QUANTUM INTERSECTION NUMBERS AND THE GROMOV-WITTEN
INVARIANTS OF CP'

XAVIER BLOT AND ALEXANDR BURYAK

ABSTRACT. The notion of a quantum tau-function for a natural quantization of the KdV
hierarchy was introduced in a work of Dubrovin, Guéré, Rossi, and the second author. A
certain natural choice of a quantum tau-function was then described by the first author, the
coefficients of the logarithm of this series are called the quantum intersection numbers. Because
of the Kontsevich—Witten theorem, a part of the quantum intersection numbers coincides with
the classical intersection numbers of psi-classes on the moduli spaces of stable algebraic curves.
In this paper, we relate the quantum intersection numbers to the stationary relative Gromov—
Witten invariants of (CP',0,00) with an insertion of a Hodge class. Using the Okounkov—
Pandharipande approach to such invariants (with the trivial Hodge class) through the infinite
wedge formalism, we then give a short proof of an explicit formula for the “purely quantum”
part of the quantum intersection numbers, found by the first author, which in particular relates
these numbers to the one-part double Hurwitz numbers.

1. INTRODUCTION

The starting point of our considerations is Witten’s conjecture [Wit91], proved by Kont-
sevich [Kon92], which opened a new direction of research relating the topology of the moduli
space M, ,, of stable algebraic curves of genus g with n marked points to the theory of integrable
systems. Denote by ¢; € H?(M,,, Q) the first Chern class of the line bundle £; over M,
formed by the cotangent lines at the i-th marked point on stable curves. The classes 1; are
called the psi-classes. The intersection numbers on Hg,n are defined by

(Tay Tay - - Tdn / 1/) ---wi" €Q, di,....d, € Z>o,

with the convention that the integral is zero if Y d; # dim M,,, = 3g — 3 + n. Consider the
generating series of intersection numbers
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Witten’s conjecture [Wit91], proved by Kontsevich [Kon92], states that u'°P %f is a solution
of the Korteweg—de Vries (KdV) hierarchy (we identify x = ;)
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Note that the required solution of the hierarchy is specified by the initial condition utOP\tZIZO =
x. The generating series F can be uniquely reconstructed from u™P = %QTJ; using the string
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The KdV hierarchy is Hamiltonian,

8_tp - {u> hp}v

— ud g
h1 = / <€ + ﬂuuw) dl’,

— ut u?u uu
By — u- 2 TT 4 TTTT d
2 /(24“ TR ) v

with

and the Poisson bracket {-,-} on the space of local functionals given by {h,g} = [ %6 %9 .

L T ou
Using the Hamiltonians hg, the statement of the Kontsevich—Witten theorem can be equiva-
lently written as

Shay, — | + _
o, - {20 w ) )

where we denote uy := 9*u.

Y

up=0k,1

After the substitution u =Y, _, p,e™ (and therefore uj, =
nians hy can be considered as elements of the algebra

ez (i) p,e™), the Hamilto-

-~

B :=Clp1, p2, .. Jl[po,p-1, .- ¢€]l,

with the Poisson bracket given by {pa,pp} := iads+p0. The Poisson algebra (B,{-,-}) admits a

standard deformation quantization (B[[h]],*), where % is the Moyal product with the commu-
tation relation [p., po] = Pa*Pb — Db * Do = 1ahdatp0. In [BR16], the authors quantized the KdV
hierarchy constructing pairwise commuting elements Hy € B [[A]], called the quantum Hamil-
tonians, satisfying Hy = hg + O(h). Moreover, the elements H, have the form Hy = [ Hydz,

where Hj; is a polynomial in w,uq,...,¢,

— u o e? ih
H, = —_ o Wlgpy — d7
1 /(6 +24uu 24u) x

4 2 2
— U U Ugy UWlggrr .. 2UUL + U . U
H2:/(—+82 + et —1h + —27152—> dzx,

By a construction from [BDGR20], which was made precise in [Blo22], one can associate to
the collection of quantum Hamiltonians Hy a quantum tau-function exp(F@), where F@ ¢
Cl[to, t1, - - -, &, h]] is uniquely determined by the relations:

on+1 @) 0H . — _ _
1.1 =ht=" | |... L H H | H
e AL | 1| et O o e Y

OF@ OF@ 2 ih
7o =Lt §

?

up=0k,1

(1.2)

>0

_ i _2
)|t*:0 = —ﬁe h. Note that

F (‘I)! neo = < Equation (1.2) is called the quantum string equation. Note that it is a close

analog of the classical string equation for the formal power series F.

together with the explicit formula for the constant term F(
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Quantum intersection numbers (T4, .. .Ta,), 41 are defined by

on F

(Tdy - Tdn )y g1 = i 4 =393 Coef a1yt ————— .
’ E)tdl e 8tdn t,=0

Note that they are nonzero only if 2g — 2 +n > 0.

