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Abstract
In this paper, we consider the counting function EP (y) = |P y ∩Z

nx | for a parametric
polyhedron P y = {x ∈ R

nx : Ax ≤ b + By}, where y ∈ R
ny . We give a new rep-

resentation of EP (y), called a piece-wise step-polynomial with periodic coefficients,
which is a generalization of piece-wise step-polynomials and integer/rational Ehrhart’s
quasi-polynomials. It gives the fastest way to calculate EP (y) in certain scenarios.
The most important cases are the following:

1) We show that, for the parametric polyhedronP y defined by a standard-form system
Ax = y, x ≥ 0 with a fixed number of equalities, the function EP (y) can be rep-
resented by a polynomial-time computable function. In turn, such a representation
of EP (y) can be constructed by an poly

(
n, ‖A‖∞

)
-time algorithm;

2) Assuming again that the number of equalities is fixed,we show that integer/rational
Ehrhart’s quasi-polynomials of a polytope can be computed by FPT-algorithms,
parameterized by sub-determinants of A or its elements;
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3) Our representation of EP is more efficient than other known approaches, if A has
bounded elements, especially if it is sparse in addition;

Additionally, we provide a discussion about possible applications in the area of com-
piler optimization. In some “natural” assumptions on a program code, our approach
has the fastest complexity bounds.

Keywords Integer linear programming · Parametric integer programming · Short
rational generating function · Bounded sub-determinants ·Multidimensional
knapsack problem · Subset-sum problem · Counting problem

1 Introduction

In our paper, we discuss different existing and new approaches for the problem to cal-
culate the number of points with integer coordinates in a polyhedron, which is defined
by a system of linear inequalities that additionally depends on a vector of parametric
variables. Formal definitions of considered problems will be presented in the next
Subsection. As far as the authors know, from the application point of view, this frame-
work is used in the areas of creating intelligent systems of analysis, profiling, control
and optimization of program code. In their pioneer works, Loechner and Wilde [1]
and Clauss and Loechner [2, 3] present applications to automatic parallelization, esti-
mation of a nested loop execution time, estimation of maximum parallelism, etc. We
would also like to mention recent progress on the cache miss calculation, see Bao et
al. [4], Gysi et al. [5], Shah et al. [6]. Ourwork is theoretical.We introduce a new repre-
sentation of the counting function, called piece-wise periodic step-polynomials, which
is more efficient than other known approaches in certain scenarious. Additionally, we
discuss its connections with existing representations, such as piece-wise Ehrhart’s
quasi-polynomials and piece-wise step-polynomials. In fact, the new representation
generalizes both of them.

1.1 Main problem statement

Let nx and ny be the dimensions of x and parametric y variables, and let a polytope
P be defined by one of the following ways:

(i) System in the canonical form:

P =
{(

x

y

)
∈ R

nx+ny : Ax ≤ b + By

}
, (Canon-Form)

where A ∈ Z
m×nx , B ∈ Q

m×ny , and b ∈ Q
m ;

(ii) System in the standard form:

P =
{(

x

y

)
∈ R

nx+ny : Ax = b + By, x ≥ 0

}
, (Standard-Form)
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where A ∈ Z
k×nx , B ∈ Q

k×ny , and b ∈ Q
k .

We put

P y =
{
x ∈ R

nx :
(
x

y

)
∈ P

}
,

and consider the counting function

EP : Rny → Z≥0 ∪{+∞}, given by

EP (y) = ∣∣P y ∩Z
nx
∣∣ ,

and its restriction on Z
ny , denoted by:

EP = EP
∣
∣
Z
ny .

Our paper is motivated by the following computational problem: For the input
(A, B, b), construct an efficient representation of EP , which will allow to calculate
quickly the value of EP (y), for any y ∈ Q

ny . By the word “efficient”, we mean
that the function EP is encoded, using some non-trivial data structure that can faster
perform queries to EP in comparison with approaches that have no prior information
on (A, B, b).

We study the computational complexity of this problem with respect to several
parameters of A. The first of them correspond to a sub-determinant structure of A.

Definition 1 For a matrix A ∈ Z
m×n , by

�k(A) = max
{∣∣det(AI J )

∣∣ : I ⊆ {1, . . . ,m}, J ⊆ {1, . . . , n}, |I| = |J | = k
}
,

we denote the maximum absolute value of determinants of all the k × k sub-matrices
of A. Here, the symbol AI J denotes the sub-matrix of A, which is generated by all
the rows with indices in I and all the columns with indices in J . Note that �1(A) =
‖A‖max.

By �gcd(A, k) and �lcm(A, k), we denote the greatest common divisor and
least common multiplier of non-zero determinants of all the k × k sub-matrices
of A. Additionally, let �(A) = �rank(A)(A), �gcd(A) = �gcd(A, rank(A)), and
�lcm(A) = �lcm(A, rank(A)). The matrix A with �(A) ≤ �, for some � > 0, is
called �-modular.

Definition 2 For a system in Standard-Form, we call rank(A) as the co-dimension
of P . In turn, for a system in Canon-Form, we define the co-dimension to be equal
m − rank(A).

Remark 1 Note that this definition is very natural for systems in Standard-Form. For
systems in Canon-Form, the definition can be justified in the following way. Assume
that rank(A) = n, for Canon-Form, and rank(A) = k, for Standard-Form. Due to [7,
Lemma 4 and Lemma 5], any system in Standard-Form can be polynomially trans-
formed to a system in Canon-Form with m = n + k, preserving dim(P) and �(A).
Vise versa, any system in Canon-Form can be polynomially transformed to a system
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in Standard-Form with k = m− n and an additional group-like constraint. This trans-
formation also preserves dim(P) and �(A). By this reason, for polyhedra, defined
by Canon-Form, the value m − n is also called the co-dimension of P .

The next two sufficiently general matrix parameters, denoted by ν(A) and μ(A),
that will be considered in the whole work are related to a structure of the fan, induced
by A�.

Definition 3 For arbitrary A ∈ Z
m×n and b ∈ Q

m , put

M(A, b) = {x ∈ R
n : Ax ≤ b

}
,

ν(A) = max
b∈Qm

∣∣vert
(
M(A, b)

)∣∣ .

Definition 4 For an arbitrary matrix A ∈ R
n×m , the symbols cone(A) and �(A)

denote the cone and lattice, induced by columns of A, i.e.

cone(A) = {
At : t ∈ R

m≥0
}
,

�(A) = {
At : t ∈ Z

m}.

Definition 5 For an arbitrary matrix A ∈ R
n×m of rank n, we define the parameter

μ(A) as the maximum size of a triangulation of cone(A) with simple cones, where
the cone C is called simple, if it is induced by columns of some n × n non-singular
sub-matrix of A. More formally, a set T is a triangulation of the cone C = cone(A),
if the following requirements hold:

1. For any cone T ∈ T , T = cone(AB), where B is some n × n base of A;
2. The equality C = ⋃

T ∈T
T is true;

3. For different T 1, T 2 ∈ T , the set T 1 ∩ T 2 forms a face of both T 1 and T 2.

We denote μ(A) as max
{|T | : T is a triangulation of cone(A)

}
. Note that

ν(A) ≤ μ(A�).

Throughout the paper, we will use the following short notations with respect to the
definitions Canon-Form and Standard-Form: � := �(A), �1 := �1(A), ν := ν(A),
and μ := μ(A�). Additionally, for k ∈ {0, . . . , nx + ny}, we denote the number of
k-faces of P by the symbol fk . In other words, the values fk form components of the
f -vector of P .
When estimating the computational complexity of algorithms, we will often use

the notion of an FPT-algorithm.

Definition 6 An algorithm, parameterized by a parameter k, is called fixed-parameter
tractable (or, simply, an FPT-algorithm) if its computational complexity can be esti-
mated by a function from the class f (k) ·nO(1), where n is the input size and f (k) is a
computable function that depends on k only. A computational problem, parameterized
by a parameter k, is called fixed-parameter tractable (or, simply, an FPT-problem) if
it can be solved by an FPT-algorithm. For more information about the parameterized
complexity theory, see [8, 9].
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Ourmain contributions with respect to the parametric counting problem are empha-
sized in Sect. 3. But, it uses some notations, which will be introduced later.

Remark 2 To make the text easier to read, we hide multiplicative terms of the type
poly(φ), using the O∗(·)-notation, when we estimate the computational complexity.
Here, φ denotes the input size. For example, the equality nO(1)

x = O∗(1) holds.
Similarly, we use the Õ(·)-notation to hide logarithmic terms.

The outputs and all intermediate variables, occurring in the proposed algorithms,
have polynomial-bounded bit-encoding size. Hence, any algorithm that is polynomial-
time in terms of the arithmetic complexity analysis is a polynomial-time algorithm in
terms of the bit-complexity analysis.

1.2 Structure of this work

In Subsection 1.3, we give a survey for the non-parametric (ny = 0) counting problem.
In Subsection 1.4, we present an introduction to the general parametric counting prob-
lem and give a survey of the known results. In Sect. 2, we present our main theoretical
contribution: a new representation of the parametric counting function EP , named the
periodic piece-wise step-polynomial. In turn, in Subsection 2.1, we describe connec-
tions of the new representation with rational/integer Ehrhart’s quasi-polynomials of
P and show how these quasi-polynomials can be computed, using our new represen-
tation. In Sect. 3, we describe the main implications of our work from the theoretical
and computational perspectives. In Sect. 4, we prove the main computational impli-
cations for the two most important cases: the polyhedra, defined by systems of a
bounded co-dimension k (see Definition 2), the general type polyhedra with bounded
dimension ny of the parametric space. They are considered in Subsections 4.1 and 4.2,
respectively. In Sect. 5, we describe auxiliary definitions and facts from the polyhedral
analysis, which are necessary to prove the main theorems. More precisely, Subsec-
tion 5.1 presents an introduction to the theory of valuations, indicator and generating
functions on polyhedra; Subsection 5.2 presents important facts on vertices, edges,
tangent cones, and triangulations; Subsection 5.3 proves auxiliary lemmas that help
to handle the cases, when P y is unbounded, for some y ∈ R

ny . Finally, Sects. 4 and 7
give proofs of the main Theorems 3 and 4 of our work, respectively.

1.3 Survey on the non-parametric case

Let us first survey known results about the non-parametric case, i.e. ny = 0, and denote
n := nx in the remaining part of this Subsection. The asymptotically fastest algorithm
for the counting problem in a fixed dimension can be obtained, using the approach
of Barvinok [10] with modifications, due to Dyer and Kannan [11] and Barvinok and
Pommersheim [12]. A complete exposition of the Barvinok’s approach can be found
in [12–16], additional discussion with respect to the dual-type counting algorithms
can be found in the book [17], due to Lasserre. An important notion of the half-open
sign decomposition and other variant of Barvinok’s algorithm that is more efficient in
practice is given by Köppe and Verdoolaege in [18]. Barvinok and Woods [14] give
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Table 1 Comparison of different primal-type algorithms

ν · 2O(d) · (log2(�)
)d ln(d) see Ref. [13, Chapter 16] plus [19]

ν · dO(1) ·�d see Ref. [21]

O
(
ν · d2 · d log2(�)

)
see Ref. [23]

O
(
ν2 · d4 ·�4 · log(�)

)
see Ref. [24]

O
(
ν2 · d4 ·�3) see Ref. [22]

important generalizations of the original techniques and adapts them to a wider range
of problems to handle projections of polytopes. Using the fastest deterministic Shortest
Lattice Vector Problem (SVP) solver by Micciancio and Voulgaris [19], Barvinok’s
algorithm computational complexity can be estimated by

ν · 2O(d) · (log2(�)
)d ln(d)

, (1)

where d := dim(P). Since any polytope can be transformed to an integer-equivalent
simple polytope, using a slight perturbation of the r.h.s. vector b, the parameterization
by ν is correct (see, for example, [20, Theorem 3]). Since, for a fixed d, the value of ν

and the value of O
(
log2(�)

)d log d are bounded by a polynomial on the input length,
the Barvinok’s work shows that the counting problem is polynomial-time solvable in
a fixed dimension.

Lasserre and Zeron [21] give formulae, based on the R. Gomory’s group-theoretic
approach, whose complexity could be roughly bounded by

ν · dO(1) ·�d . (2)

For � = O(d), the last complexity bound is better than (1). The papers [20, 22, 23]
are aimed to develop a counting algorithm with the poly(ν, d,�) complexity bound.
Due to [22], the state of the art bound is

O(ν2 · d4 ·�3). (3)

Using the last complexity bound (3) and different ways to estimate the parameter ν,
the papers [22] and [20] give new interesting complexity bounds for the �-modular
ILP feasibility problem, multi-dimensional knapsack problem, sparse ILP problems,
and combinatorial multi-cover/multi-packing problems on hypergraphs. Table 1 gives
a comparison of the considered algorithms.

The case of a bounded co-dimension. Consider now the polytopes defined by
systems in the Standard-Form with a bounded co-dimension k (the number k of linear
independent rows in A is bounded, see Definition 2). The next natural question is the
following: is it possible to compute |P ∩Z

n | by an FPT-algorithm with respect to
the parameters k & � or k & �1, where k is the co-dimension of P? The paper [20]
with a modification from [22] gives a partially positive answer on this question. More
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precisely, for any fixed k, the problem to find |P ∩Z
n | can be solved by an FPT-

algorithm, parameterized by�with the arithmetic complexity bound O(n/k)2k+4 ·�3.
A similar parameterized algorithm with respect to �1 can be achieved just by using
the Hadamard’s bound. For k = 1, it gives an O(n6 ·�3

1) FPT-algorithm to count the
solutions of the unbounded subset-sumproblem.For k = 1, the result of [20] is not new,
the earlier paper [25], due to Lasserre & Zeron, also gives a dual-type FPT-algorithm
for this problem, but the concrete complexity bound was not given. Finally, Lasserre
and Zeron [26] give a dual-type algorithm that is designed for systems with small
values of k and �total(A) parameters. Unfortunately, the computational complexity
analysis is not completely finished.

The ideas of dual-type algorithms and its residue techniques have been improved
in the papers [27–29]. Due to Hirai, Oshiro and Tanaka [29], dual-type algorithms can
be significantly more memory-saving than primal type-algorithms. For example, Hirai
et al. prove the existence of an O

(‖y‖k∞
)
-time and poly(n, k, ‖y‖∞)-space counting

algorithm. Here, it is additionally assumed that A is non-negative and y ∈ Z
k≥0.

1.4 Introduction to the general parametric case

Let us return to the parametric case. Consider first the polytope P = {x ∈ R
nx : Ax ≤

y · b}, for y ∈ Z>0. In other words, P y = y · P1. It was shown by Ehrhart [30, 31]
that EP (y) can be represented by a univariate polynomial with periodic coefficients,
which is known as the Ehrhart’s quasi-polynomial. The least common multiple of all
the coefficient periods is bounded by t , where t ∈ Z>0 is the minimum value, such
that P t = t · P1 becomes a polyhedron with vert(P) ⊆ Z

nx .
It is difficult to directly store the Ehrhart’s quasi-polynomial representation of

EP (y), because it needs O(nx · t) space with t = 2O(φ), where φ is the bit-encoding
length of (A, b). However, it was shown by Barvinok [32] that the values of the first
j leading coefficients of the Ehrhart’s quasi-polynomial of a rational simplex in a
given point y can be computed by a polynomial-time algorithm, assuming that j is
fixed. Moreover, this result holds even for more general polytopes, which have a fixed
co-dimension, see Definition 2. As it was noted in [32], if the dimension is fixed in
advance, the value of any periodic coefficient in a given point y can be computed by
a polynomial-time algorithm, using the interpolation technique.

