresses, it starts to yield
easy negatives that result in minimal model parameter changes. To
address this issue, they introduced the adaptive sampling algorithm
for negatives, which respects the model’s performance at each iter-
ation. Although this sampling algorithm is not a part of the original
paper [49], we still consider it a necessary addition to the algorithm
that should be included in the list.
Item Bias. Many popular model architectures introduce item bi-
ases to the model as a prominent feature that frequently improves
the performance [56, 65]. In the case of MF, the addition of item bi-
ases changes the inner product to 𝑟 (𝑢, 𝑖) = 𝑏𝑖 + 𝑝𝑢𝑞

𝑇
𝑖
. Furthermore,

as we will show in Section 4.1.4, these biases exist in many popular
open-source BPR implementations. Notably, the original implemen-
tation in MyMediaLite3 [18] also includes learnable item biases.
User Bias. User biases 𝑟 (𝑢, 𝑖) = 𝑏𝑢 + 𝑝𝑢𝑞𝑇𝑖 , like item biases, might
also impact the model’s performance. However, we have excluded
them from the experiments because they are uncommon in open-
source BPR implementations.
3https://github.com/zenogantner/MyMediaLite

https://github.com/zenogantner/MyMediaLite
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Table 1: Statistics for the complete training datasets after
preprocessing. The median per user/item is the middle of the
distribution of the number of actions for users or items.

Dataset Users Items Actions Sparsity Med. User/Item

Netflix4 9949 4825 563577 0,9883 27/12
ML-20M 136677 20108 9,7M 0,9965 37/16
MSD 571355 41140 32,5M 0,9986 39/383
Yelp (time-split) 252616 92089 2,2M 0,9999 5/8
ML-20M
(time-split) 124377 12936 8.9M 0,9944 38/57

4the subsample of the dataset similar to the original paper [49].

4 EXPERIMENTS
We conduct the experiments to address the following research
questions:
RQ1 How do the results achieved using open-source implementa-

tions compare with the originally reported results?
RQ2 How do the BPRmodel’s features help improve performance?
RQ3 How does the fine-tuned BPR compare to state-of-the-art

models in the top-n recommendations?

4.1 Experimental Setup
4.1.1 Datasets. Similar to [51], we experiment using the bench-
marks established in [37]. Furthermore, we include evaluation
protocols with a global time-based split proposed in [24]. The
experiments are conducted over four publicly available datasets:
MovieLens-20M (ML-20M) [19], Million Song Dataset (MSD) [9],
Netflix [7], and Yelp [6]. The characteristics of the datasets are
summarized in Table 1.

4.1.2 Preprocessing and Evaluation Protocol. The evaluationmethod-
ology adopted in this study utilizes three methods, depending on
the described research question.
RQ1. We employ the preprocessing and evaluation protocol from
the BPR paper [49] on the Netflix dataset for this RQ. In this paper,
the authors subsampled the dataset after preprocessing. We follow
the same strategy and sample the dataset with a similar number of
interactions: 563000 samples compared to 565000 samples in [49].
RQ2. We opt for ML-20M and MSD to conduct experiments for
this RQ. We follow the same preprocessing and evaluation proce-
dures from [37, 54]. For detailed steps and description, refer to [37]
and their code5. However, we slightly modify it by adding held-out
users to the training part, as the BPR model cannot handle cold
users. The validation and testing parts remain unchanged.
RQ3. In addition to the datasets used in RQ2, we conduct exper-
iments using a global temporal split on ML-20M and Yelp datasets,
following [24, 30]. To preprocess these datasets, we first convert
all numeric ratings or the presence of an interaction into implicit
feedback. Afterward, we keep users and items with at least three
interactions to ensure the dataset’s quality, following [22, 32, 50]. Re-
garding evaluation protocol, we set the testing timewindow to three
years and the validation time window to one year for both datasets.
Additionally, we filter out users absent from training and complete
training parts in validation and testing on each dataset, respectively.

5https://github.com/dawenl/vae_cf

Table 2: BPR implementations. Source of the implementation:
from theACMRecommender Systems List of Frameworks (★),
from the GitHub search (♦). Availability of features: available
(✓), missing (✗). Original - MyMediaLite implementation.
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Cornac★ 820 116 ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗

DaisyRec★ 55 31 ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗

Elliot★ 265 1 ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗

Recbole★ 3,200 174 ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗

ReChorus★ 492 5 ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗

RecPack★ 6 70 ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✗

Implicit♦ 3,400 27 ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗9 ✗

LightFM♦ 4,600 15 ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✗

Original 498 0 ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗

Ours ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

6As of May 15, 2024. 7From January 1, 2023, to May 15, 2024. 8Adam, Adagrad,
Momentum SGD, RMSProp. 9Implicit utilizes popularity-based negative sampling.