Remark 1.1. Our normalization of the quantum intersection numbers is different from the one
from the paper [Blo22]: the coefficient =% ~39="%3 is replaced by 9~ there. In [Blo22], the
author proved that his normalization gives a rational number. The two normalizations are
different by the multiplication by i2=%~(==3) In [Blo22], the author proved that a quantum
intersection number vanishes unless » d; = n — [+ 1 mod 2. So both normalizations give
rational numbers, which coincide or differ by sign. We prefer our normalization, because then
there is no sign difference in the formula relating the quantum intersection numbers with the
relative Gromov-Witten invariants of CP' in the theorem below.

e?/2_e—%/2

Denote S(z) := “— € Q|[[2]]. In [Blo22], the first author proved that
2g—3+n [T, S(u;2)
E d dn 2 : 7=1 7
(13) N =4 <Td1 s Tdn>0,g :ull T Iun - ( :LL]) Coef229 ( S(Z) )

for g > 0and n > 1+ 24,.

Remark 1.2. In [Blo22], this theorem was interpreted in the following way. For two tuples
o= (1,...,px) € Z5, and v = (v1,...,vm) € Z%, k,m > 1, with Y u; = Y v, denote
by HJ, the double Hurwitz number (we assume that all the points in the preimages of 0
and oo in the ramified coverings that we count are marked). In [GJVO05], the authors proved

that
-1 IT—, S(uiz)
g _ j=1 J
HS 1 i) = rl <Z Mj) Coef 2 (W , nzl,

where 7 := 2g — 1 4+ n. Therefore, formula (1.3) can be equivalently written as

B i)
. B> (115
<Td1 R Tdn>0,g = Coefuflmuin ( -l Z/Jj > y g > 07 n>1+ 25g,0.

In our paper, we relate the quantum intersection numbers (797, . . . 74, ) 1g—1 O the stationary
relative Gromov-Witten invariants of (CP',0, 00) with an insertion of a Hodge class. For two
tuples g = (1, ..., ) € ZE, and v = (v1,...,vm) € Z%y, k,;m > 0, with Y p = Dy,
(we allow the case p = v = ()) denote by m;,n(CPl, i, v) the moduli space of stable relative

maps from genus g, n-pointed connected curves to (CP*, 0, 0o), with ramification profiles over 0
and oo given by the tuples i and v, respectively. In our definition, we label the points in each
ramification profile. This moduli space was defined in the algebro-geometric setting in [Li01].

The moduli space Mz’n (CP', i, v) is endowed with
e psi-classes ; € H2(M;n(CP1,u, v),Q), 1 < i < n, that are defined as the first Chern
classes of the cotangent line bundles over M;n (CP*, u, v);
e cvaluation maps ev;: M, ,(CP', u,v) — CP', 1 <i <

e Hodge classes )\; = c;(E) € H*(M,,(CP', 11,v),Q), where E is the rank g vector
bundle over M, ,,(CP', 11, ) whose fibers are the spaces of holomorphic differentials on
nodal curves;

e virtual fundamental class [Mg,(CP', 1, )]"'"™ € Hy oy ot ktmin)(Myn(CP', 1, v), Q).
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Let w € H? ((CIP’l, Q) be the Poincaré dual of a point. We denote by

o

(1.4) <,u,)\lHTdi(w),V> . g,n, >0, dy,...,d, >0,
i=1 g

the invariant given by

AT v evi(w).
\/[MO ((C]Pl ,/J«,V)]Vlrt H J J

g,

Note that the invariant (1.4) is zero unless 2g —2+1(p) +1(v) = >_ d; +1. Therefore, the genus
can be omitted in the notation.

Let M;n(cpl, i, V) be the moduli space of stable relative maps with possibly disconnected
domains. The brackets ( }* will be used for the integration over the moduli space of stable
relative maps with possibly disconnected domains.

Theorem 1.3. Let g,1 >0, n>1, and d = (dy,...,d,) € 7.
(1) For any k > 1, the integral

Pg,lﬂ(a’h’ .. ,Clk) = <A, AlHTdi(w), (al, c. ,ak)> s ai,...,a € ZZh A= Zai’
j=1

is a polynomial in ay, ..., ar of degree 2g +n — 1 with the parity of n — 1.
(2) Let k=) d; —2g+1+1. Then

%Coefal...akngl,g, if k> 1,
(To7ay - Tan) gt = § (=1 [z, AN, if k=0 andn =1,

0, otherwise.