The multivariate generalization of the above result, due to Ehrhart, was presented
by Clauss, Loechner and Wilde in [1, 3]. In order to give a formal exposition, we need
to make a few definitions, which will be used significantly in the further text.

Definition 7 For D ⊆ R
n , we call a function f : D → R periodic, if there exists

a matrix P with linear independent columns, such that f (x) = f (y), whenever
x − y ∈ �(P). The matrix P is called a period-matrix of f . A vector p is called
a period-vector or a multi-period of f , if diag(p) is a period-matrix of f . That is,
f (x) = f (y), whenever, for each i ∈ {1, . . . , n}, xi = yi + pi · k, and k ∈ Z.
We call a periodic function f rational, if its restriction f

∣∣
Q
n is periodic (the restric-

tion has a rational period-matrix). Similarly, if f
∣∣
Z
n is periodic (the restriction has an

integer period-matrix), then f is called integer.
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Definition 8 A quasi-polynomial of degree d in n variables x is a polynomial expres-
sion of degree d in x with coefficients, represented by periodic functions. That is,

f (x) =
∑

j∈Zn≥0‖ j ‖1≤d

aj(x) · x j,

where aj are periodic functions. If all the periodic coefficients aj are rational (or
integer), then we call the whole quasi-polynomial f rational (resp. integer). A period-
vector p, which is common for all the coefficients aj(x), is called a period-vector or
a multi-period of f .

Denote the projection from R
nx+ny to the parametric space R

ny by �. In other
words, for x ∈ R

nx and y ∈ R
ny , we have �

(x
y

) = y.

Definition 9 Let P be a polyhedron, defined by Canon-Form or Standard-Form. Con-
sider a collection Q of rational polyhedra Q with the following properties:

1. The equality �(P) = ⋃

Q∈Q
rel.int(Q) is true;

2. The equality rel.int(Q1) ∩ rel.int(Q2) = ∅ is true, for different Q1,Q2 ∈ Q;
3. For any Q ∈ Q, all the polyhedra of the family {P y : y ∈ Q} have the same fixed

combinatorial type;
4. For any Q ∈ Q, there exists a subset of bases Bases(Q) of A, such that, for any

y ∈ rel.int(Q), we have

vert(P y) =
{
A−1B (bB − BB y) : B ∈ Bases(Q)

}
.

The set of corresponding affine functions

pvert(Q) := {VB(y) = A−1B (bB − BB y) : B ∈ BQ
}

is called the parametric vertices of P y .

The family Q is called the chamber decomposition of P , elements of the decompo-
sition are called chambers.

Here, the symbol rel.int(·) denotes the relative interior of the corresponding subset
of Rn . More precisely, for P ⊆ R

n ,

rel.int(P) = {x ∈ R
n : ∃ε > 0 such that x + ε · B||·||2 ∩ aff.hull(P) ⊆ P},

where B||·||2 is the unit Euclidean ball and aff.hull(P) is the affine hull of P .

Definition 10 For a rational polyhedron P ⊆ R
n , the minimal value q ∈ Z≥1 (or

q ∈ Q>0), such that

vert(q · P) ⊆ Z
n
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is called the integer denominator of P (or resp. rational denominator of P) and is
denoted by denZ(P) (resp. denQ(P)). Clearly, denQ(P) ≤ denZ(P).

Let P be a polyhedron, defined by Canon-Form or Standard-Form, and let Q be
a chamber decomposition of P . For a chamber Q ∈ Q, the minimal value q ∈ Z>0
(resp. q ∈ Q>0), such that

q · V(y) ∈ Z
nx , for all y ∈ Z

ny and V ∈ pvert(Q),

is called the integer (resp. rational) chamber denominator of Q and is denoted by
ch.denZ(Q) (resp. ch.denQ(Q)). Clearly, ch.denQ(Q) ≤ ch.denZ(Q), for anyQ ∈ Q.

Theorem 1 (Theorem 2, Clauss and Loechner [3]). Let P be a polyhedron, defined
by Canon-Form or Standard-Form. Then, the function EP can be represented by an
integer piece-wise quasi-polynomial of degree nx .

That is, there exists a chamber decomposition Q, such that, for any Q ∈ Q and
y ∈ rel.int(Q) ∩ Z

ny , the function EP is an integer quasi-polynomial of degree nx .
The vector ch.denZ(Q) · 1 can be chosen as its period-vector.

Definition 11 (Integer Piece-wise Ehrhart’s Quasi-polynomial). The representation of
EP , given by the previous theorem, is called the integer piece-wise Ehrhart’s quasi-
polynomial of P . The coefficientsaj(y) can be interpreted as the integer periodic piece-
wise defined functions. Since the number of chambers in the chamber decomposition
Q is always finite, any of the coefficients aj(y) takes only a finite number of values.
Therefore, we can directly store the values of all periodic coefficients aj(y). We call
such a representation of EP as the complete representation of the integer piece-wise
Ehrhart’s quasi-polynomial of P .

Clauss and Loechner [3] give an algorithm to compute the part of chamber decom-
position, i.e., only the chambers of dimension ny . For the most applications, it is
enough to know only the full-dimensional part of chambers. However, to establish our
main results, we need to know the chambers of all dimensions. In our paper, we will
propose an algorithm to compute them.

The following theorem, due to Henk and Linke [33] (see also Linke [34]), gives a
generalization of Theorem 1 with respect to the function EP . Note that in the homo-
geneous case, when b = 0, all the chambers from the chamber decomposition of P
become polyhedral cones.

Theorem 2 (Henk& Linke [33]). LetP be a polyhedron, defined by Canon-Form with
b = 0 and B = Im. In other words, P y = {x ∈ R

nx : Ax ≤ y}, for y ∈ R
ny . Let Q

be a chamber decomposition of P .
Fix a chamberQ ∈ Q, and letQ = cone(h1, h2, . . . hs). Then, for y ∈ rel.int(Q),

the function EP can be represented by a rational quasi-polynomial

EP (y) =
∑

j∈Zny
≥0‖ j ‖1≤nx

aj(y) · yj,
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where aj(y) = aj
(
y + denQ(Phi ) · hi

)
, for each i ∈ {1, . . . , s}. That is, the matrix

D · H is a period-matrix of the quasi-polynomial, where H = (h1 . . . hs) and D is
diagonal with Dii = denQ(Phi ). Furthermore, aj is a piece-wise defined polynomial
of degree nx − ‖ j ‖1 in y with

∂

∂ yi
aj = −(ji +1) · aj+ei .

Definition 12 (Rational Piece-wise Ehrhart’s Quasi-polynomial). The representation
of EP , given by this theorem, is called the rational piece-wise Ehrhart’s quasi-
polynomial of P .

Remark 3 It would be interesting to establish a simpler periodic property by analogy
with Theorem 1, due to Clauss and Loechner, such that

for each Q ∈ Q, the vector ch.denQ(Q) · 1 is a period-vector of EP .

To the best of our knowledge, at the current moment of time such a property is not
known. But, it seems that it can be deduced from the step-polynomial representation of
EP , due to Verdoolaege, Seghir, Beyls, Loechner and Bruynooghe [35] (see also [36],
due to Verdoolaege and Woods), even for the non-homogeneous case with b �= 0 and
B �= Im . Notwithstanding this, in the Subsection 2.1, Theorem 5 gives an independent
proof of a slightly refined version of Theorem 2, due to Henk & Linke, to prove this
property for the general non-homogeneous case.

Theorem 2, due to Henk and Linke, has many generalizations that work with more
general functions (evaluations) than EP . For example, the weighted Minkowski sums
of rational polyhedra can be represented as quasi-polynomials on weights, see Henk
and Linke [33] and Stapledon [37] for algorithmic implications. The major general-
ization of EP is given by the notion of the intermediate weighted sums on polyhedra:

SL(P y, h) =
∑

x∈Znx /L

∫

P y ∩(x+L)

h(t) dt,

where y ∈ Q
ny , h(x) is a polynomial function, and L is a rational linear subspace

of Rnx . It turns out that the structure of SL(P y, h) can also be expressed by quasi-
polynomials. The algorithmic theory (in a fixed dimension) of intermediate weighted
sums on polyhedra is developed in the sequence of works [38–40], due to Baldoni,
Berline, De Loera, Köppe, Vergne, and [41], due to Beck, Elia and Rehberg. Similar
to Barvinok [32], Baldoni et al. [42] give a polynomial-time algorithm to compute the
highest coefficients of the corresponding quasi-polynomials.

The piece-wise step-polynomial representation of EP . As it was already men-
tioned, even for a fixed nx , the integer or real Ehrhart’s quasi-polynomials can not be
used as an effective data structure to calculate EP (y) or EP , for a given y ∈ Z

ny or
y ∈ Q

ny . For this reason, Verdoolaege, Seghir, Beyls, Loechner and Bruynooghe [35],
present an alternative representation of EP , called the piece-wise step-polynomial,
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which is, for a fixed chamberQ, is a polynomial expression in the lower integer parts
of the parametric vertices pvert(Q) of Q ∈ Q. The algorithm of [35] computes such
a representation of EP by a polynomial-time algorithm, assuming that nx and ny
are fixed. If nx is fixed, the length of the resulting representation is bounded by a
polynomial on the input size, which gives a practically good query time to compute
EP (y), for a given y ∈ Q

ny . Due to Verdoolaege and Woods [36], the class of piece-
wise step-polynomials and the class of rational generating functions are equivalent
in the following sense: both representations can be transformed to each other by a
polynomial-time algorithm in the assumption that nx and ny are fixed.

The dual principle. All the considered algorithms are called primal-type count-
ing algorithms. The dual-type counting algorithms are originally applied to polytopes
P , defined in the standard form P = {x ∈ R

n≥0 : Ax = y}, where A ∈ Z
k×n ,

rank(A) = k, and y ∈ Z
k . To the best of our knowledge, the dual-type generating-

function framework was initiated by Brion and Vergne [43, 44], Beck [45–47],
Nesterov [48], and Lasserre and Zeron [26, 49]; see the monograph [17] by Lasserre.
Denote f A(y) = |P y ∩Z

n | and consider the Z-transform f̂A(z) := ∑

y∈Zk

f A(y) · zy .

Brion and Vergne [44] showed that f̂ A admits a simple closed formula f̂ A(z) =
n∏

i=1
1

1−z−A∗i and that f A(b) can be recovered by the inverse Z-transform, which is

a multi-dimensional contour integration of f̂ A. Using this technique, Lasserre and
Zeron [49] present an algorithm to find f A(y) with the complexity bound O(k)d ·�,
where d := dim(P(b)) = n − k and �, where the parameter � depends as a polyno-
mial onm, d, and�1, but exponentially on the input size. The last boundwas improved
in [22] to the bound O

( k
d + 1

)d/2 · d3 ·�3, which additionally can be used for general
polytopes of the co-dimension k, defined by both standard and canonical forms.

2 New representation: piece-wise periodic step-polynomials

In our work, we introduce the class of piece-wise periodic step-polynomials, which
differs from standard piece-wise step-polynomials by periodicity of the coefficients.
The period-vector of any coefficient in our representation has smaller components
than in the rational piece-wise Ehrhart’s polynomial representation. More precisely,
the product of the multi-period components of any coefficient is bounded by �. The
total length of our new representation can be even polynomial on nx in some important
cases. Following to the papers [3, 36], let us make some definitions.

Definition 13 Given real vector spaces V and W , the function T : V → W of the
form

T (x) = ⌊A(x)
⌋
,

where A : V →W is an affine map, is called the affine step-function.
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Definition 14 Given real vector spaces V and W and an integer lattice � ⊆ W , a
periodic step-polynomial f : V → R is a function of the form

f (x) =
l∑

i=1
πi
(
T i (x)

) ·
(
Li
(
T i (x)

))di
,

where, for any i ∈ {1, . . . , l}, T i : V → W are affine step-functions, Li : W → R

are linear functions, πi : �→ R are periodic functions and di ∈ Z≥0. We say that the
degree of f (x) is maxi {di } and the length of f (x) is l.

Definition 15 Let D be a subset of a real vector space and Q be a family of rational
polyhedra, such that their relative interiors form a partition of D. Then, a function
f : D→ R with the property:

for each Q ∈ Q, the function f
∣∣
rel.int(Q)is a periodic step - polynomial,

is called a piece-wise periodic step-polynomial defined on Q.

The next theorem is the main theorem of our work. It states that there exists a
piece-wise periodic step-polynomial representation of EP of a very special structure.
Additionally, it presents an algorithm to compute this representation.

Theorem 3 Let P be a polyhedron, defined by Canon-Form. Assume that P y is
bounded, for at least one y ∈ �(P). Then, there exists a chamber decomposition
Q of P and a piece-wise periodic step-polynomial f , defined onQ, such that, for any
y ∈ �(P) with bounded P y , it holds EP (y) = f (y).

Additionally, the following propositions hold:

1. For a base B of A, denote AB = PBSBQB, where SB is the SNF of AB and
PB, QB ∈ Z

nx×nx are unimodular. Then, for a fixed chamber Q ∈ Q and y ∈
rel.int(Q), we have

f (y) =
∑

B∈Bases(Q)

nx∑

k=0
πB,k

(
PB T B(y)

) · 〈cB, T B(y)
〉k

, (4)

where T B(y) : Rny → R
nx are affine step-functions, cB ∈ Q

nx , and πB,k : Zn →
Q≥0 are periodic functions with a period-matrix SB. More precisely, for B ∈
Bases(Q), the vector cB and the step-function T B(y) are given by the formulas:

(a) cB = A−�B c, where c ∈ Z
n is some fixed integer vector;

(b) T B(y) = ⌊
AB VB(y)

⌋
, where VB(y) = A−1B (bB − BB y) is the parametric

vertex ofP , corresponding to the baseB. Consequently,T B(y) = ⌊bB−BB y
⌋
.

2. Assume that ny-dimensional faces and (ny − 1)-dimensional faces of P are given.
Here, we assume that each face F of P is uniquely determined by a set of inequal-
ities, which become equalities on F . Then, the function f can be computed with
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the arithmetic cost

O∗
(
( fny−1)ny · fny + ( fny−1)2ny · ( fny−1 + μ2 ·�3)

)
.

3. The length and degree of the resulting piece-wise periodic step-polynomial is
bounded byμ ·(nx+1) and nx , respectively. Having such a representation, queries
to f can be performed with the cost of

O
(
ny · fny−1 + μ · nx ·

(
log(�)+ ny

))
operations.

A theorem’s proof is given in Sect. 7. Its important part is a computation of the cor-
responding chamber decomposition of P . As it was already noted, the previous works
only give algorithms to compute full-dimensional chambers, because it is sufficient for
all the applications so far. However, for our needs, we need the full chamber decom-
position of P , according to Definition 9. Since our algorithm is new, and, perhaps, it
has an independent interest, we emphasize it to a separate theorem:

Theorem 4 LetP be a polyhedron, defined by Standard-Form with rank(A) = nx and
dim(P) = nx+ny. Assume that ny-dimensional faces and (ny−1)-dimensional faces
of P are given by lists of inequalities, which become equalities on a corresponding
face. Then, the chamber decomposition of P can be computed by an algorithm with
arithmetic complexity bound:

O∗
(
( fny−1)ny · fny + ( fny−1)2ny · (ν + fny−1)

)
.