4.1.3 Metrics. We employ two ranking-based metrics: Recall@K
(R) and NDCG@K (N) with binary relevance function. Following
[51], for each user, we remove all items from the predictions that
the user has already interacted with in the training dataset.

4.1.4 BPR Implementations. To identify open-source implementa-
tions of BPR, we looked through the list of recommender frame-
works by ACM Recommender Systems Conference10 and the list
of popular recommender systems libraries on GitHub not present
in that list. In Table 2, one can find frameworks with the BPR
model and which features they implement. Notably, Microsoft Rec-
ommenders11 is absent from this list because the authors of this
repository use Cornac [52] to implement the BPR model.

Our selection criteria for experiments prioritize open-source im-
plementations with good quality and support, assessed through the
number of GitHub stars and consistent maintenance efforts. Specif-
ically, we combine the Top-5 implementations based on GitHub
stars with the Top-5 based on the number of commits. Additionally,
we include MyMediaLite, regarded as the original implementation
of BPR used for experiments in [49], and Elliot, as it closely follows
the original BPR model from [49], as observed in Table 2. Based
on these criteria, we select the following implementations: Cornac,
Elliot, Implicit, LightFM, Recbole, and MyMediaLite (Original).

Additionally, it is evident from Table 2 that only Elliot [4] imple-
ments the complete set of features of the original model. Most other
implementations use shared regularization factors rather than sepa-
rate ones for users, positive and negative items. Moreover, all imple-
mentations, including the original, lack adaptive negative sampling
from [48], which is a crucial feature, as we will demonstrate later in
Section 5.2. Interestingly, many implementations introduce item bi-
ases as an additional feature, diverging from the original paper [49].

Moreover, as we will show in Section 5.1, Cornac performs best
among third-party BPR implementations. However, it has a notable
10https://github.com/ACMRecSys/recsys-evaluation-frameworks
11https://github.com/recommenders-team/recommenders

https://github.com/dawenl/vae_cf
https://github.com/PreferredAI/cornac
https://github.com/recsys-benchmark/DaisyRec-v2.0
https://github.com/sisinflab/elliot
https://github.com/RUCAIBox/RecBole
https://github.com/THUwangcy/ReChorus
https://gitlab.com/recpack-maintainers/recpack
https://github.com/benfred/implicit
https://github.com/lyst/lightfm
https://github.com/zenogantner/MyMediaLite
https://github.com/ACMRecSys/recsys-evaluation-frameworks
https://github.com/recommenders-team/recommenders
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limitation: Cornac utilizes Cython, which only supports CPU execu-
tion, resulting in longer training time than GPU alternatives. More-
over, we could not add adaptive negative sampling to Cornac’s BPR
model due to Cython constraints with sampling algorithms. There-
fore, we decided to replicate BPRwith PyTorch [46], which supports
GPU, allowing us to incorporate all discussed features completely.

4.1.5 Baselines. In addition, we compare BPR implementations to
baselines that have demonstrated state-of-the-art results in recent
reproducibility papers on the selected datasets:
• ItemPop. A non-personalized model that ranks items based on
their popularity. This baseline is used for reference.

• EASE [54]. An item-item collaborative filtering model with a
closed-form solution. A state-of-the-art model on MSD [53].

• Mult-VAE [37]. An extension of variational autoencoders for
collaborative filtering with implicit feedback using a multinomial
likelihood objective. In addition, we includeMult-DAE as this
version might outperform Mult-VAE in the most active users,
which comprises the biggest part of any dataset.

4.1.6 Hyperparameters Search. Hyperparameters are optimized
on a dedicated training/validation split created from the complete
training set using the same process as the train/test split. Subse-
quently, the models are retrained on the complete training dataset
with the best hyperparameters and evaluated on the testing dataset.
The optimization procedure uses a popular framework for hyperpa-
rameters optimization Optuna [2] on all datasets using the sampler
based on the Tree-structured Parzen Estimator (TPE) [8] algorithm.
We search for the best hyperparameters using NDCG@100 on all
datasets except Netflix, which utilizes the AUC metric.

Regarding model-specific hyperparameters, we adjust the L2-
norm regularization parameter for the EASE model [54]. In the case
of the Mult-VAE and Mult-DAE models, we vary the number of
epochs and the learning rate while keeping the batch size consistent
with the original paper [37]. The considered hyperparameter ranges
and distributions are available on our GitHub repository.