In the case [ = 0, the invariant (1.4) is a classical stationary relative Gromov—Witten invariant
of CP*, for which Okounkov and Pandharipande [OP06] found an explicit formula using the
infinite wedge formalism. Combining this formula with our theorem, we give a new, much
shorter, proof of formula (1.3).

1.1. Plan of the paper. In Section 2, we recall the necessary background on quantum inter-
section numbers. In Section 3, we prove Theorem 1.3. Finally, in Section 4 we give a new proof
of formula (1.3) using Theorem 1.3.

1.2. Notations and conventions.

e For n € Z>, we denote [n] :=={1,...,n}.

e Given a tuple of numbers (a4, ...,a,), we denote by the capital letter A the sum A :=
> iy @i For I C [n], we denote Ay := >, a;, I°:= [n]\I, and ar := (@i, ..., a;,),
where {il, c ,Z'm}, h<...< Z|[|

e For a topological space X, we denote by H*(X) the cohomology groups with the coef-
ficients in Q.

e The moduli space Mg,n is empty unless the condition 2g —2+n > 0 is satisfied. We will
often omit mentioning this condition explicitly, and silently assume that it is satisfied
when a moduli space is considered.
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2. QUANTUM INTERSECTION NUMBERS

2.1. Hamiltonian structure of the KdV hierarchy. Let us briefly recall main notions and
notations in the formal theory of evolutionary PDEs with one spatial variable (and with one
dependent variable):
e We consider formal variables uy with d > 0 and introduce the algebra of differential
polynomials A = Clluo]][u>1][[e]]. We denote u := ug, u, := uy, Uyzy := ug, .... Denote
by A4 C A the homogeneous component of (differential) degree d, where degu; := i
and dege := —1.
e An operator 0,: A — A is defined by 0, := Zdzo udﬂa%d.

e The operator of variational derivative % : A — Ais defined by 51 = Zizo(_a:v)i o %.

e The space of local functionals is defined by ! A = A/(Im(8,) @ C][]]). The image of
fe A under the canonical projection A — A is denoted by f fdx. The grading on A
induces a grading on A. We denote by Ad C A the homogeneous component of degree d.

e The kernel of the operator o-: A — A is equal to Im(8,) & C[[¢]], so the operator
i : A — A is well defined.

e The space A is endowed with a Poisson bracket given by {h g} = f 5"8 59 ?dx, where
T1,g € A. This bracket has a lifting to a bracket {,-}: A x A — A defined by {f,q} =
S Of gn+19g

n>0 Ju, T  du’

The KdV hierarchy is Hamiltonian, 687“ = {u, h,}, where the Hamiltonians h,, can be de-
[ res L*2" dx, where L = 2 + 2e2u.

2d+4

scribed using the Lax formalism: hg = (2 T

As we already discussed in the introduction, the Hamiltonians of the KdV hierarchy can be
considered as elements of the other space B = C|py, po, .. .|[[po, -1, .., €]]. For this, we define
a linear map ¢: A — B[[e™, e~*]] by

o~

) = Flupsss, L ayipueres € BlE™ e f € A

The map ¢ is an injection. Consider the decomposition

=D, dulf) € B.

a€Z

Denote gbo(f) = ¢o(f) = do(f)l,,—o- We have Im(9,) ® C[[e]] C Ker(¢p). Therefore, the map

qbo A — B is well defined. This linear map is injective, and moreover it is compatible with the
Poisson structures on A and B

o ({7,1}) = {50(P). bR}, FReR

where the Poisson structure on B is defined by

T oFf oh  —
{7, h}: Z”apaap_a’ /

D‘I
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Abusing notation, we will denote a KdV Hamiltonian T € A and its image & (ha) € B by the
same letter hgy.

2.2. The Hamiltonians of the KdV hierarchy and the double ramification cycles.
Consider an n-tuple of integers (ay,...,a,) such that > a; = 0. Let us briefly recall the
definition of the double ramification (DR) cycle DRy(ay, ..., a,) € H*(M,,). The positive
parts of (ay,...,ay) define a partition p = (p1, ..., pu()). The negatives of the negative parts
of (a1,...,a,) define a second partition v = (v1,...,v)). Since the parts of (a4,...,a,) sum
to 0, we have |u| = |v|. We allow the case |u| = |v| = 0. Let ng :=n —I(u) — I(v). The moduli
space
M, (CP' u,v)

parameterizes stable relative maps of connected algebraic curves of genus g to rubber CP! with
ramification profiles p, v over the points 0,00 € CP', respectively. There is a natural map

st: M, (CP', i, v) — M,.,

9,10

g7n0<

forgetting everything except the marked domain curve. The moduli space M, (CP*, pu,v)

. g,no
possesses a virtual fundamental class W;no (CP', u, 1/)} Vlrt, which is a homology class of degree
2(2g — 3 +n). The double ramification cycle

DRy(ay, ..., a,) € H*(M,,)
is defined as the Poincaré dual to the push-forward st, WN (CP', u, 1/)] Vit e Hy2g-34n) (Mgm).