The total number of chambers is bounded by O
(
( fny−1)2ny

)
, the number of chambers

of the dimension ny is bounded by O
(
( fny−1)ny

)
. For a given point y ∈ �(P), the

corresponding chamber Q with y ∈ rel.int(Q) can be found with

O(ny · fny−1) operations.

A theorem’s proof is given in Sect. 6.

2.1 Connection with the rational and integer Ehrhart’s quasi-polynomials

In this Subsection, we are going to show that the new piece-wise periodic step-
polynomial and Ehrhart’s piece-wise quasi-polynomial representations are closely
connected. Moreover, the second one can be computed using the first.

Consider the formula (4) for a fixed chamber Q ∈ Q, and denote ψB(y) =〈
cB, bB − {bB − BB y}

〉
. Clearly,

〈
cB, T B(y)

〉 = ψB(y) − 〈
cB, BB y

〉
. Substituting
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the last expression to (4), we have

EP (y) =
∑

B∈Bases(Q)

nx∑

k=0
πB,k

(
PB T B(y)

) ·
(
ψB(y)− 〈cB, BB y

〉)k

=
∑

B∈Bases(Q)

nx∑

k=0

k∑

i=0
πB,k

(
PB T B(y)

)(k
i

)
ψk−i
B (y)

〈
cB,−BB y

〉i

=
nx∑

i=0

∑

B∈Bases(Q)

〈
cB,−BB y

〉i ·
nx∑

k=i
πB,k

(
PB T B(y)

)(k
i

)
ψk−i
B (y)

=
nx∑

i=0

∑

B∈Bases(Q)

π̄B,i (y) ·
〈
cB,−BB y

〉i
, (5)

where π̄B,i (y) =
nx∑

k=i
πB,k

(
PB T B(y)

)(k
i

)
ψk−i
B (y).

Clearly, the expression
〈
cB,−BB y

〉i forms homogeneous polynomials on y. The
next lemma shows that the coefficients π̄B,i (y) are periodic functions. Consequently,
the formula (5) forms a quasi-polynomial.

Lemma 1 The following propositions hold:

1. The vectors ch.denZ(Q) · 1 and ch.denQ(Q) · 1 could be chosen as period-vectors
of π̄B,i ;

2. Let y ∈ Q and z ∈ rel.int(Q). Denote q = lcm
(
denQ(P y), denQ(P z)

)
. Then,

π̄B,i (y) = π̄B,i
(
y + q · (z − y)

)
.

Proof Denote q = ch.denQ(Q). Let us prove the first proposition. More precisely, we
claim that any of the vectors q · t , for t ∈ Z

ny , can be chosen as a period-vector of
both functions. By definition of ch.denQ(Q), for any B ∈ Bases(Q), we have

q · A−1B (bB − BBt) ∈ Z
nx , for any t ∈ Z

ny .

The last fact is possible if and only if q · A−1B bB ∈ Z
nx and q · A−1B BBt ∈ Z

nx . Note,
additionally, that q · BBt ∈ Z

nx . Therefore,

πB,k
(
PB T B(y + qt)

) = πB,k
(
PB�bB − BB y� − qPBBBt

)

= πB,k
(
PB T B(y)− qPBABA−1B BBt

)

= πB,k
(
PB T B(y)− SBt

′),

where t ′ = qQ−1B A−1B BBt is an integer vector, because q · A−1B BBt ∈ Z
nx and QB is

unimodular. Since t ′ · SB is a multi-period of πB,k , the equality πB,k
(
PB T B(y + q ·

t)
) = πB,k

(
PB T B(y)

)
holds. To finish the proof of the first proposition, we have left

to show that ψB(y + q · t) = ψB(y). Definitely, due to the definition of ψB(y), we
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just need to establish the equality {bB − BB(y + q · t)} = {bB − BB y}, which holds
since q · BBt ∈ Z

nx .
Let us prove the second proposition. Since y ∈ Q and z ∈ rel.int(Q), the polyhedra

P y and P z have the same set of parametric vertices. Denote t = z − y. By definition
of q, we have

q · A−1B
(
bB − BB y

) ∈ Z
nx ,

q · A−1B
(
bB − BBz

) ∈ Z
nx , for any B ∈ Bases(Q).

Consequently,

q · A−1B BBt ∈ Z
nx ,

q · BBt ∈ Z
nx , for any B ∈ Bases(Q).

Therefore, the same chain of reasoning can be used in a proof of the first proposition:

πB,k
(
PB T B(y + qt)

) = πB,k
(
PB�bB − BB y� − qPBBBt

)

= πB,k
(
PB T B(y)− qPBABA−1B BBt

)

= πB,k
(
PB T B(y)− SBt

′)

= πB,k
(
PB T B(y)

)
.

A proof of the equality ψB(y + q · t) = ψB(y) is also completely similar. ��

Therefore, we have proven the following theorem, which gives a direct generaliza-
tion of Theorem 2, due to Henk & Linke, modulo that we cannot say anything about
the derivatives of aj, because of the discrete nature of π̄B,k .

Theorem 5 LetP be a polyhedron, defined by Canon-Form. Then, there exists a cham-
ber decomposition Q of P , such that, for any fixed Q ∈ Q that corresponds to a
bounded P y and y ∈ rel.int(Q), the function EP can be represented by a quasi-
polynomial of degree nx :

EP (y) =
∑

j∈Zny
≥0‖ j ‖1≤nx

aj(y) · yj.

Additionally, the following propositions hold:

1. The vector ch.denQ(Q) · 1 can be chosen as a period-vector of all aj;
2. For any y ∈ Q and z ∈ rel.int(Q), if q = lcm

(
denQ(P y), denQ(P z)

)
, then

aj(y) = aj
(
y + q · (z − y)

)
is true.
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The formula (5) can be used to establish the exact formula for aj(y), which can be
used to estimate the computational complexity of aj(y). Definitely, due to (5):

EP (y) =
nx∑

k=0

∑

B∈Bases(Q)

π̄B,k(y) ·
〈
cB,−BB y

〉k

=
nx∑

k=0

∑

j∈Zny
≥0

j1+···+ jny=k

yj ·
∑

B∈Bases(Q)

(
k

j1 . . . jny

)
· π̄B,k(y) · (−c�BBB)j

Therefore, aj(y)

=
∑

B∈Bases(Q)

(
k

j1 . . . jny

)
· π̄B,k(y) · (−c�B BB)j, where k= j1+ · · · + jny .

(6)

In the next theorem, we estimate the computation complexity to evaluate the periodic
coefficients aj(y).

Theorem 6 Assume that all the conditions of Theorem 5 are satisfied. Then, there
exists a preprocessing algorithm with the arithmetic complexity

O∗
(
( fny−1)ny · fny + ( fny−1)2ny · ( fny−1 + μ2 ·�3)

)
,

such that, for anyQ ∈ Q, j, and y ∈ rel.int(Q), the value aj(y) can be computed with

O
(
μ · nx ·

(
log(�)+ ny

))
operations.

The corresponding chamber Q can be found with O
(
ny · fny−1

)
operations.

Proof To compute the value aj(y), we will use the formulas (5) and (6). First, we
construct a piece-wise periodic polynomial representation of EP (y), using Theorem 3,
with

O∗
(
( fny−1)ny · fny + ( fny−1)2ny · ( fny−1 + μ2 ·�3)

)
. (7)

Additionally, we need to precompute the values
( k
j1 j2 ... jny

)
,
(−c�B BB

)j, where j =
Z
ny
≥0, j1 + · · · + jny = k, k ∈ {0, . . . , nx }, B ∈ Bases(Q), andQ ∈ Q. It can be done

with O
(
N + |Q | · μ · nx · ny

)
operations, where N is the total number of j-indices.

Since, due to Theorem 4, |Q | = O
(
( fny−1)2ny

)
and N = O

(
n
ny
x
)
, the arithmetic

cost of these additional computations is negligible with respect to (7).
For a given point y ∈ Q

ny and an index j, we first need to find a chamber Q ∈ Q,
such that y ∈ rel.int(Q). Due to Theorem 4, it can be done with O(ny · fny−1)
operations. Next, for each B ∈ Bases(Q), we use the following scheme:

1. Compute ψB(y) = 〈cB, bB − {bB − BB y}
〉
with O(nx · ny) operations;

2. For i ∈ {0, . . . , nx }, compute
(
ψB(y)

)i with O(nx ) operations;
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3. Compute g = PB T B(y) mod SB · Znx with O(nx · log(�)) operations;
4. For i ∈ {0, . . . , nx }, extract the values πB,i

(
g
)
with O

(
nx · log(�)

)
operations;

5. Compute π̄B,k(y), where k = j1 + · · · + jny , with O(nx ) operations, using the
formula (5).

The total arithmetic complexity of the presented scheme is O
(
μ · nx · (log(�)+ ny)

)
.

Now, we can compute the value aj(y), using the formula (6) with O(μ) operations. ��
Due to Clauss and Loechner’s Theorem 1, the function EP can be represented

by an integer Ehrhart’s piece-wise quasi-polynomial. Due to the periodicity reasons,
its coefficient values can be stored exactly in a hash-table, which will give very fast
evaluation time for the function EP . We can use the previous Theorem 6 to compute
this “complete” representation of EP , which is summarized in the following corollary:

Corollary 1 Let f (x) be an integer Ehrhart’s piece-wise quasi-polynomial that rep-
resents EP , and let Q be the corresponding chamber decomposition. Denote q =∑

Q∈Q
(
ch.denZ(Q)

)ny . Assume additionally that the preprocessing step of Theorem 6
has already been performed.

Then, for all the chambers in Q, we can precompute the values of all the periodic
coefficients with

O
(
q · M · μ · nx ·

(
log(�)+ ny

))

operations, where M = O(n
ny
x ) is the maximum number of monomials. After that, for

any y ∈ Z
ny , the value f (y) can be computed with

O
(
ny · ( fny−1 + M)

)

operations.

Proof During the preprocessing, for each Q ∈ Q, we precompute values of all the
corresponding coefficients aj, using Theorem 6. We store these values in a hash-table
with O(1) lookup time and linear construction time. Since, for a fixed chamber, there
are M of such coefficients and since there are at most

(
ch.denZ(Q)

)ny unique values
of a single coefficient, the total preprocessing cost is the same as it was claimed.

Now, for a given vector y ∈ Z
ny , we need first to find a chamberQ ∈ Q, such that

y ∈ rel.int(Q), due to Theorem 4, it can be done with O(ny · fny−1) operations. After
that, we look up values of the corresponding coefficients aj(y) and take a resulting
sum with O(ny · M) operations, which gives the desired complexity bound. ��

3 Brief review of the obtained results

In the current Section, we review implications of our work from theoretical and com-
putational perspectives.
Theoretical perspective:
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1. We show that the function EP can be represented by a new type of functions, named
periodic piece-wise step-polynomials (see Definition 15 and Theorem 3), which is
a generalization of piece-wise step-polynomials from [35, 36], due to Verdoolaege
et al. Further, we show that the new representation of EP is more efficient than
piece-wise step-polynomials and can be effectively computed in certain situations.

2. We show that the rational piece-wise Ehrhart’s quasi-polynomial representation
of EP is a partial case of our new representation. More precisely, we give an
independent proof of the main results of [33] and [34], due to Linke and Linke
& Henk, for the general non-homogeneous case. Additionally, we give some new
information about multi-periods of the resulting piece-wise polynomials, based on
the new notion of a chamber’s denominator. See Theorem 2, due to Henk & Linke,
our Theorem 5, and Remark 3.

Computational perspective:

1. General computational tool. We give a general computational tool to construct a
piece-wise periodic step-polynomial representation of EP , which uses information
on the face-lattice structure of P . This result is given in Theorem 3, and it is used
to derive all the other consequences of our work. More precisely, assuming that
faces of P of dimensions ny and ny − 1 are given, the arithmetic complexity to
construct the new representation of EP is

O∗
(
( fny−1)ny · fny + ( fny−1)2ny · ( fny−1 + μ2 ·�3)

)
,

while the arithmetic complexity to evaluate EP , using our representation, in any
given y ∈ Q

ny , is

O
(
ny · fny−1 + μ · nx · (log�+ ny)

)
.

Additionally, we give similar complexity bounds to compute coefficient values of
the rational piece-wise Ehrhart’s quasi-polynomial of P and the complete inte-
ger piece-wise Ehrhart’s quasi-polynomial representation of P . See Theorem 6,
Corollary 1, and Definitions 11, 12.

2. Complexity bounds for polyhedra of bounded co-dimension.Consider the poly-
hedron P , defined by a system

⎧
⎪⎨

⎪⎩

Ax = y

x ∈ R
nx≥0

y ∈ R
k,

(8)

where A ∈ Z
k×nx and rank(A) = k. This system can be considered as the “worst

case” of the general parametric system in Standard-Form, because it is natural to
assume that ny ≤ k.
The systems of the type (8) with a fixed y ∈ Z

k and a fixed co-dimension k
have received a considerable amount of attention in the literature. In his semi-
nal work [50], Papadimitriou shows that ILP problems with systems (8) can be
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solved by poly(nx , ‖A‖max, ‖y‖∞)-time algorithm, for any fixed k. The result of
Papadimitriou was significantly refined by Jansen and Rohwedder [51], where
poly

(
nx , ‖A‖max, log(‖y‖∞)

)
-time algorithm with a significantly better asymp-

totic behavior on nx , k, and ‖A‖max was presented. Following to Jansen and
Rohwedder [51] or Eisenbrand and Weismantel [52], in order to solve an ILP
problem, one can reformulate the original system in such a way that the r.h.s. vec-
tor y of the new system will depend only on k and ‖A‖max. Consequently, ILP
problems with systems of the type (8) can be solved in poly(nx , ‖A‖max)-time, for
any fixed k. Moreover, the final complexity bound is FPT with respect to k and
‖A‖max.
Considering the counting problem, for any fixed k, Lasserre and Zeron [26] present
a dual-type algorithm that uses poly(nx , ‖A‖max) arithmetic operations with real
numbers. Unfortunately, the complexity analysis of this algorithm is not completely
finished. The first poly(nx , ‖A‖max)-time algorithm with a complete complexity
analysis was presented in [20], see also [24], since the original paper contained an
inaccuracy.
As oneof themain results of the current paper,we show that after poly(nx , ‖A‖max)-
operations of a preprocessing algorithm, the parametric counting can be performed
by a polynomial-time algorithm:

Proposition 1 Let P be a polyhedron, defined by the system (8). Assume that the co-
dimension k is fixed. Then, there exists an poly

(
n, ‖A‖∞

)
-operations algorithm that

returns a function f : Rk → Z≥0 ∪{+∞}, such that EP (y) = f (y), for any y ∈ R
k .

For any y ∈ Q
k , the value of f (y) can be computed by a polynomial-time algorithm.

Similar results can be formulated with respect to the rational piece-wise Ehrhart’s
quasi-polynomial of P .

Proposition 2 Let P be a polyhedron, defined by the system (8). Let f (y) be the
corresponding rational piece-wise Ehrhart’s quasi-polynomial representation of EP
with its chamber decomposition Q. Assume that the co-dimension k is fixed, then
there exists an poly

(
n, ‖A‖∞

)
-operations preprocessing algorithm, which allows to

compute any of the coefficients aj(y) by a polynomial-time algorithm, for any given
chamber Q ∈ Q and y ∈ rel.int(Q).