4.1.7 Embedding Dimension. Matrix factorization models rely on
the embedding dimension of user and item representations. It con-
trols the capacity of the model. Models with high capacity are more
likely to overfit the training set, whereas models with low capacity
may underfit it. To explore the impact of embedding dimensions fol-
lowing [51], we conduct the experiments with varying dimensions:
32, 64, 128, 256, 512, and 1024 for ML-20M and MSD datasets, 16, 32,
64, and 128 for Netflix dataset, and 64, 128, 256, and 512 for ML-20M
time-splitted and Yelp. We run the full hyperparameters search
with fixed embedding dimension to properly asses the impact on
the BPR algorithm. This approach allows us to identify the optimal
embedding dimension for each dataset, which we then utilize in
subsequent experiments on the dataset.

5 EXPERIMENTAL RESULTS
5.1 RQ1. Replicability
First, we analyze whether the selected open-source implementa-
tions can replicate the results of MyMediaLite BPR implementation
(Original), a trustworthy version of BPR from the original authors,
in a setup as close as possible to the original BPR paper. Figure 2
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Figure 2: Area Under the ROC Curve (AUC) prediction qual-
ity for the Netflix dataset using various open-source BPR
implementations. The ItemPop model is included to com-
pare performance against a non-personalized baseline.

compares the implementations with the default configuration and
hyperparameters search over epochs, regularization, and learning
rate for each implementation. As shown in Figure 2, our imple-
mentation, Cornac’s, and Elliot’s implementations are close to the
original results. Conversely, other open-source implementations
exhibit inferior results compared to other models. Interestingly,
Recbole and LightFM demonstrate unstable performance levels re-
garding the AUC metric in Figure 2. We assume this behavior is
related to the adaptive optimization algorithms used in these imple-
mentations. Specifically, Adam [33] in RecBole and Adagrad [14]
in LightFM. We observe a similar pattern in the experiments for
Section 5.2, where we employ adaptive optimizers. We will provide
an explanation of these findings in the subsequent sections.

Additionally, we check two implementations of our model: one
incorporating item biases and one without them. Notably, on the
Netflix dataset, we observe that item biases are only helpful at the
start of training, but their utility diminishes over time. Eventually,
non-biased models reach the same performance levels as biased
models, being less than 1% worse than their counterparts.

Moreover, we assess two implementations of BPR in Elliot frame-
work: BPRMF12 and Batched BPRMF13. The former closely follows
the BPR model from [49], while the latter is an optimized variant
that diverges from the original BPR model. Specifically, Batched
BPR is similar to LightFM but utilizes SGD instead of Adagrad op-
timizer. Therefore, we suppose these changes result in a 3% drop
in performance compared to the BPRMF variant from Elliot.

5.2 RQ2. Influence of BPR features
In Table 2, we outline the availability of BPR features in each open-
source BPR implementation. In order to demonstrate the effect of

12https://github.com/sisinflab/elliot/blob/v0.3.1/elliot/recommender/latent_factor_
models/BPRMF/BPRMF_model.py
13https://github.com/sisinflab/elliot/blob/v0.3.1/elliot/recommender/latent_factor_
models/BPRMF_batch/BPRMF_batch_model.py

https://github.com/sisinflab/elliot/blob/v0.3.1/elliot/recommender/latent_factor_models/BPRMF/BPRMF_model.py
https://github.com/sisinflab/elliot/blob/v0.3.1/elliot/recommender/latent_factor_models/BPRMF/BPRMF_model.py
https://github.com/sisinflab/elliot/blob/v0.3.1/elliot/recommender/latent_factor_models/BPRMF_batch/BPRMF_batch_model.py
https://github.com/sisinflab/elliot/blob/v0.3.1/elliot/recommender/latent_factor_models/BPRMF_batch/BPRMF_batch_model.py
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Figure 3: Performance in NDCG@100 relative to the number of embedding dimensions on the two datasets.

Table 3: The list of values for each subset of BPR features we
use in the experiments. Bold denotes the best set of features
according to our experiments in Section 5.2 for ML-20M.