9,10

The crucial property of the DR cycle is that for any cohomology class § € H*(M,,,) the inte-
gral fﬁ B ADRy (=D as,aq,. .., a,) 0 is a homogeneous polynomial in a4, . . ., a, of degree 2¢g
g,n
[Burl5, Lemma 3.2].

An explicit formula for the KdV Hamiltonians hg in terms of the geometry of Mg,n was found
in [Burl5, Section 4.3.1]. For any d € Z>¢, define

g29
hg = Z 0 Z Coef (4, )d1...(q,)n (/M Ag{DR, <— Zai, a,... 7an>> Ugy * ** Ud,, -
g,n+1

Then these differential polynomials give densities for the KAV Hamiltonians: hq = [ hadz. In
other language, as elements of B, the Hamiltonians hy are given by

—e2)g
Ed: Z ( ;l) Z (/ )‘gwilDRg(Oaala--wan)) pal"'pan-

Mg nt1

2.3. QEantum KdV hierarchy and quantum intersection numbers. Consider the vector
space B[[A]]. The Moyal product  on it is defined by

fah = =0T (f(p,, e B)h(ge, 2, B))] f,h € B[],

where gy, k € Z, are additional formal variables and h(q., €, k) := h|p,q,. The resulting algebra

gc—pc’

structure on B[[A]] is a deformation quantization of the Poisson algebra (B, {-,-}) in the sense
that for f =37, fil' and h = Y . hli', fi, hi € B, we have [f, h] = h{ fo, ho} + O(R?).

We extend the linear maps ¢: A = Bl[e", e )] and ¢o: A — B to linear maps ¢: A[[A]] —
B([n][[e™, e~*]] and ¢o: A[[R]] — BI[[h]] by coefficient-wise action. Note that if f € Im(¢) C

Bl[H]][[¢",e~]] and h € Im(¢o) C B[R], then [f,h] € Im(¢) [BR16, formula (2.2)]. This
implies that the subspace Im(¢g) C BJ[h]] is closed under the commutator [-, -].
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In [BR16], the authors defined elements H, € B[[h]] by

Fd = Z % Z </ <Z<ih)g_j<_€2)j>‘j) ¢ilDRg (07 ai, ... 7an)) Da, = Pay -

g>0,n>1  ay,...,an€% Mg nt1 =0

Clearly, Hy = EQ— O(h). In [BR16, Theorem 3.4], the authors proved that [Hy,, Hg,] = 0, and
so the elements H, give a quantization of the KdV hierarchy. As we already mentioned in the
introduction, the elements H, are called the quantum Hamiltonians.

Since the integral fﬂg - NUIDR, (0, a1, ..., a,) is a polynomial in ay, .. ., a, [BR16, Propo-

sition B.1], the elements H, € B[] belong to the image of the inclusion ¢o: A[[A]] — B[A]].
Therefore,

hl_n |:|: |:|:5§;dl’ﬁd2:| 7Fd3:| ’:| 7ﬁd”:| < ./Zl\[[h”? n Z 17 dl""’dn Z 0

In [BDGR20], the authors checked that the multiple commutator here is symmetric with respect
to all permutations of the numbers dy, ..., d,. In [Blo22], the author proved that there exists a
formal power series F9 € C[[to,t1,...,¢, h]] satisfying equations (1.1) and (1.2), and moreover
a solution is unique up to the constant term F(@ ‘ + —o- This constant term is chosen in such a
way that the equation )

(2.1) {%1 <Z "B +s—+2h%—2) f<>+%,
called the quantum dilaton equation, is satisfied after the substitution £, = 0. Since
i7 ifg=101=1,
(T = 50 ifg=2and =1,
0, otherwise,
this gives the constant term JF¢ ‘ 0 = —=c?h. In [Blo22], the author conjectured that

equation (2.1) is true: it is clearly Compatlble with the classical dilaton equation for the formal
power series F, and in [Blo22] the author also showed that it is true after the substitution
e = 0, however the quantum dilaton equation is not fully proved yet.