For the problem to compute the complete integer piece-wise Ehrhart’s quasi-
polynomial representation of EP , we use a weaker parameter �lcm := �lcm(A).

Proposition 3 Let P be a polyhedron, defined by the system (8), and f (y) be the
corresponding integer piece-wise Ehrhart’s quasi-polynomial representation of EP .
Assume that the co-dimension k is fixed, then the complete representation of f (y) can
be computed by an poly(�lcm, nx )-operations algorithm.

All the presented propositions are the straight corollaries of the general The-
orems 7, 8, and 9, which are valid for any systems of the types Canon-Form
and Standard-Form.

3. General �-modular polyhedra of a small co-dimension k. As it was noted
before, the results of the previous item are the partial cases of the more general
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Table 2 Complexity for a fixed ny

Preprocessing complexity EP -Evaluation complexity

mO(nx ) · μ · (log�)nx ln nx O∗( fny−1 + μ · (log�)nx ln nx ) see Ref. [35]

mO(nx ) · μ2 ·�3 O( fny−1 + μ · nx · log(nx�)) This work

Table 3 complexity for m = O(nx )

Preprocessing complexity EP -Evaluation complexity

nO(nx )
x · (log�)nx ln nx 2O(nx ) · (log�)nx ln nx see Ref. [35]

nO(nx )
x ·�3 2O(nx ) This work

Theorems 7, 8, and 9. More precisely, due to Theorem 7, for any parametric
polyhedron P , defined by a system in the Canon-Form or Standard-Form form,
a piece-wise periodic step-polynomial representation of EP can be constructed
with

O(nx/k)
2k(ny+1) ·�3 · poly(nx , ny, k)

operations. After that, for any y ∈ Q
ny , the value of EP (y) can be computed with

O(nx/k)
k+1 · nx ·

(
log(nx�)+ ny

)

operations. Similar results with respect to integer/rational piece-wise Ehrhart’s
quasi-polynomials are given in Theorems 8 and 9.

4. Polyhedra of a general type with bounded dimension ny of the parametric
space. Let us assume that the parameter ny is a fixed constant and consider the
Parametric Counting problem for the general class of polyhedra, defined by sys-
tems in the Canon-Form or Standard-Form forms. In the following Table 2, we
compare our complexity bound (for the precise bound, see Theorem 10) with the
approach from [35] and [36], due to Verdoolaege et al.
Here, in Table 2, we use our Theorem 4 to construct a data structure that stores and
accesses the chambers from the chamber decomposition ofP for both approaches.
Due to Theorem 4, assuming ny = O(1), the decomposition can be constructed

with nO(nx )
x operations, while the access costs is O( fny−1).

As we can see fromTable 2, our approach has a better evaluation complexity, while
the preprocessing step is competitive only for bounded values of �. There are two
interesting scenarios, when the evaluation complexity becomes 2O(nx ):

(a) Polyhedra with linear number of facets, i.e. m = O(nx ). In this situation, we
clearly have μ, fny−1 = 2O(nx ), so the bounds of Table 2 become the bounds
in Table 3.
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(b) Elements of (A B)1 are bounded, and (A B) is sparse. Denote M = (A B).
Let r and l denote the maximum number of non-zero elements in rows and
columns of non-degenerate square sub-matrices of M , respectively. It was
shown in [22] that any triangulation of a cone, induced by a sparse matrix,
has a bounded size, see the 3-rd proposition of Lemma 3 of this work.
Therefore, the following inequalities hold: f0 ≤ ||M ||nx+nymax · min{r , l}nx+ny
and μ ≤ ||A||nxmax · min{r , l}nx . Moreover, due to the Hadamard’s bound,
� ≤ ||A||nxmax · min{r , l}nx/2. Therefore, assuming that ||M ||max = O(1),
fny−1 can be bounded by

( f0
ny−1

) = min{r , l}O(nx ), and the bounds of Table 2
become the bounds of Table 4.
For example, if B is an identity matrix and A is an incidence matrix of some
hypergraph with a fixed maximum vertex degree or with a fixed maximum
edge cardinality, or just an incidence matrix of some simple graph, then the
evaluation complexity can be bounded by 2O(nx ).

5. Possible applications for the compiler analysis. Finally, let us make some spec-
ulative look of possible applications of our results to the compiler analysis. The
classical work [3], due to Clauss and Loechner, gives several examples, which
illustrate how the parametric counting problem can be used for the compiler anal-
ysis. Let us consider only one of such examples, which is about the problem to
estimate the nested loop execution time. Following to [3], consider the following
loop nest:

for i := 0 to n do
for j := 0 to 1+i + m/2 do

for k := to i - n + p - 1 do
Statement

We want to compute the number of flops in order to evaluate the execution time
of this code segment. The loop nest is modeled by the parametric polytope P =
{x ∈ Z

3 : Ax ≤ By + b}, where

x� = (i, j, k), y� = (n,m, p),

A =

⎛

⎜⎜⎜⎜⎜⎜
⎝

−1 0 0
1 0 0
0 −1 0
−2 2 0
0 0 −1
−1 0 1

⎞

⎟⎟⎟⎟⎟⎟
⎠

, B =

⎛

⎜⎜⎜⎜⎜⎜
⎝

0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
−1 0 1

⎞

⎟⎟⎟⎟⎟⎟
⎠

, b =

⎛

⎜⎜⎜⎜⎜⎜
⎝

0
0
0
2
0
−1

⎞

⎟⎟⎟⎟⎟⎟
⎠

.

Therefore, for any given y ∈ Z
3, the value of EP (y) gives the exact number of the

statement’s evaluations.
Now, let us make some, for our opinion, natural assumptions on a programmer’s
code:

1 We assume here that B is integer.
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(a) The nested loop defines a constant number of i, j, k, . . . -variables per a single
nested level. Definitely, in the most situations, a programmer uses only one
variable (or a constant number of variables) per a single nested level. In terms
of the parametric polyhedron P , it means that m = O(nx );

(b) The coefficients of the i, j, k, . . . -variables in the nested loop are bounded by
some fixed constant. Here, we assume that in a “common” case, the coefficients
of the variables are “small”. With respect to P , it implies that � = nO(nx )

x .

Assuming thatny , i.e., the number ofn,m, p, . . . -variables, is fixed, let us compare
the complexity of our approach with respect to the approach of Verdoolaege et
al. [35]. Due to Table 3, we have the following complexity in the considered case:

Preprocessing complexity EP -Evaluation complexity

nO(nx )
x nO(nx )

x see Ref. [35]

nO(nx )
x 2O(nx ) This work

Therefore, in the considered “common” scenario, the theoretical EP -evaluation
complexity is better for our approach (Table 4).

4 The computational complexity for special cases

In this Section, we are going to apply Theorem 3 to estimate the complexity of the
parametric counting problem in two different scenarios. Additionally, we analyze the
complexity to compute Ehrhart’s quasi-polynomials for them. More precisely, we
consider the following classes:

1. Polyhedra, defined by systems of a bounded co-dimension;
2. Polyhedra of the general typewith a bounded dimension ny of the parametric space.

4.1 Polyhedra, defined by systems of a bounded co-dimension

In the following result, we use our main Theorem 3 to construct a complexity bound
for the parametric counting problem with respect to parametric polyhedra of a small
co-dimension. The cases, when P y is unbounded, for some y ∈ Q

ny , are handled,
using Lemmas 4 and 5.

Table 4 The complexity for sparse A with bounded elements

Preprocessing complexity EP -Evaluation complexity

mO(nx ) nO(nx )
x see Ref. [35]

mO(nx ) min{r , l}O(nx ) This work
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Theorem 7 Let P be a polyhedron, defined by a system in the Standard-Form
or Canon-Form of the co-dimension k. Then, there exists an algorithm with the arith-
metic complexity bound

O(nx/k)
2k(ny+1) ·�3 · poly(nx , ny, k),

which returns a piece-wise periodic step-polynomial f (y) : Rny → Z≥0 ∪{+∞},
such that EP (y) = f (y). For any y ∈ Q

ny , the value of f (y) can be computed with

O(nx/k)
k+1 · nx ·

(
log(nx�)+ ny

)
operations.

Proof Consider first the case, when P is defined by a Canon-Form-system. Due to
Remark 6, we can assume that rank(B) = ny . Due to Lemmas 4 and 5, we can assume
that P y is bounded, for any y ∈ �(P). The last property is achieved at the cost of
replacing of m = nx + k by m = nx + k + 1 and � by nx ·�.

We are going to use our main Theorem 3. To this end, we need to estimate the
values fny , fny−1, μ and the complexity to enumerate ny-dimensional and (ny −
1)-dimensional faces of P . For our purposes, it is sufficient to use straightforward
estimates for fny , fny−1 and μ. It follows that

1. fny ≤
( m
(nx+ny)−ny

) = (nx+k+1k+1
) = O(nx/k)k+1;

2. fny−1 ≤
( m
(nx+ny)−(ny−1)

) = (nx+k+1k

) = O(nx/k)k ;

3. μ ≤ (mnx
) = (nx+k+1k+1

) = O(nx/k)k+1.
We enumerate all the ny-dimensional and (ny − 1)-dimensional faces of P just by
straightforward enumeration of the corresponding sub-systems. Clearly, the complex-
ity of such an enumerationprocedure canbe estimatedbyO(nx/k)k+1·poly(nx , ny, k).

Consider now the case, when P is defined by a Standard-Form-system. Assume
that r := rank(A) < k and the first r rows of A are linearly independent. Using the
Gaussian elimination, we transform the original system Ax = b+ By to an equivalent
system

(A1:r
0

)
x = (b1:r

b̂

)+(B1:r
B̂

)
y, where the sub-system A1:r x = b1:r+B1:r represents

the first r lines of the original system. Clearly, the new system is feasible, even inRnx ,
only if b̂+ B̂ y = 0. Since, for any y ∈ Q

ny , we can check the equality b̂+ B̂ y = 0 by
a polynomial-time algorithm, we will continue our work only with the reduced system
A1:r x = b1:r + B1:r y of rank k.

Assume that rank(A) = k and denote n′x = nx −k,m′ = n′x +k. Due to Remark 1,
any system in Standard-Form can be polynomially transformed to an equivalent system
A′x ≤ b′ + B ′y in the Canon-Form with A′ ∈ Z

m′×n′x , b′ ∈ Q
m′ and B ′ ∈ Q

m′×ny ,
and with rank(A′) = n′x and �(A′) = �(A). To finish the proof, we just need to use
the former reasoning to the new Canon-Form-system. ��

In the next theorems, we present the same complexity analysis with respect to
coefficients of the rational/integer piece-wise quasi-polynomials of P .

Theorem 8 Let P be a polyhedron, defined by a system in Canon-Form or Standard–
Form of the co-dimension k. Let f (y) andQ be the corresponding rational piece-wise
Ehrhart’s quasi-polynomial representation of EP and its chamber decomposition.
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Then, there exists a preprocessing algorithm with the arithmetic complexity bound

O(nx/k)
2k(ny+1) ·�3 · poly(nx , ny, k),

which allows to compute any of the coefficients aj(y) by an algorithm with the arith-
metic complexity bound

O(nx/k)
k+1 · nx ·

(
log(nx�)+ ny

)
,

for any given chamber Q ∈ Q and y ∈ rel.int(Q).

Theorem 9 Let P be a polyhedron, defined by a system in Canon-Form or Standard–
Form of the co-dimension k. Let f (y) andQ be the corresponding integer piece-wise
Ehrhart’s quasi-polynomial representation of EP and its chamber decomposition.

Then, the complete representation of f (y) can be computed by an algorithm with
the complexity bound

�k
lcm · M · O(nx/k)

2kny+ny+k · poly(φ),

where M = O(n
ny
x ) is the maximum number of monomials and φ is the input size.

Proofs can be easily deduced from Theorem 6 and Corollary 1 in the same way as
Theorem 7 has been deduced from Theorem 3.

4.2 Polyhedra, defined by general-type systems

In the following result, we use our main Theorem 3 to construct a complexity bound
for the parametric counting problem with respect to general parametric polyhedra,
assuming that the dimension ny of the parametric space is fixed. The cases, when P y

is unbounded, for some y ∈ Q
ny , are again handled, using Lemmas 4 and 5.

Theorem 10 Let P be a polyhedron, defined by the Canon-Form. Then, the periodic
piece-wise step-polynomial representation of the function EP can be computed by an
algorithm with the complexity

O∗
(
m

nxny
2 · (m nx

2 + μ2 ·�3)
)
.

For any y ∈ Qny , the value of EP (y) can be found with

O
(
ny · fny−1 + μ · nx ·

(
log(nx�)+ ny

))
operations.

Proof Due to Remark 6 and Lemma 4, we can assume that rank(B) = ny and
rank(A) = nx . Due toLemma5,we can assume thatP y is bounded, for any y ∈ �(P).
The last property is achieved at the cost of replacing m by m + 1, and � by nx · �,
which can be hided by O∗(·) in the resulting complexity bound. Due to Remark 7, we
can assume that d := dim(P) = nx + ny .
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Let μ∗ = μ(
(
A B

)�
). Due to Lemma 3, the value of μ∗ can be estimated by

O
(m
d

) d+1
2 = O∗

(
( m
nx

)
nx
2
)
. Hence, due to D. Avis and K. Fukuda [53], all the vertices

ofP can be enumerated by an algorithmwith the same complexity bound O∗
(
( m
nx

)
nx
2
)
.

Due to Kaibel and Pfetsch [54], all faces of dimension ≤ ny can be enumerated by

an algorithm with the complexity bound O(m ·α ·φ≤ny ) = O∗
(
( m
nx

)
nx
2 ·φ≤ny ), where

φ≤ny is the number of faces and α is the number of vertex-facet incidences. Due to [55,
Theorem (7.4), p. 273],

fk(P) =
�d/2�∑

i=k

(
i

k

)(
m − d + i − 1

i

)
+

d∑

i=�d/2�+1

(
i

k

)(
m − i − 1

d − i

)
.

Since ny is a constant and k ≤ ny , it can be directly checked that fk(P) = O∗(md/2) =
O∗(mnx/2). Summarizing, we state that all the faces of P of dimension ≤ ny can be
enumerated by an algorithm with the complexity bound O∗(mnx ).

Now, we can use the complexity bound of Theorem 3. Due to 3, the bound for φ≤ny ,
and the corresponding complexity bound, the periodic piece-wise step-polynomial
representation of EP can be computed by an algorithm with the complexity bound

O∗
(
m

nxny
2 · (m nx

2 + μ2 ·�3)
)
.

Finally, due to Theorem 3, for any y ∈ Q
ny , the value of EP (y) can be evaluated

by an algorithm with the complexity bound O
(
ny · fny−1+μ ·nx ·

(
log(nx�)+ny

))
,

which completes the proof. ��
In the next theorem, we do the same complexity analysis with respect to coefficients

of the rational piece-wise quasi-polynomial of P .