Feature Values

Item Biases Enabled
Disabled

Regularization

𝝀𝒖𝒑2
𝒖 + 𝝀𝒊𝒒2𝒊 + 𝝀𝒋𝒒2𝒋 (𝝀𝒖 , 𝝀𝒊, 𝝀𝒋)

𝜆𝑢𝑝
2
𝑢 + 𝜆𝑖𝑞

2
𝑖
+ 𝜆𝑖𝑞

2
𝑗
(𝜆𝑢 , 𝜆𝑖 )

𝜆𝑝2𝑢 + 𝜆𝑞2
𝑖
+ 𝜆𝑞2

𝑗
(𝜆)

No Regularization

Optimizer

SGD
Momentum SGD

RMSprop
Adam

Negative Sampling Uniform
Adaptive

these features on model’s performance, we conduct experiments
comparing various subsets of the features using our implementa-
tion: (1) item biases, (2) regularization approaches, (3) optimizers,
and (4) negative sampling. To speed up the hyperparameters search,
we first fit our models with fewer epochs and then train the best
model with the best hyperparameters using more epochs. Specif-
ically, we opt for 70 epochs for the hyperparameters search phase,
1000 epochs for the best model on the ML-20M dataset, and 200
epochs for the MSD dataset. Such a two-step approach for hyperpa-
rameters search proves efficient for the BPR model, as it continues
to train after thousands of epochs with minimal overfitting, mainly
when uniform-based sampling produces good negative samples
according to [48]. Additionally, the training protocol employs the
Early Stopping criterion with patience equal to 13 epochs.

We conduct experiments following the grid of possible values for
each feature outlined in Table 3. The most comprehensive method
for experimenting with these features involves individually test-
ing each combination of values. However, the cardinality of this
approach is 64 experiments on each dataset, which results in over

5000 models. In order to lower the number of combinations, we split
the features into three subsets: (1) item biases and regularization,
(2) optimizers, and (3) negative sampling. Notably, the first subset
holds the highest importance, as the optimal combination of values
identified here serves as the base model for subsequent subsets. It
lowers the number of experiments to 14 for each dataset (over 1000
models) but adds the sequential order to them.

Furthermore, we plan to evaluate the impact of the embedding
dimension on the model in isolation. This modification significantly
increases the number of trained models, particularly by a factor of
six, thereby considerably prolonging the experiment’s duration. To
streamline this, we obtain a rough estimate of the embedding dimen-
sion’s influence from open-source implementations. We conduct
a full hyperparameters search for the Cornac, Implicit, LightFM,
and RecBole libraries, using all available hyperparameters for the
BPR model provided by these implementations. We excluded My-
MediaLite and Elliot from the list due to their significantly longer
training times than the other open-source implementations.

Figure 3 summarizes the results of this estimate. It is evident that
Cornac achieves the best results with embedding dimensions of 512
and 1024 on both datasets. Surprisingly, there is a huge performance
drop when Implicit employs embedding dimensions of size 1024.
We assume this behavior is related to popularity-based negative
sampling utilized in BPR implementation for Implicit, which might
hinder the model’s performance, as highlighted in [48]. LightFM
and Recbole implementations exhibit even lower performance than
Implicit. We observed that both LightFM and Recbole adapt uniform
negative sampling, but there is a discrepancy in their optimization
algorithms. Cornac and Implicit implementations adapt regular
Stochastic Gradient Descent (SGD), whereas LightFM and Recbole
employ Adagrad [14] and Adam [33], respectively. We suppose that
the choice of optimization algorithms led to these results, support-
ing our initial idea that the optimizer is a vital feature of the BPR
model and the findings described in Section 5.1.

Therefore, we chose embedding dimensions of 512 and 1024 for
the subsequent experiments. However, we will present results with
the embedding dimension of 1024, as it consistently yielded better
performance for our implementation on ML-20M and MSD datasets.
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Table 4: Evaluation of the BPR model in terms of NDCG@K
(N@K) and Recall@K (R@K) using various subsets of item
biases and regularization features. All models in the table
were trained with the SGD optimizer and uniform negative
sampling. The best value is bolded, and the second-best is
underlined.