3. PROOF OF THEOREM 1.3

We will establish using the degeneration formula that

(31) COefsmhg—l-!—n—l |:|: .. |:|i5§—:j1 ,Fd2:| ,ﬁd3:| S :| 7Fdn:|
p<0=0

=0k>1 Z e 1<A AlHTd a1,~-,ak)> wemm

=1

+ Ok 001821 / A\
Mo

where k=) d; — 29+ 1+ 1.
First, let us denote Hy_1 := ‘?—u‘i, d > 0. We have

(Zh)g d —€’ iAx
Hd—l = Z m) Z = DRg (Ovalw”aama_A)d}lA W Pa;y *** Pa,, € )

g,m>0 A1y, GmEL

where A(s) :=1+ sA + -+ 59,
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Then, we introduce the non associative product fxg := fxg— fg. This slight modification of
the star product is convenient for the following reason: the coefficient of pq, - - - p,,, e e p9—t+n=1
in both [[... [[Ha-1,Hay] , Ha,) ... ], Ha,] and (- (Hgy—1%Hg,)*H g, )% - - - %Hy,) are iden-
tical when aq, ...,a, > 0 and m > 0. This occurs for two reasons: first the bracket |, -] defined
as the commutator of the x-product is also the commutator of the *-product, and second

Coefpal.,,pameAizaZZEg—l+n—lFdn;(' [ .. [Hdl—laﬁdg} Yo ’Hdnﬂ} =0, a,...,a, >0.
This vanishing happens because Hy % (---) involves a product of derivative % e %, with
JE— 1 s
ky,...,ks > 0, from the star product acting on H; and since we use the *-product we have
s > 1. Consequently, when extracting the coefficient of p,, - - pa,,e4@c? with the condition
a,...,a;, > 0, the sum of the parts of each DR-cycle from H,, is positive, contradicting

the requirement that they sum to zero. This proves the vanishing. Then, a direct induction
justifies the statement. Thus, in (3.1) we equivalently write the LHS with commutators or with
*-products.

Before establishing (3.1), we show how this formula proves assertions 1 and 2 of Theorem 1.3.

3.1. Proving assertion 1. The polynomial behavior of P, 5(as,...,a;) follows from equa-
tion (3.1) by the analysis of [Blo22, Section 6]. More precisely, one first writes an expression for
(- (Hg,_1%Hg,)%---*xHg,) from the expression of Hy, 1 x Hg, x---* Hg, given by Eq. (36) in
[Blo22], this only accounts for adding the conditions -y described in the same section. Then, after
extracting the coefficient of p,, - - - Dq, eArg2 pg—l+n=1 in this expression of Hdl_l%ﬁ(h%- . -;ﬁdn,
the polynomality, degree and parity properties follows from [Blo22, Lemma 6.3].

3.2. Proving assertion 2. The correlator (774, ... 74,) 14— is obtained from (3.1) by evalu-
ating at u; = 6;;. This evaluation is done using Lemma 6.2 in [BDGR18] and directly yields
the result.

3.3. Proving (3.1). By adirect dimension counting, the coefficient of pg, - - - pa,, e e* R~
in (- (Hgy-1*Hg,)*---*Hg,) can only be non zero if m = k.

If k =0, then Coef aipg11n1 (- (Hgy_1%Hg,)% - ';ﬁdn)‘p o
again, the parts of the DR cycles coming from H,, after the action of the *-product and the
evaluation p, = 0 cannot add up to zero. When n = 1, we have Coef 2ijg—14n—1Hg 1 a0 =
G911 fﬂg,g DR,(0,0)y% )\, and the property of the DR cycle DR,(0,0) = (—1)9), yields the
result.

vanishes for n > 1 since, once

We now prove the main ingredient of (3.1): when k£ > 0, we show that

(3.2) Z <A,>\1HTdi(w),(al,...,ak)> wemxz

= (=) Coef paupg—rina (- (Hgy 17 H g, )% - - - *Hyg,) [y

The proof is done by the induction over n using the degeneration formula and the following
lemma.

Lemma 3.1. Fiz g,n > 0 such that 29 —1+n > 0. Let by,...,b, € Z such that )" b, = 0.