Theorem 11 Let P be a polyhedron, defined by the Canon-Form. Let f (y) andQ be
the corresponding rational piece-wise Ehrhart’s quasi-polynomial representation of
EP and its chamber decomposition. Then, there exists a preprocessing algorithm with
the complexity bound

O∗
(
m

nxny
2 · (m nx

2 + μ2 ·�3)
)
,

which allows to compute any of the coefficients aj(y) by an algorithm with the arith-
metic complexity bound

O
(
μ · nx ·

(
log(nx�)+ ny

))
,

for any givenQ ∈ Q and y ∈ rel.int(Q). Given y ∈ Q
ny , the corresponding chamber

Q ∈ Q with y ∈ rel.int(Q) can be found with O(ny · fny−1) operations.
A proof can be deduced from Theorem 6 in the same way as Theorem 10 has been

deduced from Theorem 3.
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5 Preliminaries

5.1 Valuations and indicator functions of polyhedra

In this Subsection, wemainly follow to themonographs [12, 13] in themost definitions
and notations. Let V be the Euclidean space and � ⊂ V be an integer lattice.

Definition 16 LetA ⊆ V be a set. The indicator [A] ofA is the function [A] : V → R,
defined by

[A](x) =
{
1, if x ∈ A
0, if x /∈ A .

The algebra of polyhedraP(V) is the vector space, defined as the span of the indicator
functions of all the polyhedra P ⊂ V .
Definition 17 Let P ⊆ V be a set. The polar P◦ of P is defined by

P◦ = {x ∈ V : 〈x, y〉 ≤ 1 ∀y ∈ P
}
,

and the dual lattice is defined by

�◦ = {x ∈ V : 〈x, y〉 ∈ Z ∀y ∈ �
}
.

Definition 18 The polyhedronP ⊆ V is called rational if it can be defined by a system
of finitely many inequalities

〈ai , x〉 ≤ bi ,

where ai ∈ �◦ and bi ∈ Z. The algebra of rational polyhedra P(QV) is the vector
space, defined as the span of the indicator functions of all the rational polyhedra
P ⊂ V .
Definition 19 A linear transformation T : P(V) → W , where W is a vector space,
is called a valuation. We consider only L-valuations or lattice valuations that satisfy

T
([P +u]) = T

([P]), for all rational polytopes P and u ∈ L,

see [56, pp. 933–988], [57].

Remark 4 Let us denote g(P) = T
([P]), for a lattice valuation T . The general result

of P. McMullen [58] states that if P ⊂ V is a rational polytope, d = dim(P), and
t ∈ N is a number, such that t · P is a lattice polytope, then there exist functions
gi (P, ·) : Z≥0 → C, such that

g(α · P) =
d∑

i=0
gi (P, α) · αi , for all α ∈ Z≥0 , and

gi (P, α + t) = gi (P, α), for all α ∈ Z≥0 .
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Theorem 12 (Theorem 2.3 of [12]). Let V andW be finite-dimensional vector spaces,
and let T : V →W be an affine transformation. Then

1) For every polyhedron P ⊂ V , the image T (P) ⊂W is a polyhedron;
2) There is a unique linear transformation (valuation) T : P(V) → P(W), such

that

T
([P]) = [T (P)

]
, for every polyhedron P ⊂ V .

For c ∈ V , denote:

f(P, c; τ) =
∑

z∈P ∩�

e〈c,z〉.

The first valuation F
([P]), which will be significantly used in our paper, is defined

by the following restatement of the theorem, proved by Lawrence [59], and, inde-
pendently, by Khovanskii and Pukhlikov [60], declared as Theorem 13.8b in [13,
Section 13].

Theorem 13 (Lawrence [59], Khovanskii and Pukhlikov [60]). LetR(V) be the space
of functions in V , spanned by functions of the type

e〈c,v〉
(
1− e〈c,u1〉

) · . . . · (1− e〈c,ud 〉
) ,

where d = dim(V), v ∈ �, and ui ∈ �\{0}, for i ∈ {1, . . . , n}. Then, there exists a
linear transformation (valuation)

F : P(QV)→ R(V),

such that the following properties hold:

(1) LetP ⊆ V be a non-empty rational polyhedron without lines, and letR := RP ⊆
V be its recession cone. Then, for all c ∈ int(K ◦), the series f(P, c; τ) converges
absolutely to a function F

([P]).
(2) If P contains a line, then F

([P]) = 0.

If P is a rational polyhedron, then F
([P]) is called its short rational generating

function.

5.2 Vertices, edge directions, tangent cones, and triangulations

Definition 20 Let P ⊂ V be a non-empty polyhedron, and let v ∈ P be a point. The
tangent cone of P at v is defined as

tcone(P, v) = {v + y : v + εy ∈ P, for some ε > 0
}
.
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The cone of feasible directions at v is defined as

fcone(P, v) = {y : v + εy ∈ P, for some ε > 0
}
.

Thus, tcone(P, v) = v + fcone(P, v).

Remark 5 If an n-dimensional polyhedron P is defined by a system Ax ≤ b, then, for
any v ∈ P , it holds

tcone(P, v) = {x ∈ V : AJ (v)∗x ≤ bJ (v)},
fcone(P, v) = {x ∈ V : AJ (v)∗x ≤ 0},
fcone(P, v)◦ = cone(A�J (v)∗),

where J (v) = { j : A j∗v = b j }.
The famous M. Brion’s theorem [61] connects the indicator function [P] of a

polyhedron with indicator functions of tangent cones, corresponding to its vertices.
We take a formulation of Brion’s theorem, presented in [13, Theorem 6.4].

Theorem 14 ( Brion [61]). Let P ⊆ V be a polyhedron without lines. Then,

[P] ≡
∑

v∈vert(P)

[
tcone(P, v)

]
modulo polyhedra with lines .

Gribanov and Malyshev [20] give an FPT-algorithm to compute F
([P]), when P

is defined by a square system Ax ≤ b with det(A) �= 0. We refer to a refined and more
effective algorithm, due to Gribanov et al. [22], presented by the following Lemma.
For completeness, we give its full proof in Appendix Appendix A.

Lemma 2 (Gribanov et al. [22]). Let A ∈ Z
n×n, b ∈ Z

n, � = | det(A)| > 0. Let
us consider the polyhedron P = {x ∈ R

n : Ax ≤ b}. Assume that c ∈ Z
n is given,

such that 〈c, hi 〉 > 0, where hi are the columns of � · A−1, for i ∈ {1, . . . , n}.
Denote χ = max

i∈{1,...,n}
{|〈c, hi 〉|

}
. Let, additionally, S = PAQ be the SNF of A, where

P, Q ∈ Z
n×n are unimodular, and put σ = Snn.

Then, for any τ > 0, the series f(P, c; τ) converges absolutely to a function of the
type

n·σ ·χ∑

i=−n·σ ·χ
εi · eαi ·τ

(
1− eβ1·τ )(1− eβ2·τ ) . . .

(
1− eβn ·τ ) ,

where εi ∈ Z≥0, βi ∈ Z<0, and αi ∈ Z. This representation can be found with an
algorithm, having the arithmetic complexity bound

O
(
TSNF(n)+� · n2 · σ · χ),
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where TSN F (n) is the arithmetic complexity of computing the SNF for n × n integer
matrices.

Moreover, each of the coefficients
{
εi := εi (g)

}
depends only on g = Pb mod S ·

Z
n, so they take at most � possible values, when the vector b varies. All these values

can be computed during the algorithm.

In the following lemma, we summarize known facts that help to make estimates for
the values of ν(A) and μ(A), which help to apply Theorem 3 in different scenarios.

Lemma 3 Let A ∈ R
m×n, rank(A) = n, and k = m − n. The following relations hold

for ν := ν(A) and μ := μ(A):

1. ν, μ = O
( n
k + 1

)k
;

2. ν = O
(m
n

) n
2 , μ = O

(m
n

) n+1
2 ;

3. Let r and l be the numbers of non-zeroes in rows and columns of A, respectively.
Then, ν, μ ≤ ||A||nmax ·min{r , l}n.

Proof The first bounds for ν and μ follow from the trivial identities ν, μ ≤ (m
n

) =
(m
k

) = O
( n
k + 1

)k . Denote by ζ(d, j) the maximum number of vertices in a polytope
that is dual to the d-dimensional cyclic polytope with j vertices. Due to the seminal
work of McMullen [62], we have ν ≤ ζ(m, n). Similarly, due to the seminal work of
Stanley [63], see also [64, Corollary 2.6.5] and [65], μ ≤ ζ(m + 1, n + 1)− (n + 1).
Due to [66, Section 4.7],

ξ(d, j) =
{

j
j−s
( j−s

s

)
, for d = 2s

2
( j−s−1

s

)
, for d = 2s + 1

= O

(
j

d

)d/2

.

Consequently, ν = O
(m
n

) n
2 and μ = O

(m+1
n+1

) n+1
2 . Finally, the last bound for ν was

proven in [22, Lemma 4]. The corresponding proof can be straightforwardly applied
to μ without any changes. ��

5.3 The unbounded case, dimension ofP , and rank of matrices

In the current Subsection, we are going to show that the assumptions rank(A) = nx ,
rank(B) = ny , and dim(P) = nx + ny (for Canon-Form) can be satisfied without
any loss of generality. Additionally, we are going to show how to handle the case
EP (y) = +∞ in our computations.

Remark 6 (Rank of the matrix B). Let us first justify the assumption rank(B) = ny ,
for P , defined by Canon-Form. Analysis for Standard-Form is then straightforward.
If rank(B) < ny , there exists an index j and a nonzero vector t ∈ Q

ny−1, such
that Bj = B j̄ t , where j̄ = {1, . . . , ny} \ { j}. Consequently, assuming that j = 1,
for y ∈ R

ny , we have cP (y) = cP ′(y1 · t + y{2,...,ny}), where the polyhedron P ′ is
defined by a system Ax + B1̄y ≤ b, for x ∈ R

nx and y ∈ R
ny−1. Therefore, we

can work with the function cP ′ : Rny−1 → Z≥0 instead of cP . Eliminating all the
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linear dependencies in B, we can assume that rank(B) = ny , which, together with
rank(A) = nx , is equivalent to the fact that P contains no lines. Clearly, such an
elimination can be performed by a polynomial-time algorithm.

Remark 7 (The Dimension of P in Canon-Form). Let P be a polyhedron, defined
by Canon-Form. Assume that dim(P) < nx + ny . Then, there exists an index j ∈
{1, . . . ,m}, such that A j x+ Bj y = b, for any

(x
y

) ∈ P . We replace the j-th inequality
by the inequality A j x + Bj y ≤ b + ε, for a sufficiently small ε > 0. Clearly, if
the value of ε is small enough, this transformation does not change the set of integer
solutions and the new inequality can not hold as equality, for all

(x
y

) ∈ P , because the
new polyhedron contains the old one. Note that the index j with the appropriate value
of ε can be found by a polynomial-time algorithm. After eliminating all such j , we
finally achieve a polyhedron of dimension nx + ny .

The next lemma shows how to satisfy the condition rank(A) = nx .

Lemma 4 LetP be a polyhedron, defined by Canon-Form. Assume that rank(A) < nx ,
or equivalently, P y contain a line, for any y ∈ �(P). Then, there exist a set of
nx − rank(A) indices I ⊆ {1, . . . , nx } and a set of values αi ∈ {−1, 1}, for i ∈ I,
such that the polyhedron P ′, defined by

P ′ = {x ∈ P : αi xi ≥ 0, for i ∈ I},

has the following properties:

1. The set I and values {αi }i∈I can be found by a polynomial-time algorithm;
2. The equality �(P) = �(P ′) is true;
3. For any y ∈ �(P), the polyhedron P ′y contains no lines;
4. For any y ∈ �(P), P y ∩Z

nx �= ∅ if and only if P ′y ∩Z
nx �= ∅;

5. Let A′ be the matrix, constructed by appending the rows −αi e�i , for i ∈ I, to A.
In other words, the system

A′x +
(
B

0

)
y ≤

(
b

0

)

defines P ′. Then μ(A′) = μ(A) and �(A′) = �(A).

Proof The setI is defined in the followingway:I is aminimal set, such that the vectors
{ei }i∈I together with the column-vectors from A� form a basis of Rnx . Clearly, such
a set can be found by a polynomial-time minimal basis extension algorithm. Since
r < nx , we have that I �= ∅. Now, let us show how to construct the values {αi }i∈I .

Denote L := {x ∈ R
nx : Ax = 0} and r := rank(A) < nx . It follows that L

is exactly the lines-space of P y , i.e. P y +L = P y , for any y ∈ �(P). Let V ∈
Z
nx×(nx−r) be a matrix, composed of basis vectors of L. Clearly, the matrix V can

be constructed by a polynomial-time algorithm. We claim that, for any i ∈ I, there
exists j ∈ {1, . . . , nx − r}, such that Vi j �= 0. Definitely, if Vi j = 0, for all j ∈
{1, . . . , nx − r}, and some i ∈ I, it follows that ei ∈ span(A�) that contradicts to
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construction of I. Now, taking a sum, with sufficiently big coefficients, of columns of
V that correspond to such j , we can construct a vector v ∈ L, such that vi �= 0, for
any i ∈ I. W.l.o.g, we can assume that v is integer. For i ∈ I, we set

αi :=
{
1, if vi > 0;
−1, if vi < 0.

Denote S := {x ∈ R
nx : αi xi ≥ 0, for i ∈ I}. Clearly, the set L∩S contains the

nonzero integer vector v and P ′ = P ∩S .
Now, the properties 1 and 3 are straightforward to see. Let us prove the 2-nd

property. Since P ′ ⊆ P , clearly �(P ′) ⊆ �(P). Let us prove the opposite inclusion
�(P) ⊆ �(P ′). The following sequence of implications holds:

y ∈ �(P) �⇒ ∃x0 ∈ R
nx :

(
x0
y

)
∈ P �⇒ ∀τ ∈ R :

(
x0 + τ · v

y

)
∈ P

�⇒ ∃τ ∈ R>0 :
(
x0 + τ · v

y

)
∈ P ∩S �⇒ y ∈ �(P ′),

which proves the inclusion.
Let us prove the property 4, and fix y ∈ �(P). Trivially, if x ∈ P ′y ∩Z

nx , then
x ∈ P y ∩Z

nx . Let us prove the opposite implication. The following sequence of
implications holds:

∃x0 ∈ P y ∩Z
nx �⇒ ∀τ ∈ Z : x0 + τv ∈ P y ∩Z

nx �⇒
�⇒ ∃τ ∈ Z>0 : x0 + τv ∈ P ∩Z

nx ∩S �⇒ P ′ ∩Z
nx �= ∅,

which proves the implication.
Finally, let us prove the property 5. Let C = cone(A�) and C′ = cone(A′�).

Note that dim(C) = r < n = dim(C′). Following to Definition 5, let T be any
triangulation of C. The corresponding triangulation T ′ of A′ can be constructed in
the following way: for any simple cone T ∈ T , we construct T ′ ∈ T ′ by adding the
rays {αi ei }i∈I to the set of generating rays of T . The dimension of the new simple
conses T ′ ∈ T ′ will be equal to nx , and they will form a triangulation of C′. Since
each nx -dimensional simple cone, whose rows are composed of the columns of A′�,
must contain {αi ei }i∈I as the generating rays, it follows that each triangulation T ′ of
C′ can be constructed by the presented algorithm. So, there is a bijection between the
triangulations of C and C′, which have the same sizes. Consequently, μ(A) = μ(A′).
The equality �(A′) = �(A) is trivial. ��

In the assumption that rank(A) = n, the next lemma gives a way to handle the
counting problem in an unbounded polyhedron.