Features

N@5 N@10 N@100 R@5 R@10 R@100Item
Biases

Regularization

U
se
r𝜆

𝑢

Po
si
tiv

e
𝜆
𝑖

N
eg
at
iv
e
𝜆
𝑗

Sh
ar
ed

𝜆

ML-20M

✗ ✗ ✗ ✗ ✗ 0.2537 0.2504 0.3510 0.1246 0.1948 0.5735
✗ ✗ ✗ ✗ ✓ 0.2656 0.2627 0.3665 0.1316 0.2048 0.5938
✗ ✓ ✓ ✗ ✗ 0.2721 0.2695 0.3694 0.1353 0.2100 0.5940
✗ ✓ ✓ ✓ ✗ 0.2929 0.2879 0.3883 0.1398 0.2171 0.6150
✓ ✗ ✗ ✗ ✗ 0.2517 0.2469 0.3499 0.1185 0.1863 0.5771
✓ ✗ ✗ ✗ ✓ 0.2419 0.2381 0.3441 0.1180 0.1855 0.5707
✓ ✓ ✓ ✗ ✗ 0.2565 0.2514 0.3530 0.1221 0.1906 0.5766
✓ ✓ ✓ ✓ ✗ 0.2748 0.2686 0.3723 0.1291 0.2020 0.5996

MSD

✗ ✗ ✗ ✗ ✗ 0.1938 0.1906 0.2753 0.1007 0.1543 0.4145
✗ ✗ ✗ ✗ ✓ 0.2183 0.2150 0.3115 0.1098 0.1707 0.4695
✗ ✓ ✓ ✗ ✗ 0.2085 0.2057 0.3018 0.1052 0.1638 0.4593
✗ ✓ ✓ ✓ ✗ 0.1844 0.1828 0.2796 0.0939 0.1472 0.4396
✓ ✗ ✗ ✗ ✗ 0.1859 0.1828 0.2706 0.0960 0.1477 0.4142
✓ ✗ ✗ ✗ ✓ 0.2249 0.2196 0.3132 0.1128 0.1734 0.4659
✓ ✓ ✓ ✗ ✗ 0.2126 0.2092 0.3027 0.1066 0.1657 0.4559
✓ ✓ ✓ ✓ ✗ 0.1796 0.1773 0.2748 0.0891 0.1411 0.4360

Item Biases and Regularization. The numerical results of vari-
ous combinations of these features are present in Table 4. We can
see that models without biases outperform those with item biases
in ML-20M across all metrics. Regarding regularization variants,
however, the situation is not that apparent. In this dataset, the
model incorporating all regularization factors from the original
paper [49] outperforms others, followed closely by the model using
two separate regularization constants for user and item embeddings.
This finding suggests that distinct regularization lambdas for users,
positive and negative items, are crucial for specific datasets.

In contrast, the MSD dataset presents different results. Here,
the model with item biases performs best overall. However, the
effectiveness of item biases varies depending on the regularization
factors used. Specifically, biased models surpass unbiased counter-
parts within two types of regularization approaches: shared and
user/item regularization factors. Nevertheless, the difference be-
tween biased and unbiased models with shared regularization is sta-
tistically insignificant in NDCG@100, determined by a paired t-test
with Bonferroni correction (𝑝 < 0.05) [5]. These findings indicate
that the optimal regularization approach and the presence of item
biases for BPR depend on the dataset, necessitating careful tuning.

Furthermore, it is notable that the performance of models with-
out regularization is on par with regularized counterparts. In certain
instances, these non-regularized models surpassed their regular-
ized counterparts, particularly those utilizing a single regularization
factor for user and item embeddings. This phenomenon might be
attributed to the effective regularization inherent in the BPR model
through the negative sampling algorithm alone.
Optimizers. Table 5 provides an overview of the performance
exhibited by various optimizer algorithms and negative samplers.

Table 5: Evaluation of the BPR model in terms of NDCG@K
(N@K) and Recall@K (R@K) using various subsets of op-
timizer and negative sampling features. For ML-20M, the
models were trained without item biases and with three sepa-
rate regularization factors. For MSD, the models were trained
without item biases and shared regularization. The best value
is bolded, and the second-best is underlined.

Features

N@5 N@10 N@100 R@5 R@10 R@100

Optimizer Negative
Sampling

SG
D

M
om

en
tu
m

SG
D

RM
SP

ro
p

A
da
m

U
ni
fo
rm

A
da
pt
iv
e

ML-20M

✓ ✗ ✗ ✗ ✓ ✗ 0.2929 0.2879 0.3883 0.1398 0.2171 0.6150
✓ ✗ ✗ ✗ ✗ ✓ 0.3085 0.3020 0.4012 0.1488 0.2299 0.6258
✗ ✓ ✗ ✗ ✓ ✗ 0.2669 0.2638 0.3655 0.1275 0.2017 0.5939
✗ ✗ ✓ ✗ ✓ ✗ 0.1379 0.1393 0.2209 0.0641 0.1086 0.4030
✗ ✗ ✗ ✓ ✓ ✗ 0.2853 0.2811 0.3818 0.1384 0.2157 0.6090
✗ ✗ ✗ ✓ ✗ ✓ 0.3137 0.3042 0.3986 0.1510 0.2281 0.6119