We have
/ DRQ(07 blv s 7bn)¢f>\l = /0 virt )\ZQ/J?GVT(CU),
Mg,n+1 [Mg,1+n0 ((C]P)IHU':V)}

where i, v are the positive and the negatives of the negative parts of (0,b1,...,b,), respectively,
and ng + 1 is the number of parts equal to 0.
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Proof. Let ¥, € H? (/\/l p— (C]P’l, by V )) be the first Chern class of the cotangent line bundle
at the point 1. The cotangent line bundle at the point 1 over M gmo+1 ((C]P’l, 1, 1/) is identified
with the pull-back by the map st: /\/lg no+1 (CIP’ , iV ) — M, i1 of the cotangent line bundle
at the point 1 over M, ., since the component of the point 1 is not stabilised by the forgetful
map, thus we have U; = st*(¢;). Moreover, since the DR cycle is, by definition, the push-
forward by st of the virtual fundamental class of /\/lg o1 (C]Pl, I, V), and furthermore, since
Ai = st*(\;), we get by the projection formula

/ DRy (0,b1,...,ba)iN =
Mgns1

TN,

/[M;W(mﬂ»u,u)ri“

Let p: ./\/lg o1 (CPY i, v) — ./\/lg ono+1(CP' 11, v) be the canonical forgetful map. By [MPOG,
~ — o virt

Lemma 2], we have [M_, .,(CP' 1,v)]" = p, (ev{(w) N [./\/lg,nOH(CIP’l,u, l/)] ), which

virt
by the projection formula yields the result.

The case n = 1 in (3.2) directly follows from the statement of the lemma.

We now prove (3.2) for n > 2. The degeneration formula [Li02, Theorem 3.15] gives

33 <A )\lHTd CL1,..-, k)> -
Z Z Z %<A,)\ll Hde(w)nu> <N>)‘127_dn(w)7(al""’ak».’

li+la=l p>1 uz(pl,...,up)ezgl
p1tetpp=A
where we considered that the target CP' degenerates to CP' UCP! intersecting at a node, such
that the first CP' contains the relative point associated to the total ramification A and the
images of the points 1,...,n—1, and the second CP' contains the second relative point and the
image of the point n. Note that, as in [Li02], we label the points in the ramification profiles.
We now explain how the disconnected contributions on each side of (3.3) compensate to give a
formula involving only connected invariants.

LHS of (3.3). The term <A NIl 74y (w), (an, - - ,ak)>. on the left-hand side (LHS) of (3.3)

o

equals the connected contribution <A M= 7oy (W), (an, - ,ak)> , plus contributions with

disconnected domains. Since the preimage of 0 is given by a unique point with total ramifica-
tion A, the disconnected contributions correspond to whenever the point 1, or the point 2, ...,
or the point n is on a component of degree 0. Furthermore, since w? = 0, if the two marked
points are on the same component of degree 0, this contribution vanishes. We get

34 <A /\ZHTd al,...,ak> <A )\lHTd al,...,ak)>
DIED N (s Hmj<w>,<al,...,ak>> 140 .0

ICn] m: {0}UI—Zs jele iel
m(0)+3 ;e m(i)=l

+0,1(A, 1, A)° 0, An 7a (W), 0)°,
k1 D _H< T4 (W), 0)
:1/A mi+--+myp=I[ 1=1

where ¢ := [n]\I, moreover we used in the last term that (A, X\, (ai,...,ax))° # 0 only for
[l =0 and k£ =1 by dimension counting,.
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RHS of (3.3). Similarly, the factor <A A [T Td (W), (p1, - - ,up)>. on the right-hand side

(RHS) of equation (3.3) is equal to the connected contribution <A Ay TTS Td (w), (1, - .- ,,up)>

plus disconnected contributions such that the point 1, or 2, ..., or n — 1 lies on a degree 0
component, we get

A>\l1HTd ,ula---a,up <A )‘hHTd #17"'7Mp)>
+ Z Z < HTd Mla--~7l‘p)> H<®’)‘m(i)7_di(w)7®>o

IC[n—1] m: {0}UI—=Z>g jele icl
m(0)+32;cr m(i)=h

o0 (A LA Y T A7 (w),0)°

mi+--+mp=Il i=1

The factor ((pa, ..., 1p), AipTa, (W), (a1, ..., ax))* is more complicated because we can split the
profile above 0 and above co on different domains, we get

<(N17 s ,Mp) ) )\I2Tdn(w)7 (ah Y Z Z :uhv 17 a’Jl <M127 )‘l2Tdn(W)7 CLJ2>O

IiUl,= [p] JiUJo= [k]
L#0 Jo A0

+ (s ptp), 1 (ag, ooy ar))® (0, \y7a, (W), 0)°

Note that a dimension counting forces the A-class to entirely lie on the component with the
n-th marked point. In addition, the term (uz,,1,ay,)°® is, again by dimension counting, equal
to a product of relative connected invariants with genus 0 domain and 2 marked points, each
of them contributing as (a,1,a)° = %, a > 0. Same story for ((u1,..., 1), 1, (a1,...,a))".