Lemma 5 LetP be a polyhedron, defined by Canon-Form, and rank(A) = nx . Assume
thatP y is unbounded, for some y ∈ �(P). Then, there exists a function g : Qny → Q,
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computing in polynomial time, and a polyhedron P ′, defined by a system

{
A′x + B ′y ≤ b′

x ∈ R
nx , y ∈ R

ny+1

with A′ ∈ Z
(m+1)×nx , B ′ ∈ Z

(m+1)×(ny+1), and b′ ∈ Q
m+1, such that the following

properties hold:

1. The polyhedron P ′ and the function g can be constructed by a polynomial-time
algorithm;

2. The inequality �(A′) ≤ nx ·�(A) is true;
3. For any y ∈ �(P ′), P ′y is bounded;
4. For any y ∈ �(P), we have

EP (y) �= 0 ⇐⇒ EP ′(y′) �= 0,

where y′ =
(

y

g(y)

)
.

Proof Due to [67], if an arbitrary systemMx ≤ h, whereM ∈ Z
m×nx and h ∈ Z

m , has
an integer solution, then there exists an integer solution z, such that ‖z‖∞ ≤ �

(
(M h)

)
,

where (M h) is the system extended matrix. Denote by = �b − By�. Therefore, if
P y ∩Z

nx �= ∅, then there exists z ∈ P y ∩Z
n , such that ‖z‖∞ ≤ �

(
(A by)

) ≤
(nx )nx/2 ·max{‖A‖max, ‖by‖∞}nx . Since, for some y ∈ �(P), P y is unbounded, the
cone C = {x ∈ R

n : Ax ≤ 0} is non-zero and, consequently, for any y ∈ �(P),
P y is unbounded. Since rank(A) = n, P y contains no lines, so C is pointed. Let
AB be some basis sub-matrix of A and c be the sum of columns of −A�B . Clearly,
C ∩{x ∈ R

nx : c�x ≤ c0} = {0}, for any c0 ∈ R≥0.
Now, we define the polyhedron P ′, appending the inequality c�x ≤ ynx+1 to the

system Ax + By ≤ b, where ynx+1 ∈ R is a new parametric variable. Clearly, the
properties 2 and 3 are satisfied for P ′ and A′. Finally, define g(y) := (nx )nx/2 · ‖c‖1 ·
max{‖A‖max, ‖by‖∞}nx . Due to the proposed reasoning, the properties 1 and 4 are
also satisfied. ��

6 Construction of the chamber decomposition and a proof of
Theorem 4

In this Section, we give the proof of Theorem 4 and develop an algorithm to construct
a chamber decomposition of P . The paper [3, Sect. 3] of Clauss & Loechner gives an
algorithm to construct a collection D of full-dimensional chambers, such that

1. The equality �(P) = ⋃

D∈D
D is true;

2. The inequality dim(D1 ∩D1) < ny is true, for any D1,D2 ∈ D , with D1 �= D2;
3. For anyD ∈ D and y ∈ D, the polytopes {P y} have a fixed collection of parametric

vertices, given by affine transformations of y.
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Note that, for y in a boundary of some full-dimensional chamber D ∈ D , the cor-
responding parametric vertices may stick together to a single point in R

nx . So, the
polyhedron P y may not have the same combinatorial type for different points y ∈ D.
Following the proof of [35, Lemma 3], let us consider hyperplanes in the paramet-
ric space R

ny , formed by the affine hulls of (ny − 1)-dimensional faces (facets) of
full-dimensional chambers D ∈ D . Let H be the set of all such hyperplanes.

Due to [68] (see also [36, Lemma 3.5]), the hyperplanes fromH divide the param-
eter space into at most O

(|H |ny ) cells. Due to construction of the full-dimensional
chambers (see [3, Sect. 3] or the proof of [35,Lemma3]), these hyperplanes correspond
to the projections of the generic (ny − 1)-dimensional faces of P into the parametric
space R

ny . Since a part of the cells forms a subdivision of the chambers and since
|H | ≤ fny−1, the total number of full-dimensional chambers can be bounded by
O
(
( fny−1)ny

)
.

Clauss and Loechner [3] give an algorithm that computes the collection D , which,
for each D ∈ D , also computes a finite set T D of affine functions T ∈ T D,
T : Rny → R

nx , such that all the parametric vertices of P y are given by
{
T (y) : T ∈

T D
}
. The complexity of Clauss & Loechner’s algorithm is bounded by the number

of chambers times the total number of parametric vertices. Due to [1], the parametric
vertices correspond to the ny-dimensional faces of P , so their number is bounded by
O( fny ). Therefore, Clauss and Loechner’s algorithm needs

( fny−1)ny · fny · poly(nx , ny,m) operations.

For any fixed D ∈ D and y ∈ int(D), the vertices T (y) : T ∈ T D are unique.
But, for y ∈ D1 ∩D2, where D1 �= D2, some vertices can coincide. Due to [35, 36],
this problem can be resolved by working with a wider class of chambers that consists
ofD and all the faces of chambers fromD . This new collection of chambers is exactly
given by Definition 9, which is denoted byQ.

Our goal is to find the collection Q with the corresponding lists of the unique
parametric vertices. Very briefly, we enumerate all the possible affine sub-spaces,
induced by all the possible intersections of the hyperplanes from H . For any such
an affine subspace L ⊆ R

ny and a full-dimensional chamber D ∈ D , we consider
the intersection L∩D. If this intersection forms a non-empty face of D, then we
can declare that we have found some low-dimensional chamber from Q. Note that
this check can be performed by a polynomial-time algorithm. There are three main
difficulties:

1) Twodifferent full-dimensional chambersD1 andD2 can have the same intersection
with L: D1 ∩L = D2 ∩L;

2) If L′ ⊂ L is an affine subspace of L, then it is possible that D∩L = D∩L′, for
some full-dimensional chamber D ∈ D . In other words, the dimension of L∩D
is strictly less than dim(L);

3) As it was already noted, if y ∈ D1 ∩D2, then some vertices, given by differ-
ent affine functions from T D1 , can coincide. In other words, T 1(y) = T 2(y),
for different T 1, T 2 ∈ T D1 and y ∈ D1 ∩D2. How we are able to find such
duplicates?
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Let us first deal with the difficulties 1) and 3). Let us fix L, a full-dimensional
chamber D ∈ D , and the collection of parametric vertices T D and consider the
lower-dimensional chamber Q = L∩D. Assume that dim(L) = dim(Q), we will
break this assumption later. There exists a matrix B ∈ Z

ny×dL , where dL = dim(L),
such that L = span(B). Suppose that T (y) ∈ T D is given by T (y) = T y+ t , where
T ∈ Q

nx×ny is a rational transformation matrix and t ∈ Q
nx is a rational translation

vector. Let us show, how to find duplicates in the list T D of parametric vertices, for
y ∈ rel.int(Q). If T 1 and T 2 form a duplicate, then

T1y + t1 = T2y + t2, for any y ∈ rel.int(Q),

that is equivalent to

(T1 − T2)y = t2 − t1, for any y ∈ aff.hull(Q).

Due to the assumption dim(L) = dim(L∩D) = dim(Q), we have

(T1 − T2)Bx = t2 − t1, for any x ∈ R
dL .

Since the solutions set of the last system is dL-dimensional, we have rank
(
(T2 −

T1)B
) = 0. Consequently, T1B = T2B and t1 = t2, so the matrices {T B} and vectors

{t} must serve as a unique representation of affine functions T ∈ T D, for a fixed
subspace L. Consequently, we need to compute the basis B of L, compute the pairs
{(T B, t)}, sort the resulted list, and delete all the duplicates. Since |T D | ≤ ν, this
work can be done with

ν · log(ν) · poly(nx , ny,m)

operations. Since |D | = O
(
( fny−1)ny

)
and, due toLemma3, log(ν) = O

(
poly(nx ,m)

)
,

together with enumerating of all the full-dimensional chambers D ∈ D (L is fixed),
it gives the arithmetic complexity bound:

( fny−1)ny · ν · poly(nx , ny,m).

Now, let us show how to resolve the difficulty number 1) for the low-dimensional
chambers Q = D∩L with dim(Q) = dim(L). Any such a chamber is uniquely
represented by the list of unique pairs

{
(T B, t) : T (y) = T y + t, T ∈ T D

}
.

So, we can consider this list as a unique identifier of Q ∈ Q and all the duplicated
chambers can be eliminated just by sorting. Since the length of each list is bounded
by ν and |D | = O

(
( fny−1)ny

)
, the total arithmetic complexity of this procedure is

again

( fny−1)ny · ν · poly(nx , ny,m).
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Let us simultaneously discuss, how to resolve the difficulty number 2) and how to
break the assumption dim(L) = dim(L∩D), for D ∈ D . To do that, we need first
to sketch the full algorithm that constructs the chamber decomposition Q. First, we
use P. Clauss & V. Loechner’s algorithm to construct the full-dimensional chambers
D together with the corresponding parametric vertices. Next, we enumerate all the
affine sub-spaces, induced by intersections of hyperplanes fromH . The enumeration
follows to the following partial order: if L′ and L are affine sub-spaces, such that
L′ ⊂ L, then L′ will be processed first. So, we start from 0-dimensional sub-spaces,
corresponding to intersections of ny linearly independent hyperplanes from H , and,
using the induction principle, move forward from (k − 1)-dimensional chambers to
k-dimensional chambers. For a 0-dimensional affine subspaceL (which is a point) and
a full-dimensional chamber D ∈ D , the assumption dim(L) = dim(L∩D) naturally
holds. Since the considered assumption holds for 0-dimensional L, we can find all the
0-dimensional chambers from the collectionQwith the sets of their unique parametric
vertices, using the method, discussed earlier.

Let k ≥ 1 and suppose inductively that we want process k-dimensional subspace
L, when the sub-spaces L′ ⊂ L, with dim(L′) = k − 1, are already processed. When
we say “processed”, we mean that all the unique low-dimensional chambers L′ ∩D,
for D ∈ D , with dim(L′ ∩D) = k − 1 are already constructed. We recall all the
full-dimensional chambers D ∈ D , such that D∩L′ forms a (k − 1)-dimensional
face of D that were computed previously. If dim(D∩L) = k − 1, then we dismiss
the chamber D∩L, because it just coincides with some D∩L′. In the opposite case,
when dim(D∩L) = k = dim(L) andD∩L forms a face ofD that was not considered
before, we can use the approach presented earlier to construct the unique set of the
parametric vertices for D∩L and put the resulting chamber into the collection Q.
So, we need to learn how to distinguish between the cases dim(D∩L) = k and
dim(D∩L) = k − 1.

Let B ∈ Z
ny×k and B ′ ∈ Z

ny×(k−1) be bases of L and L′, chosen, such that
B = (

B ′ h
)
, for h ∈ Z

ny . The equality dim(D∩L) = k holds if and only if there
exists affine functions T 1(y) = T1y + t1 and T 2(y) = T2y + t2 from the set T D,
such that

∀y ∈ D∩L′ : T 1(y) = T 2(y) and

∃y ∈ D∩L : T 1(y) �= T 2(y),

which is equivalent to

∀y ∈ aff.hull(D∩L′) : T 1(y) = T 2(y) and

∃y ∈ aff.hull(D∩L) : T 1(y) �= T 2(y).

The last is equivalent to

∀x ∈ R
k−1 : (

T1 − T2
)
B ′x = t2 − t1 and

∃x ∈ R
k : (

T1 − T2
)(
B ′ h

)
x �= t2 − t1.
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By the same reasoning, rank
(
(T1 − T2)B ′

) = 0, T1B ′ = T2B ′ and t2 = t1. Hence,
the second property can be satisfied only if T1h �= T2h. So, we have the following
criterion:

dim(D∩L) = k ⇐⇒ ∃ T 1, T 2 ∈ T D : T 1(h) �= T 2(h). (9)

Let us summarize the whole algorithm:

1. Construction of full-dimensional chambers. Using P. Clauss & V. Loechner’s
algorithm, we construct the collection D of full-dimensional chambers together
with the sets of affine functions T D, for each D ∈ D . It takes ( fny−1)ny · fny ·
poly(nx , ny,m) arithmetic operations.

2. Construction of lower-dimensional chambers. To construct the collection Q,
we consider affine sub-spacesL, induced by all the possible intersections of hyper-
planes H with full-dimensional chambers from D .
Assume that all the unique (k−1)-dimensional chambers of the typeD∩L′, where
L′ is the (k − 1)-dimensional intersection of hyperplanes from H and D ∈ D ,
have already been constructed with their unique sets of parametric vertices. For all
the k-dimensional intersections L and for all D ∈ D , we perform the following
operations:

3. Dimension check. LetQ = D∩L. Using the criteria (9), we check that dim(Q) =
k. If it does not hold, then we skip Q;

4. Q-face check. We check thatQ is a face ofD, which can be done by a polynomial-
time algorithm. If it does not hold, then we skip Q;

5. Erase duplicated parametric vertices.Using the algorithm, presented earlier, we
erase all the duplicated parametric vertices ofQ and appendQ to the collectionQ.

6. Erase duplicated chambers. After all D ∈ D (for a fixed L) are processed, we
remove the duplicated chambersQ = D∩L fromQ by the algorithm, mentioned
earlier.

For any fixed L, the complexity of the steps 3–6 is bounded by

( fny−1)ny · ν · poly(nx , ny,m).

Since |H | ≤ fny−1, the number of different affine sub-spaces L, induced by inter-
sections of hyperplanes from H , is bounded by

ny∑

i=0

(
fny−1
i

)
= O

(
( fny−1)ny

)
.

Clearly, they can be enumerated with ( fny−1)ny · nO(1)
y operations. Consequently, the

chamber decomposition can be constructed with

(
( fny−1)ny · fny + ( fny−1)2ny · ν

)
· poly(nx , ny,m)
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operations. The total number of chambers in the decompositionQ can be bounded by
the number of ways to intersect any of the full-dimensional chambers with different
affine sub-spaces L. Therefore, |Q| = O

(
( fny−1)2ny

)
.

Let us estimate the complexity of a query to find Q ∈ Q with y ∈ rel.int(Q), for
a given y ∈ Q

ny . Note that each chamber Q naturally corresponds to a vector from
{−1, 0, 1}|H |. To support our queries, we construct a hash-table that maps vectors
from {−1, 0, 1}|H | to Q. The expected complexity to construct such a hash-table
is bounded by the number of chambers timed the size of the vector that represents a
chamber,which isO

(|Q|·|H|) = O
(
( fny−1)2ny+1

)
. Consequently, to performaquery

we substitute an input vector y to the inequalities corresponding to the hyperplanesH ,
and map y to {−1, 0, 1}|H |. Using the hash-table, we find the corresponding chamber
Q with y ∈ rel.int(Q). Therefore, each query costs of O

(
ny · |H |) = O(ny · fny−1)

operations. The total arithmetic complexity together with a construction of the hash-
table is O∗

(
( fny−1)ny · fny + ( fny−1)2ny · (ν + fny−1)

)
, which finishes the proof.

7 Proof of themain theorem

First, let us make some basic preliminary analysis of degenerate situations. Since, for
some y ∈ R

ny , P y is bounded, it contains no lines. Consequently, rank(A) = nx . Due
to Remark 6, w.l.o.g. we can assume that rank(B) = ny . Due to Remark 7, we can
assume that dim(P) = nx + ny . Summarizing the preliminary analysis, we have the
following:

1. dim(P) = nx + ny and dim
(
�(P)

) = ny ;
2. rank(A) = nx , rank(B) = ny , and P contains no lines.