MSD

✓ ✗ ✗ ✗ ✓ ✗ 0.2249 0.2196 0.3132 0.1128 0.1734 0.4659
✓ ✗ ✗ ✗ ✗ ✓ 0.2475 0.2395 0.3289 0.1253 0.1881 0.4730
✗ ✓ ✗ ✗ ✓ ✗ 0.1516 0.1518 0.2441 0.0771 0.1232 0.3966
✗ ✗ ✓ ✗ ✓ ✗ 0.0318 0.0329 0.0627 0.0160 0.0274 0.1161
✗ ✗ ✗ ✓ ✓ ✗ 0.2014 0.2000 0.2950 0.1052 0.1625 0.4484
✗ ✗ ✗ ✓ ✗ ✓ 0.2118 0.2088 0.3029 0.1106 0.1687 0.4537

In this section, we focus on optimizers utilizing uniform-based
negative sampling exclusively. Additionally, although the model
with item biases demonstrates the best performance on MSD, we
picked the model without them for MSD in this section due to the
challenges negative sampling algorithms face with biased models,
discussed later in this section.

The table shows that standard SGD demonstrates commendable
performance across both datasets, surpassing other optimization
algorithms across all metrics. On the other hand, RMSProp shows
the poorest performance, particularly on the MSD dataset, where
these models primarily minimized regularization constraints.

Consequently, standard SGD is the preferred choice for the BPR
model. However, its crucial drawback must be considered: standard
SGD typically requires more epochs than other algorithms. Fortu-
nately, this issue might be mitigated using advanced negative sam-
pling algorithms, which have the potential to significantly reduce
the number of epochs required, as we will show later in this section.

Notably, algorithms such as Momentum SGD and Adam require
rigorous hyperparameter tuning for optimal performance. We ob-
served that default configurations of these algorithms often yield
inferior results. We suppose this phenomenon is associated with
uniform-based negative sampling, which tends to generate more
simple negatives than strong ones. As highlighted in [48], this im-
balance can result in small gradient magnitudes, slowing model
training. This issue especially affects adaptive and momentum-
based optimizers as they keep a vector of gradient momenta. We
assume that these effects result in poor performance of Recbole and
LightFM implementations discussed in Section 5.1.

Thus, if the momentum primarily comprises gradients with small
magnitudes, uniform-based sampling yielding a strong negative
can result in smaller weight updates for momentum-based optimiz-
ers than standard SGD. Therefore, this dynamic between adaptive
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Figure 4: Mean absolute value of the first momentum in the Adam Optimizer with 𝛽1 = 0.2/0.9 and uniform/adaptive negative
sampling for two datasets over the first 300000 training iterations. The values are averaged over every 1000 iterations. Each
drop on the graph indicates the beginning of an epoch.

optimizers and negative samplers may require more epochs to
achieve satisfactory performance. Additionally, we hypothesize
that it might lead to poorer performance in other algorithms that
employ uniform-based sampling with an adaptive optimizer.

To address this issue, we reduced decay rates for moving aver-
ages in adaptive and momentum-based optimizers. This adjustment
significantly improved performance, with decay factors in the range
of 0.0 to 0.2, yielding better results. Figure 4 illustrates this behavior
for the Adam optimizer. We see a slight difference (approximately
2% on both datasets) between Adam Optimizers with 𝛽1 = 0.2 and
𝛽1 = 0.9. It highlights that smaller momentum weights increase
gradient magnitudes, improving the training process. However,
even with these adjustments, the performance did not surpass that
of regular SGD, which does not suffer from this issue.
Negative Sampling. To evaluate the effect of negative sampling,
we conducted experiments using the two best-performing opti-
mization algorithms from the previous section, namely SGD and
Adam. Table 5 presents the results achieved on these optimization
algorithms. It is evident from the table that adaptive sampling sig-
nificantly improves the performance of all algorithms. Additionally,
as outlined in [48], this negative sampling approach samples better
negatives with higher gradient magnitudes, allowing models to
perform better in fewer epochs. Notably, it reduced the number of
epochs required by the SGD optimizer on the ML-20M dataset by
265 steps, resulting in only 85 epochs.

Additionally, Figure 4 illustrates the effect of adaptive negative
sampling on the Adam optimizer’s first momentum. Obviously,
momentum vectors tend to be smaller with uniform-based negative
sampling than with adaptive sampling. Specifically, the difference
is twice as much on the ML-20M dataset; for MSD, the difference is
5%. This might partially explain why the model with uniform-based
sampling is just 4% worse than the adaptive-based sampling model.