Finally, the contributions of the LHS and RHS of (3.3) such that at least one marked point
from 1,...,n lies on a component of degree 0 compensate. After simplifications, one gets

(3.5) <A )\ZHTd al,...,ak)> =
> Yoo B <A AhHm u,aJl>> (s My (@), 0,)°

p!
JiUJp= [k]u (11, o1p)EZE, |
1+ 2* pitetpp=Ag,

where (p,ay,) is the (p + |Ji|)-tuple obtained by concatenation from the tuples p and ay,.
Now, using Lemma 3.1 and the induction hypothesis, we find that after the multiplication
by %e“‘” and summing over aq,...,a; > 0 the RHS of (3.5) equals the coefficient of

g2 p9=Hn=1 in the x-product (- -- (Hyg,_%Hg, )% ---*Hg,) ‘p< , after the multipliation by (—i)¢t "1,
This establishes (3.2), thereby concluding the proof. R

4. A NEW PROOF OF FORMULA (1.3)

Using the quantum string equation, we observe that formula (1.3) follows from the equality

Z Z 7'07'd1 . >0922g,ucll1 e 'PJZ" = <Z Mj>n2 H?:l S(M(Z Mj)Z)v n>2,

)

g>0 di,....dn>0 S ((Z Mj)z)
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which can be equivalently written as
(4.1)

n—2 n . Nt
Z (ToTas - Tan o g P2 B2t e = gn (Z Mj) TLmy S (i (32 1) )7 —
G5d1 50, dn >0 S (32 1)

For two tuples jt = (pu1, ..., ) € Z5 and v = (v1,...,vm) € Z%y, k,m > 0, with Y- p; = > v,
we introduce the generating series

n (o]
Fy (21,000, 2n) 1= Z <,U,H7d,-(w)7V> ZhtL. L gt
i=1

Using Theorem 1.3, we see that formula (4.1) follows from

zn— 2 n
gCoefal P sy (71 - - (H z) Coeftk ni1 (HS EVA ) L k>1,n>1,

=1 =1

which is equivalent to

n

1
(42) Coefal tlkFA( 77777 )(Zl, R ,Zn) = mcoeftk+l (H g(ZzZt)> ) k > 17 n > 17
=1

where Z := Y"1 | z; and ¢(2) := 25(2) = /2 — e7#/2.

Recall that a relative Gromov—Witten invariant (x, [} 74 (w), I/>;7 gE€Z,n>0,dy,...,d,>
0, is zero unless 2g — 2+ I(u) + I(v) = >_ d;. We adopt the convention

<,u,7'_2(w)l7'_1(w)mHTdi(w),u> = Om.0 <M,H7'di(w),y> :
i=1 g i=1 g+l
So we will consider the numbers

</L,H7ki(w),y>, gL, n>0, ki,....k,>—2.
i=1

g

Note that it is still true that such a number vanishes unless the condition 2g — 2+ () +1(v) =
> k; is satisfied. So we can still omit the genus in the notation. Introduce the generating series

n [ ]
Ey (21,000,20) 1= Z <pL, HTki(w),V> 2t gkt
=1

o 1 1
Z <®7Td( )7®> Zd+1 - N
TEE
which implies that
1
<®7Td( )7®>. d+l T\
Z, 8
and then using (3.4) we obtain
FO Z Jc
F3 21, y&n) = Ao ak)( ! ) k 2 17 ay, , >1
A,(a1,...,ak)
JCln] Hjng(Z])
Note that
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So formula (4.2) implies that
Coeftk+1 <HjEJC S (ZjZch))
i (Mess()) Zoes (Z5e)

On the other hand, using the induction on 7, one can easily see that formula (4.3) implies

formula (4.2). Let us now prove formula (4.3).

We will use an explicit formula for /73 o) (#15 -+ 2) obtained in [OP06] using the infinite

wedge formalism (see [OP06, Section 2]), which we briefly recall now. We consider a vector
space V with basis {k} indexed by the half-integers:

V::@)CE

k€Z+3%

k,n>1.

(4.3) k;—Coefa1 a3 (o) (P15 5 20) =

.....

Denote by A2V the vector space spanned by the infinite wedge products
1
ay Nag A\... with a; = —i—|—§+cf0r some ¢ € Z and ¢ big enough.

For any k € Z + 3, define linear operators ¢, ¥ AZV = AV by
Yplag Nag N ..) i =kANag Nag A ...,

o0

Yila Aag A )= (1) g A AGA

i=1
These operators satisfy the anti-commutation relations
Vi + P = 0iy, Vb + by = i + i =0
Normally ordered products are defined by

T =, <.