As the first step of the preprocessing algorithm, we construct a chamber decompo-
sitionQ of P , using Theorem 4. In the next stage of the preprocessing algorithm, we
deal independently with each chamber Q ∈ Q.

7.1 Dealing with a fixed chamberQ ∈ Q

Let us fix a chamber Q, chosen from the collection Q, which was constructed in the
previous stage. As it was noted before, for any y ∈ rel.int(Q), polytopes {P y} have
a fixed combinatorial type and a fixed set of unique parametric vertices pvert(Q) =
{VB : B ∈ Bases(Q)}. For the sake of simplicity, denote n := nx .

Consider first the case, when dim(P y) < n, for all y ∈ rel.int(Q). Choose a point
y′ ∈ rel.int(Q), it can be done by a polynomial number of operations, and consider
P y′ . The polytope P y′ is defined by a system Ax ≤ b′, where b′ = b + By′. Since
dim(P y′) < n, there exists an index j ∈ {1, . . . ,m}, such that A j x = b′j , for any
x ∈ P y′ . Note that such j could be found by a polynomial number of operations.
W.l.o.g., assume that j = 1 and gcd(A1) = 1. Let A1 = HQ, where H ∈ Z

1×n is the
Hermite Normal Form (HNF) of A1 and Q ∈ Z

n×n is unimodular. Since gcd(A1) = 1,
we have H = (1 0n−1). After the unimodular map x ′ = Qx , the system Ax ≤ b′
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transforms to the integrally equivalent system

(
1 0n−1
h A′

)
x ≤ b′,

where h ∈ Z
m−1 and A′ ∈ Z

(m−1)×(n−1). Note that �(A′) = �(A) = �. Since the
first inequality always holds as an equality on the solutions set, we can just substitute
x1 = b′1. As the result, we achieve a new integrally equivalent system with n − 1
variables: A′x ≤ b′{2,...,m} − b′1 · h. Since all these steps are independent on a choice
of y ∈ rel.int(Q), we can think b′ as a function b′(y). Consequently, we can replace
the polytope P y by a new polytope

A′x ≤ b′{2,...,m}(y)− b′1(y) · h
= B{2,...,m}y + b{2,...,m} − h · (B1y + b1)

= (B{2,...,m} − hB1) · y + (b{2,...,m} − b1h) (10)

with only n − 1 variables. The set of parametric vertices of the new polytope can be
constructed by the following way (noting that the all of them are unique). Let V(y)
be some parametric vertex of P y , it corresponds to some base B of A. In other words,
AB V(y) = b′(y), for any y ∈ rel.int(Q). Clearly, the related parametric vertex V ′(y)
of the new polytope corresponds to the base B′ = B \{1}. Hence, it can be found by
the formula

V ′(y) = (A′B′
)−1 · (b′B′(y)− b′1(y) · h

)
,

due to (10), it is an affine map Rny → R
n−1.

Now, due to the proposed reasoning, we can assume that dim(P y) = n, for any
y ∈ rel.int(Q). Due to M. Brion’s Theorem 14, we have

[P y] ≡
∑

V∈pvert(Q)

[
tcone

(
P y,V(y)

)]

≡
∑

V∈pvert(Q)

[
V(y)+ fcone

(
P y,V(y)

)]
modulo polyhedra with lines .

Let us fix a vertex V(y) and consider the cone C = fcone
(
P y,V(y)

)
. Denote

J := J
(
V(y)

) = { j : A j V(y) = b j }. Clearly, C = P
(
AJ , 0

)
, and, consequently,

C◦ = cone
(
A�J

)
. We apply the triangulation of C◦ into simple cones formed by some

sub-set of bases of A�J (see Definition 5). Let qV be the total number of simple cones
in the triangulation, and let BV , with |BV | = qV , be the corresponding sub-set of
bases. In other words, we have

[ C◦] ≡
⋃

B∈BV

[
cone(A�B)

]
modulo lower-dimensional rational cones .
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Remark 8 It is clear that constructing a triangulation for a pointed cone inRn is equiv-
alent to constructing a triangulation for a point configuration in R

n−1. Therefore,
due to [64, Lemma 8.2.2] (see also [69], where another algorithm is proposed), the
triangulation can be computed with O(qT · n3) operations.

Next, we use the duality trick, see [12, Remark 4.3]. Due to [13, Theorem 5.3] (see
also [13, Theorem 2.7]), there is a unique linear transformationD : P(V)→P(V),
for which D

([P]) = [P◦]. Consequently, due to Remark 5, we have

[ C] ≡
⋃

B∈BV

[
cone(A�B)◦

] ≡
⋃

B∈BV

[
P(AB, 0)

]
modulo polyhedra with lines,

and, due to Theorem 12, we have

[
V(y)+ C

] ≡
⋃

B∈BV

[
V(y)+ P(AB, 0)

]

≡
⋃

B∈BV

[
P
(
AB, AB V(y)

)]
modulo polyhedra with lines .

The triangulation of all the cones cone(A�J ) induces the triangulation of the whole

normal fun cone(A�). Hence,
∑

V∈pvert(Q) qV ≤ μ. Consequently, combining BV ,
for different V ∈ pvert(Q), in one big set B, we have

[P y] ≡
∑

B∈B

[
P
(
AB, AB VB(y)

)]
modulo polyhedra with lines,

where |B | ≤ μ and some VB can be equivalent, for different B ∈ B. Note that, since∑
V∈pvert(Q) qV ≤ μ, and, due to Remark 8, this decomposition can be computed with

O(μ · n3) operations.
Define a set E of edge-directions in the following way. For any element cone(M) of

the resultant triangulation of cone(A�), we put all the columns of det(M) · M−1 into
E . If a pair of elements in E differs only by a sign, we remove some element of the pair.
Note that elements of the resulting set E correspond exactly to the direction-vectors
of the edges of P y , assuming that the directions do not matter.

Let us assume that a vector c ∈ Z
n is chosen, such that c�h �= 0, for each h ∈ E ,

and denoteχ = max
h∈E

{|c�h|}. Assume additionally thatχ = �(n). Denote f (P; τ) =
F
([P])(τc), for any rational polyhedra P , where F is the evaluation, considered in

Theorem 13. Note that, for any B ∈ B,

f
(
P
(
AB, AB VB(y)

); τ
)
= f

(
P
(
AB, T B(y)

); τ
)
,
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where T B(y) := �AB VB(y)� is an affine step-function. Denote fB(y; τ) :=
f
(
P
(
AB, T B(y)

); τ
)
. Due to Theorem 13, we can write

f
(
P y; τ

) =
∑

B∈B
fB(y; τ).

Let us fix B ∈ B and denote f (y; τ) := fB(y; τ), T := T B, δ := | det(AB)|, and
let (h1, . . . , hn) be the columns of δ · (AB)−1. Let, additionally, S = PABQ be the
SNF of AB, for unimodular matrices P, Q ∈ Z

n×n , and σ := Snn . Denote the orders
of (h1, . . . , hn) modulo S Zn by (r1, . . . , rn). Due to the assumption on the vector c,
it satisfies the conditions of Lemma 2, applied to the polyhedron P

(
AB, T B(y)

)
. Due

to Lemma 2,

f (y; τ) = e〈c,A
−1
B T (y)〉τ ·

n·σ ·χ∑

i=−n·σ ·χ
εi
(
g(y)

) · e− i
δ
τ

(
1− e−β1·τ ) . . .

(
1− e−βn ·τ ) , (11)

where βi = 〈c, ri
δ
hi 〉, g(y) = P T (y) mod S · Zn , and εi : S Zn → Z≥0.

Now,we are interested in the constant term in the Tailor’s decomposition of f (y; τ).
We have,

e−
i
δ
τ =

+∞∑

k=0
τ k · (−i)k

δkk! ,

n·σ ·χ∑

i=−n·σ ·χ
εi
(
g(y)

) · e− i
δ
τ =

+∞∑

k=0
τ k

⎛

⎝
n·σ ·χ∑

i=−n·σ ·χ
εi
(
g(y)

) · (−i)k
δkk!

⎞

⎠ ,

1
(
1− e−β1τ

)
. . .
(
1− e−βnτ

) = 1

τ nβ1 . . . βn

+∞∑

k=0
τ k · tdk(β1, . . . , βn),

where the last formula could be taken, for example, from [13, Chapter 14], and
td j (β1, . . . , βn) is a homogeneous polynomial of degree j , called the j-th Todd’s
polynomial on β1, . . . , βn . Consequently,

n·σ ·χ∑

i=−n·σ ·χ
εi
(
g(y)

) · e− i
δ
τ

(
1− e−β1·τ ) . . .

(
1− e−βn ·τ )

= 1

τ nβ1 . . . βn

+∞∑

k=0
τ k

⎛

⎝
k∑

j=0

n·σ ·χ∑

i=−n·σ ·χ
εi
(
g(y)

) (−i) j
δ j j ! tdk− j (β1, . . . , βn)

⎞

⎠

= 1

τ nβ1 . . . βn

+∞∑

k=0
τ k · π̂k

(
g(y)

)
, denoting
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π̂k(g) :=
k∑

j=0
tdk− j (β1, . . . , βn) ·

⎛

⎝ 1

δ j j !
n·σ ·χ∑

i=−n·σ ·χ
εi (g)(−i) j

⎞

⎠ .

Therefore, due to the formula (11), the constant term in f (y; τ) can be expressed by
the formula

1

β1 . . . βn

n∑

k=0

〈
c, A−1B u(y)

〉k

k! · π̂n−k
(
g(y)

)
. (12)

Let us define

πk(x) = 1

k!β1 . . . βn
· π̂n−k

(
x mod S · Zn).

Clearly, πk : Z
n → Q≥0 is a periodic function with a period-matrix S, in other

words πk(x + 1 ·S) = πk(x), for any x ∈ Z
n . Denoting cB = A−�B c, and since〈

c, A−1B T (y)
〉 = 〈

A−�B c, T (y)
〉
, the formula (12) can be rewritten in the following

way:
n∑

k=0
πk
(
P T (y)

) · 〈cB, T (y)
〉k

, (13)

which is a periodic step-polynomial of degree n and length n + 1.
Due to [13, Chapter 14], EP (y) is equal to the constant term in the Taylor’s expan-

sion of f
(
P y; τ

)
. Clearly, it can be represented as the sum of constant terms of the

Tailor’s expansions of fB(y; τ), forB ∈ B. Consequently, for a fixed chamberQ ∈ Q,
the resulting function EP (y) could be represented as a periodic step-polynomial of
degree n and length (n + 1) · μ. The exact form is the same as it was proposed in the
formula (4).

Let us again fix B ∈ B and discuss the arithmetic cost to compute f (y; τ) :=
fB(y; τ). Due toLemma2, the coefficients {βi }, for i ∈ {1, . . . , n}, and the coefficients
{εi (g)}, for any i ∈ {−n · σ · χ, . . . , n · σ · χ} and g ∈ Z

n /S Zn , can be computed
with O

(
TSNF (n) +� · n2 · σ · χ) operations. Since σ ≤ �, χ = �(n), and, due to

Storjohann [70], TSNF (n) = O(n3), the last bound becomes O(�2 · n2 · χ).
Due to [16, Theorem 7.2.8, p. 137], the values of tdk(β1, . . . , βn), for any k ∈

{1, . . . , n}, can be computed with an algorithm that is polynomial in n and the bit-
encoding length of β1, . . . , βn . Moreover, it follows from the theorem’s proof that the
arithmetic complexity can be bounded by O(n3).

Consider now the values of {π̂k(g)}, for any k ∈ {1, . . . , n} and g ∈ Z
n /S Zn . Due

to the definition of π̂k , for a fixed g, the sequence
{
π̂k(g)

}
k∈{0,...,n} can be interpreted as

a convolution of two sequences. The first sequence is already computed as the values of
Todd’s polynomials. Clearly, the second sequence can be computed with O(n2 ·σ ·χ)

operations. Now, using the fast convolution algorithms, the sequence
{
π̂k(g)

}
k∈{0,...,n}

can be computedwith O(n ·log(n)) operations. So, the total arithmetic cost to compute
{π̂k(g)}, for all k ∈ {1, . . . , n} and g ∈ Z

n /S Zn , is O(n2 ·�2 · χ).
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Summarizing the analysis, the generating function fB(y; τ), for a fixed B ∈ B,
can be computed with O(n2 ·�2 · χ) operations. Since |B | ≤ μ, we need

O
(
Ttrng + μ · n2 ·�2 · χ)

operations to compute f (P y; τ), where Ttrng is the total arithmetic complexity of all
the triangulations, performed during our algorithm. As it was already discussed, we
have Ttrng = O(μ · n3). So, the last bound becomes O(μ · n2 ·�2 · χ).

Previously, we made the assumption that the vector c ∈ Z
n is chosen, such that

c�h �= 0, for any h ∈ E . Let us present an algorithm that generates a vector c
with a respectively small value of the parameter χ = max

h∈E
{∣∣c�h

∣∣}. The main idea is

concentrated in the following Theorem 15, due to [24] (see also [22]).

Theorem 15 (Theorem 2 of [24]). Let A be a set composed of N non-zero vectors in
Q

n. Then, there exists a randomized algorithmwith the expected arithmetic complexity
O(n · N ), which finds a vector z ∈ Z

n, such that:

1. a�z �= 0, for any a ∈ A;
2. ‖z‖∞ ≤ N.

Any element of the triangulation of cone(A�) generates at most n edges of P y .
Consequently, |E | ≤ μ · n. Choose some base B of A. Note that ABh �= 0 and
(ABh)i ∈ {−�, . . . ,�}, for any h ∈ E and i ∈ {1, . . . , n}. Next, we use Theorem 15
to the set AB · E , which produces a vector z, such that

1. z�ABh �= 0, for each h ∈ E ;
2. ‖z‖∞ ≤ μ · n.
Now, we assign c := A�Bz. By the construction, we have c�h �= 0 and

∣∣c�h
∣∣ =∣∣z�ABh

∣∣ ≤ n2 · μ ·�, for each h ∈ E . Consequently, χ ≤ n2 · μ ·�. Therefore, we
can conclude that, for a fixed Q ∈ Q and any y ∈ rel.int(Q), the representation of
f (P y; τ), as an n-degree periodic step-polynomial of degree n and length (n+ 1) ·μ,
can be found by an algorithm with the arithmetic complexity

O(μ2 · n4 ·�3).

7.2 How to store the data, and what is the final preprocessing time?

Due to Theorem4, the arithmetic complexity to construct the collection of chambersQ
togetherwith their parametric vertices is O∗

(
( fny−1)ny · fny+( fny−1)2ny ·( fny−1+ν)

)
.

For a fixed chamber Q ∈ Q and y ∈ rel.int(Q), the counting function EP (y) is
represented as the periodic step-polynomial, given by the formula (4). Its length is
O(μ · nx ), its degree is nx , and it can be computed with O(μ2 · n4x ·�3) operations.
To store such a representation, for each B ∈ B, we need to store AB = PBSBQB,
cB, and the O(nx ·�) values of the periodic coefficients πB,k(g), for k ∈ {0, . . . , nx }
and g ∈ Z

nx mod SB · Znx . For a fixed k, the values of {πB,k(g)} can be stored in a
hash-table of the size | det(S)| ≤ �, where the keys are vectors from Z

nx , whose i-th
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component is from {0, . . . , Sii − 1}. Since, due to Theorem 4, |Q | = O
(
( fny−1)2ny

)

and since ν ≤ μ, the total preprocessing arithmetic complexity can be estimated by

O∗
(
( fny−1)ny · fny + ( fny−1)2ny · ( fny−1 + μ2 ·�3)

)
.