Surprisingly, when we applied this negative sampling approach
to biasedmodels, it consistently resulted in poor performance across
all datasets, regardless of other parameters. This phenomenon sug-
gests that adaptive sampling may be ineffective when item biases
are present, requiring further investigation in future works.

5.3 RQ3. Comparison with state-of-the-art
models

We comprehensively evaluated various BPR implementations, com-
paring them against state-of-the-art baselines to assess their per-
formance across various datasets and evaluation protocols. Table 6
summarizes the results for both user-based splits similar to [51] and
global temporal splits discussed in [24, 30, 43]. Our implementation
of BPR, utilizing both SGD and Adam optimizers, is included for
comparison. For both optimizers in the global temporal split, we
opt for the model with separated regularization factors (𝜆𝑢 , 𝜆𝑖 , 𝜆 𝑗 ),
disabled item biases, and adaptive negative sampling, which per-
formed best on the ML-20M dataset according to Section 5.2.

In the user-based split evaluation, EASE consistently achieved
the highest NDCG@K and Recall@K scores across both ML-20M
and MSD datasets, demonstrating its robustness in recommend-
ing relevant items. Mult-VAE also performed well, particularly in
Recall@100, surpassing EASE in some instances. Our SGD-based ap-
proach demonstrated competitive performance among the BPR im-
plementations, particularly in the ML-20M dataset, outperforming
other BPR implementations in most metrics. Our Adam-based BPR
implementation also exhibited robust performance, demonstrating
statistically insignificant differences from our SGD-based model
across all metrics except Recall@100. Interestingly, our version
with SGD optimizer outperformed Mult-VAE on the MSD dataset
across all included metrics, while our Adam version occasionally
performed worse than Mult-VAE.

The global temporal split evaluation is claimed to be preferred
for the experiments [24, 30, 43]. Here, our BPR implementation
with SGD optimization outperformed other methods in the ML-
20M dataset, achieving the highest NDCG@K scores, although
without statistical significance compared to EASE and Mult-VAE.
Additionally, in the Yelp dataset, our BPR implementation using
SGD optimization excelled, achieving the best results across all
metrics with statistical significance. This finding indicates that
our BPR implementations are adaptable and can maintain high
performance across different datasets and evaluation protocols,
highlighting their potential for various recommendation scenarios.
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Table 6: Evaluation results of BPR implementations, baselines, and our BPR implementation in terms of NDCG@K (N@K) and
Recall@K (R@K) using two evaluation protocols. For user-based evaluation protocol, the best models for open-source BPR
implementations were selected from Figure 3. For our implementation in the user-based evaluation protocol, the best models
were selected from Table 5. Values are formatted for convenience14.

User-based split similar to [51]

Models ML-20M MSD
N@5 N@10 N@100 R@5 R@10 R@100 N@5 N@10 N@100 R@5 R@10 R@100

Baselines

ItemPop 0.1298† 0.1275† 0.1906† 0.0580† 0.0912† 0.3298† 0.0360† 0.0349† 0.0582† 0.0176† 0.0271† 0.0986†
EASE 0.3376† 0.3290† 0.4215† 0.1612† 0.2464† 0.6371† 0.3368† 0.3179† 0.3907† 0.1648† 0.2378† 0.5096†
Mult-DAE 0.2949 0.2890† 0.3881† 0.1404† 0.2183† 0.6099† 0.2095† 0.1994† 0.2674† 0.1054† 0.1535† 0.3762†
Mult-VAE 0.3071 0.3075 0.4158† 0.1600† 0.2460† 0.6520† 0.2221† 0.2156† 0.2973† 0.1144† 0.1716† 0.4307†

BPR
Implementations

Cornac 0.2564† 0.2589† 0.3691† 0.1319† 0.2097† 0.6056† 0.2138† 0.2120† 0.3114† 0.1090† 0.1704† 0.4726
Implicit 0.2071† 0.2052† 0.2880† 0.1093† 0.1673† 0.4745† 0.1749† 0.1737† 0.2567† 0.0929† 0.1425† 0.3898†
LightFM 0.1295† 0.1262† 0.1843† 0.0544† 0.0869† 0.3087† 0.0362† 0.0349† 0.0575† 0.0175† 0.0268† 0.0964†
RecBole 0.1242† 0.1213† 0.1785† 0.0513† 0.0820† 0.2973† 0.0004† 0.0009† 0.0117† 0.0002† 0.0008† 0.0328†
Ours (SGD) 0.3085 0.3020 0.4012 0.1488 0.2299 0.6258 0.2475 0.2395 0.3289 0.1253 0.1881 0.4730
Ours (Adam) 0.3137 0.3042 0.3986 0.1510 0.2281 0.6116† 0.2118† 0.2088† 0.3029† 0.1106† 0.1687† 0.4537†