Let vy := —% A —% A .... For an operator A: AZV — A%V denote by (A) the coefficient
of vy in the decomposition of A(vg) in the basis

{EA@/\...EA?V

1
ap > as > ..., ai:—i—i—§+cf0rsomecECandibigenough}.

For any r € Z, define an operator £.(z) on A2V by

T 5
E(2)= Y e*2 gt 45

kEZ+} s(z)
These operators satisfy the commutation relation
(Ea(2), E(w)] = slaw — b2)E1p(2z + w).
Finally, we define operators ay, := &(0) for k # 0. We have the commutation relations

[Oéa, gb(’z)] = g(az)ga—i-b(z)v a 7é 07

[a, ] = adgip0, a,b# 0.

By [OP06, Proposition 3.1], we have

Ff.l,(al ..... ak)(zla B Zn)

AH] o <aA11180 Z Ha a3>, k,n>1.
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In order to transform the expression <a All, &o(=) Hf:

through the operators &(z;) to the left, using the commutation relation

1Er(2), a—g] = s(k2)E—k(2).

1 oz_aj>, we move the operators g,

We obtain

Hl 1 Hze[ s(aiz)
A H&) 2 H O-/—a]> = Z . <04A5—A,1 (21) - '5—A1n (Zn)> +
AHJ 1% < i=1 N O =[k] Aszl aj

Ok

+ a_é <Oza104_a150(2’1) o -Eo(zn» .
1

In order to transform the expression <oz,4€_,411 (z1) - &_4, (2n)), we move the operators £_4, (z;)
through the operator a4 to the left, using the commutation relation

[Ea(2), Ep(w)] = s(aw — b2)Eqip(z + w).
At the first step, we obtain

(A n; (1)~ &y, (20)) =
=¢(Az1) (Ean, (21)E-n,, (z2) - E-ny, (2n)) + 010 (Eo(z1)@a€n,, (22) - - E-ay, (20)) -
In the same way, at each step the number of summands doubles. After n steps, we obtain 2"
summands that are in one-to-one correspondence with subsets J C [n]: the summand cor-
responding to a subset J C [n] contains the coefficient [];_;dr, 9. Note that the summand

corresponding to J = [n| vanishes, because at least one from the subsets I; is nonempty. The
summand corresponding to the subset J = () is equal to

Q(Aha'“aAIn;Zl7"'7Zn)7

where

Q(b1, by ,Zn) - §(321)§((B_b1)22+b221)§((B_b1_b2)z3+b3(zl+22))"'<((B_bl_~~~_bn71)zn+bn(Zl+~~~+2n71))‘

s(z14...42n)

In total, we obtain

I,
<04A€7A11 (Zl) R 87‘4[” (Zn)> = Z (H %) Q(Aljl’ .. 7AIj\JCI 3R ZjIJCI)’
J

JCln] \jeJ
where J¢ = {j1,..., Jjse|}, J1 < Ja < ... < jjse|- As aresult,

||

1 Z =1 Hie]l §<aizjz> Q(Ah’ B 7AI‘JC‘ IR 7Zj‘JC|)+

ai---ag A

Jg[n] HJGJ g( ) I, quc‘ [k}

5
+ 5 (O ama Eo(21) - En(z))
1

Now we need to take the coefficient of a; - - - a;. Note that

|J¢| ||
=1 Hiell g(aizjl) |11 |I|JCH S
.. azz‘jl

J|Jc
a P a
1 k =1 ic],
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Therefore,

k!
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—Coefal...akFi(alj__’ak)(zl, N

J Ziel Tl

A

1 a1 Ay oo VAL i Zis e ey e
Z— Z Sl el — Coefy,..q, (Q( 1 Lgepr ~J J|J))'

Jg[n] H]ng( )IlLJ UI‘JC' [k,‘}

Let us fix J C [n] and denote m = |J¢|. Then we compute

1| |1m QAL .- AL 2, %)\
Z Zjl o Im C efcLl ak< A J J —

LU ULy =[k]

LU ULy =[k]

ki+...+km=k

|[1‘ |]m‘|]1| |]m|' Q(bl,...,bm;Zjl,...,ij) .
Z R Tcoefb‘fl‘---b',ﬁm' T —

Z Zh.. kmCoef BEL (Q(bl’”"bm;zj“m’zj’")) =

7 by +...+ b,

—Coefs (Q(tzjl, N 77T TR ,ij)) _

tZJc
ZJC COeftk+lQ(tZ]1, Ce ,thm; Zjl? e ,ij).
It remains to note that
[Ticses(zZt)
T2y ey 25 3 2y e ey 24 ) = = ,
Q( J1 J J1 J ) §(ZJC)
which completes the proof of equality (4.3).
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