7.3 What is the query time?

Let us estimate the complexity of an EP (y)-query, for a given vector y ∈ Q
ny . First,

we need to find a chamberQ ∈ Q, such that y ∈ rel.int(D). Due to Theorem 4, it can
be done with O(ny · fny−1) operations.

As it was shown before, for a fixed Q ∈ Q and any y ∈ rel.int(D), there exists
a set of bases B, such that EP (y) equals to the sum of constant terms in Taylor’s
decompositions of fB(y; τ), for B ∈ B. Recalling that, for B ∈ B, the objects
AB = PBSBQB, cB, and πB,k are already pre-computed, let us show how to compute
the corresponding constant term:

1. Compute T B(y) = ⌊bB − BB y
⌋
with O(nx · ny) operations;

2. Compute g = PB T B(y) mod SB · Znx with O(nx · log(�)) operations;
3. For k ∈ {0, . . . , nx }, access the coefficients πB,k

(
g
)
, using the corresponding hash-

table. It takes O(nx · log(�)) operations;
4. Compute

〈
cB, T B(y)

〉
with O(nx ) operations;

5. For each k ∈ {0, . . . , nx }, compute
〈
cB, T B(y)

〉k with O(nx ) operations;
6. Compute the formula (13) with O(nx ) operations.

After that, we just need to take the sum along all the constant terms, corresponding
to B ∈ B. As it was noted before, there are at most μ terms. The total arithmetic cost
is

O
(
ny · fny−1 + μ · nx ·

(
log(�)+ ny

))
.

Appendix A Proof o Lemma 2

Proof After the unimodular map x = Qx ′ and introducing slack variables y, the
system {x ∈ Z

n : Ax ≤ b} transforms to

⎧
⎪⎨

⎪⎩

Sx + Py = Pb

x ∈ Z
n

y ∈ Z
n≥0 .

Due to unimodularity of P , the last system is equivalent to

{
Py = Pb (mod S · Zn)

y ∈ Z
n≥0 .

(A1)
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Denoting G = Z
n /S ·Zn , g0 = Pb mod S ·Zn , gi = P∗i mod S ·Zn , we rewrite the

last system (A1): ⎧
⎨

⎩

n∑

i=1
yi gi = g0

y ∈ Z
n≥0 .

(A2)

The points x ∈ P ∩Z
n and the solutions y of the system (A2) are connected by the

bijective map x = A−1(b − y). Let ri = |〈gi 〉|, for i ∈ {1, . . . , n}, and rmax :=
maxi∈{1,...,n}{ri }. Clearly, |G| = |det(S)| = � and rmax ≤ σ . For k ∈ {1, . . . , n} and
g′ ∈ G, let Mk(g′) be the solutions set of the auxiliary system

⎧
⎪⎨

⎪⎩

k∑

i=1
yi gi = g′

y ∈ Z
k≥0,

and denote

gk(g
′; τ) =

∑

y∈Mk (g′)
e
−
〈

c,
k∑

i=1
hi yi

〉

τ

.

It follows that

f(P, c; τ) =
∑

z∈P ∩Z
n

e〈c,z〉τ =
∑

y∈Mn(g0)

e〈c,A−1(b−y)〉τ

= e〈c,A−1b〉τ ·
∑

y∈Mn(g0)

e−
1
�
〈c,A∗y〉τ = e〈c,A−1b〉τ · gn

(
g0; τ

�

)
.

(A3)

The recurrent formulae for gk(g
′; τ) were formally proven in [20, see its formulae

Eqs. (10), (11), and (12)], we cite them using the following separate Lemma 6. The
self-contaned proof of the Lemma is given in Sect.Appendix B.

Lemma 6 The following formulae hold:

g1(g
′; τ) = e−〈c,sh1〉τ

1− e−〈c,r1h1〉τ
, where s = min{y1 ∈ Z≥0 : y1 · g1 = g′}, (A4)

gk(g
′; τ) = 1

1− e−〈c,rkhk 〉τ
·
rk−1∑

i=0
e−〈c,ihk 〉τ · gk−1(g′ − i · gk; τ), (A5)

gk(g
′; τ) =

k·σ ·ψ∑
i=−k·σ ·ψ

εi (k, g′) · e−iτ
(
1− e−〈c,r1·h1〉τ

)(
1− e−〈c,r2h2〉τ

)
. . .
(
1− e−〈c,rkhk 〉τ

) , (A6)
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where εi (k, g′) ∈ Z≥0 are coefficients, depending on k and g′. If the set {y1 ∈
Z≥0 : y1g1 = g′} is empty, we put g1(g

′; τ) := 0. If the vector c is chosen such
that 〈c, hi 〉 > 0, for all i ∈ {1, . . . , n}, then, for any τ > 0, k ∈ {1, . . . , n}, and
g′ ∈ G, the series gk(g′; τ) converges absolutely to the corresponding r.h.s. functions.

Let us estimate the number of operations to compute the representation (A6) of
gk(g

′; τ), for all k ∈ {1, . . . , n} and g′ ∈ G, using the recurrence (A5). Consider a
quotient group Qk = G /〈gk〉 and fix Q ∈ Qk . Clearly, Q = q + 〈gk〉, where q ∈ G
is a member of Q, and rk = |Q|. For j ∈ {0, . . . , rk − 1}, define

hk( j; τ) = (1− e−〈c,r1h1〉τ
) · . . . · (1− e−〈c,rkhk 〉τ

) · gk(q + j · gk; τ). (A7)

For the sake of simplicity, denote x  k y = (x − y) mod rk , then the formulas (A4),
(A5) and (A6) become

h1( j; τ) = e−〈c,sh1〉τ , where s = min{y1 ∈ Z≥0 : y1g1 = q + j · g1}, (A8)

hk( j; τ) =
rk−1∑

i=0
e−〈c,ihk 〉τ · hk−1

(
j  k i; τ

)
, (A9)

hk( j; τ) =
k·σ ·ψ∑

i=−k·σ ·ψ
εi (k, q + j · gk) · e−iτ . (A10)

First, assume that k = 1. Then, clearly, all the values

h1(0; τ), h1(1; τ), . . . , h1(r1 − 1; τ)

can be computed with O(r1) operations. Assume now that k ≥ 2 and that (k − 1)-th
level has already been computed. By the k-th level, wemean all the functions hk( j; τ),
for j ∈ {0, . . . , rk − 1}. Due to the formula (A10), hk( j; τ) contains O(k · σ · ψ)

monomials. Thus, the function hk(0; τ) can be computed directly using the formula
(A9) with O(rk · k · σ · ψ) operations. For j ≥ 1, we have

hk( j; τ) =
rk−1∑

i=0
e−〈c,ihk 〉τ · hk−1( j  k i; τ)

=
rk−2∑

i=−1
e−〈c,(i+1)hk 〉τ · hk−1

(
j  k (i + 1); τ)

= e−〈c,hk 〉τ · hk( j − 1; τ)+ hk−1( j; τ)− e−〈c,rkhk 〉τ · hk−1
(
j  k rk; τ

)

= e−〈c,hk 〉τ · hk( j − 1; τ)+ (1− e−〈c,rkhk 〉τ ) · hk−1
(
j; τ). (A11)

Consequently, due to the assumption that the (k − 1)-th level has already been com-
puted and that hk(0; τ) is known, all the functions hk(1; τ), . . . , hk(rk − 1; τ) can be
computed with O(rk · k · σ · ψ) operations, using this formula (A11).
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In turn,when the functionshk( j; τ), for j ∈ {0, . . . , rk−1}, are already constructed,
we can return to the functions gk(g

′; τ), for g′ = q + j · gk , using the formula (A7).
It will consume additional O(rk) group operations to compute g′ = q + j · gk . By the
definition of G, the arithmetic cost of a single group operation in G can be estimated
by the number of elements on the diagonal of the matrix S that are not equal to 1,
which is bounded by min{n, log2(�)}. Therefore, the arithmetic cost of the last step is
O(rk · n), which is negligible in comparison with the computational cost of hk( j; τ).

Summarizing, we need O(rk · k ·σ ·ψ) arithmetic operations to compute gk(g
′; τ),

for all g′ = q + j · gk and j ∈ {0, . . . , rk}. Consequently, since |Q| = �/rk , the
arithmetic cost to compute k-th level of gk(·) is

O(� · k · σ · ψ),

and the total cost to compute all the levels is

O(� · n2 · σ · ψ).

Finally, using the formula (A3), we construct the desired function

f(P, c; τ) = e〈c,A−1b〉τ · gn
(
g0; τ

�

)

=

k·σ ·ψ∑
i=−k·σ ·ψ

εi · e 1
�

(
〈c,A∗b〉−i

)
τ

(
1− e−〈c,

r1
�
h1〉τ )(1− e−〈c,

r2
�
h2〉τ ) . . .

(
1− e−〈c,

rn
�
hn〉τ )

,

where εi := εi (n, g0). Since, for all τ > 0, the series gn(g0; τ) converges absolutely,
the same is true for f(P, c; τ). The number of operations tomake the last transformation
is proportional to the nominator length of gn(g0; τ), which is O(n · σ · ψ). ��

Appendix B Proof of Lemma 6

B.1 A recurrent formula for the generating function of a group polyhedron

Let G be an arbitrary finite Abelian group and g1, . . . , gn ∈ G. Let additionally ri =
|〈gi 〉| be the order of gi , for i ∈ {1, . . . , n}, and rmax = maxi {ri }. For g′ ∈ G and
k ∈ {1, . . . , n}, let M(k, g′) be the solutions set of the following system:

⎧
⎪⎨

⎪⎩

k∑

i=1
xi gi = g′

x ∈ Z
k≥0 .

(B12)
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Consider the formal series fk(g
′; x) = ∑

z∈M(k,g′)∩Zk

xz . For k = 1, we have

f1(g
′; x) = xs1

1− xr11
, where s = min{x1 ∈ Z≥0 : x1g1 = g′}. (B13)

If such s does not exist, we set f1(g
′; x) := 0. Clearly, the series f1(g

′; x) absolutely
converges for any x1 ∈ C with

∣∣xr11
∣∣ < 1. For any fixed xk ∈ Z≥0, the system (B12)

can be rewritten as ⎧
⎪⎨

⎪⎩

k−1∑
i=1

xi gi = g′ − xkgk

x ∈ Z
k−1
≥0 .

Thus, for any k ≥ 1,

fk(g
′; x)

= fk−1(g′; x)+ xk · fk−1(g′ − gk; x)+ · · · + xrk−1k · fk−1(g′ − gk · (rk − 1); x)
1− xrkk

= 1

1− xrkk
·
rk−1∑

i=0
xik · fk−1(g′ − i · gk; x). (B14)

Consequently, fk(g
′; x) =

r1−1∑
i1=0

· · ·
rk−1∑
ik=0

εi1,...,ik x
i1
1 . . . xikk

(1− xr11 )(1− xr22 ) . . . (1− xrkk )
, (B15)

where the numerator is a polynomial with coefficients εi1,...,ik ∈ {0, 1} of a degree at
most (r1 − 1) . . . (rk − 1). Since a sum of absolutely convergent series is absolutely
convergent, it follows from the induction principle that the series fk(g

′; x) absolutely
converges when

∣∣xrii
∣∣ < 1, for each i ∈ {1, . . . , k}.

B.2 The groupG, induced by the SNF, of A

Recall that A ∈ Z
n×n , 0 < � = |det(A)|, and h1, . . . , hn are the columns of A∗ :=

� · A−1. The vector c ∈ Z
n is chosen, such that 〈c, hi 〉 > 0, for each i ∈ {1, . . . , n},

andψ = maxi |〈c, hi 〉|. Additionally, S = PAQ is the SNF of A, where P, Q ∈ Z
n×n

are unimodular, and σ = Snn .
Consider the setsM(k, g′), induced by the group system (B12)withG = Z

n /S ·Zn

and gi = P∗i mod S · Zn . Note that ri ≤ σ , for each i ∈ {1, . . . , n}. Additionally,
consider a new formal series

f̂k(g
′; x) =

∑

z∈M(k,g′)∩Zk

x
−

k∑

i=1
hi zi

,
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which can be derived from the series fk(g
′; x) by themonomial substitution xi → x−hi .

For f̂k(g
′; x), the formulae (B13), (B14) and (B15) become:

f̂1(g
′; x) = x−sh1

1− x−r1h1
, where s = min{y1 ∈ Z≥0 : y1g1 = g′}, (B16)

f̂k(g
′; x) = 1

1− x−rkhk
·
rk−1∑

i=0
x−ihk ·f̂k−1(g′ − i · gk; x) and (B17)

f̂k(g
′; x) =

r1−1∑
i1=0

· · ·
rk−1∑
ik=0

εi1,...,ik x
−(i1h1+···+ikhk )

(1− x−r1h1)(1− x−r2h2) . . . (1− x−rkhk )
. (B18)

Here the absolute convergence takes place for the values of x with
∣∣x−ri hi

∣∣ < 1, for
each i ∈ {1, . . . , k}. Let us consider now the formal series

gk(g
′; τ) =

∑

y∈Mk (g′)
e−τ ·〈c,∑k

i=1 hi yi 〉,

which can be derived from f̂k(g
′; x) substituting xi → eτ ·ci . Forgk(g′; τ), the formulae

(B16), (B17), and (B18) become:

g1(g
′; τ) = e−〈c,sh1〉·τ

1− e−〈c,r1h1〉·τ
, (B19)

gk(g
′; τ) = 1

1− e−〈c,rkhk 〉·τ
·
rk−1∑

i=0
e−〈c,ihk 〉·τ · gk−1(g′ − i · gk; τ), (B20)

gk(g
′; τ) =

r1−1∑
i1=0

· · ·
rk−1∑
ik=0

εi1,...,ik e
−〈c,i1h1+···+ikhk 〉·τ

(
1− e−〈c,r1h1〉·τ

)(
1− e−〈c,r2h2〉·τ

)
. . .
(
1− e−〈c,rkhk 〉·τ

) . (B21)

Since the series f̂k(g
′; x) absolutely converges, when ∣∣x−ri hi ∣∣ < 1, and since 〈c, hi 〉 ∈

Z�=0, for each i ∈ {1, . . . , k}, the new series converges for any τ > 0. The number of
terms e−〈c,·〉·τ is bounded by 2 ·k ·σ ·ψ+1. Combining similar terms, the numerator’s
length becomes O(k · σ · ψ). In other words, there exist coefficients εi ∈ Z≥0, such
that

gk(g
′; τ) =

k·σ ·ψ∑
i=−k·σ ·ψ

εi · e−i ·τ
(
1− e−〈c,r1·h1〉τ

)(
1− e−〈c,r2h2〉·τ

)
. . .
(
1− e−〈c,rkhk 〉·τ

) . (B22)

The formulae (B19), (B20), and (B22) coincide with the desired formulae (A4), (A5),
and (A6). Therefore, the proof of Lemma 6 is finished.
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