Global temporal split recommended by [24, 30, 43]

Models ML-20M (time-split) Yelp
N@5 N@10 N@100 R@5 R@10 R@100 N@5 N@10 N@100 R@5 R@10 R@100

Baselines

ItemPop 0.0939† 0.0855† 0.0990† 0.0169† 0.0274† 0.1312† 0.0034† 0.0041† 0.0105† 0.0030† 0.0055† 0.0306†
EASE 0.1419 0.1332 0.1698 0.0261 0.0450 0.2496 0.0216† 0.0250† 0.0527† 0.0182† 0.0307† 0.1387†
Mult-DAE 0.1386 0.1308 0.1691 0.0262 0.0461 0.2455 0.0205† 0.0239† 0.0518† 0.0173† 0.0293† 0.1369†
Mult-VAE 0.1343 0.1294 0.1722 0.0260 0.0473 0.2546 0.0184† 0.0214† 0.0468† 0.0161† 0.0269† 0.1268†

BPR
Implementations

Cornac 0.1315 0.1263 0.1660 0.0256 0.0445 0.2416† 0.0208† 0.0247† 0.0566† 0.0176† 0.0310† 0.1565†
Implicit 0.1140† 0.1063† 0.1315† 0.0214† 0.0370† 0.191† 0.0118† 0.0140† 0.0348† 0.0101† 0.0178† 0.1004†
LightFM 0.0983† 0.0900† 0.1038† 0.0169† 0.0285† 0.1375† 0.0022† 0.0025† 0.0030† 0.0015† 0.0026† 0.0052†
RecBole 0.0033† 0.0031† 0.0061† 0.0004† 0.0008† 0.0095† 0.0001† 0.0001† 0.0005† 0.0001† 0.0002† 0.0018†
Ours (SGD) 0.1436 0.1357 0.1730 0.0277 0.0471 0.2539 0.0237 0.0276 0.0608 0.0203 0.0344 0.1658
Ours (Adam) 0.1356 0.1277 0.1637† 0.0248 0.0431 0.2373† 0.0163† 0.0195† 0.0465† 0.0139† 0.0248† 0.1314†

14Within each column, the best value is bolded, the second-best is underlined, and † indicates a statistically significant difference (𝑝 < 0.05) from Ours (SGD) model, determined by
a paired t-test with Bonferroni correction [5] for multiple comparisons.

Notably, among the open-source implementations considered,
Cornac showed the best performance, aligning with the results
obtained in Section 5.1. Other versions from Implicit, LightFM, and
RecBole showed decreasing results in this order of performance,
with LightFM and RecBole failing to learn anything meaningful.

6 CONCLUSIONS
In this work, we re-investigated matrix factorization with the BPR
optimization criterion. We successfully replicated the BPR model
on the Netflix dataset from the original BPR paper. Moreover, we an-
alyzed open-source implementations of the BPR model, uncovering
inconsistencies and deviations from the original paper that hin-
dered their performance. Notably, implementation from the Cornac
framework achieved the best performances among third-party im-
plementations despite differing from the original model. Also, Elliot
is the only open-source framework closely following the BPR paper.

Furthermore, our investigation into all model’s features revealed
some intriguing insights. We found that the choice of regulariza-
tion and negative sampling are pivotal for the model’s performance.
Surprisingly, we also discovered that the SGD optimizer is a critical
factor in achieving good results with the BPR model, as it is tightly
linked to the negative sampling process. Also, our findings demon-
strate that with proper tuning of these three features, our BPR imple-
mentation can achieve performance metrics close to state-of-the-art
methods and even surpass some of them on several datasets. For
instance, our model statistically significantly outperforms Cornac’s

results by 8.7% onML-20M inNDCG@100 andMult-VAE onMSD by
10%. Moreover, our implementation showcases exceptional results
on datasets with global temporal split, surpassing even Mult-VAE
and EASE.We hope these findings inspire further research into BPR-
based extensions and other models that utilize the BPR objective,
such as LightGCN, GRU4Rec, and Transformers4Rec.
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