
QUANTUM INTERSECTION NUMBERS AND THE GROMOV–WITTEN
INVARIANTS OF CP1

XAVIER BLOT AND ALEXANDR BURYAK

Abstract. The notion of a quantum tau-function for a natural quantization of the KdV
hierarchy was introduced in a work of Dubrovin, Guéré, Rossi, and the second author. A
certain natural choice of a quantum tau-function was then described by the first author, the
coefficients of the logarithm of this series are called the quantum intersection numbers. Because
of the Kontsevich–Witten theorem, a part of the quantum intersection numbers coincides with
the classical intersection numbers of psi-classes on the moduli spaces of stable algebraic curves.
In this paper, we relate the quantum intersection numbers to the stationary relative Gromov–
Witten invariants of (CP1, 0,∞) with an insertion of a Hodge class. Using the Okounkov–
Pandharipande approach to such invariants (with the trivial Hodge class) through the infinite
wedge formalism, we then give a short proof of an explicit formula for the “purely quantum”
part of the quantum intersection numbers, found by the first author, which in particular relates
these numbers to the one-part double Hurwitz numbers.

1. Introduction

The starting point of our considerations is Witten’s conjecture [Wit91], proved by Kont-
sevich [Kon92], which opened a new direction of research relating the topology of the moduli
spaceMg,n of stable algebraic curves of genus g with nmarked points to the theory of integrable
systems. Denote by ψi ∈ H2(Mg,n,Q) the first Chern class of the line bundle Li over Mg,n

formed by the cotangent lines at the i-th marked point on stable curves. The classes ψi are
called the psi-classes. The intersection numbers on Mg,n are defined by

⟨τd1τd2 . . . τdn⟩g :=
∫
Mg,n

ψd1
1 ψ

d2
2 · · ·ψdn

n ∈ Q, d1, . . . , dn ∈ Z≥0,

with the convention that the integral is zero if
∑
di ̸= dimMg,n = 3g − 3 + n. Consider the

generating series of intersection numbers

F(t0, t1, . . . , ε) :=
∑
g,n≥0

ε2g
∑

d1,...,dn≥0

⟨τd1τd2 . . . τdn⟩g
td1td2 . . . tdn

n!
∈ Q[[t0, t1, . . . , ε]].

Witten’s conjecture [Wit91], proved by Kontsevich [Kon92], states that utop := ∂2F
∂t20

is a solution

of the Korteweg–de Vries (KdV) hierarchy (we identify x = t0)

∂u

∂t1
= uux +

ε2

12
uxxx,

∂u

∂t2
=
u2ux
2

+ ε2
(uuxxx

12
+
uxuxx
6

)
+ ε4

uxxxxx
240

,

...

Note that the required solution of the hierarchy is specified by the initial condition utop|t≥1=0 =

x. The generating series F can be uniquely reconstructed from utop = ∂2F
∂t20

using the string

equation
∂F
∂t0

=
∑
k≥0

tk+1
∂F
∂tk

+
t20
2
.
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The KdV hierarchy is Hamiltonian,

∂u

∂tp
= {u, hp},

with

h1 =

∫ (
u3

6
+
ε2

24
uuxx

)
dx,

h2 =

∫ (
u4

24
+ ε2

u2uxx
48

+ ε4
uuxxxx
480

)
dx,

...

and the Poisson bracket {·, ·} on the space of local functionals given by {h, g} =
∫

δh
δu
∂x

δg
δu
dx.

Using the Hamiltonians hd, the statement of the Kontsevich–Witten theorem can be equiva-
lently written as

ε2g ⟨τ0τd1 · · · τdn⟩g =
{{

. . .

{{
δhd1
δu

, hd2

}
, hd3

}
, . . .

}
, hdn

}∣∣∣∣
uk=δk,1

,

where we denote uk := ∂kxu.

After the substitution u =
∑

n∈Z pne
inx (and therefore uk =

∑
n∈Z(in)

kpne
inx), the Hamilto-

nians hd can be considered as elements of the algebra

B̂ := C[p1, p2, . . .][[p0, p−1, . . . , ε]],

with the Poisson bracket given by {pa, pb} := iaδa+b,0. The Poisson algebra (B̂, {·, ·}) admits a

standard deformation quantization (B̂[[ℏ]], ⋆), where ⋆ is the Moyal product with the commu-
tation relation [pa, pb] = pa ⋆ pb− pb ⋆ pa = iaℏδa+b,0. In [BR16], the authors quantized the KdV

hierarchy constructing pairwise commuting elements Hd ∈ B̂[[ℏ]], called the quantum Hamil-
tonians, satisfying Hd = hd + O(ℏ). Moreover, the elements Hd have the form Hd =

∫
Hddx,

where Hd is a polynomial in u, u1, . . . , ε, ℏ:

H1 =

∫ (
u3

6
+
ε2

24
uuxx −

iℏ
24
u

)
dx,

H2 =

∫ (
u4

24
+ ε2

u2uxx
48

+ ε4
uuxxxx
480

− iℏ
2uuxx + u2

48
− iℏε2

u

2880

)
dx,

...

By a construction from [BDGR20], which was made precise in [Blo22], one can associate to
the collection of quantum Hamiltonians Hd a quantum tau-function exp(F (q)), where F (q) ∈
C[[t0, t1, . . . , ε, ℏ]] is uniquely determined by the relations:

∂n+1F (q)

∂t0∂td1 . . . ∂tdn

∣∣∣∣
t∗=0

= ℏ1−n

[[
. . .

[[
δHd1

δu
,Hd2

]
, Hd3

]
, . . .

]
, Hdn

]∣∣∣∣
uk=δk,1

,(1.1)

∂F (q)

∂t0
=
∑
i≥0

ti+1
∂F (q)

∂ti
+
t20
2
− iℏ

24
,(1.2)

together with the explicit formula for the constant term F (q)
∣∣
t∗=0

= − i
5760

ε2ℏ. Note that

F (q)
∣∣
ℏ=0

= F . Equation (1.2) is called the quantum string equation. Note that it is a close
analog of the classical string equation for the formal power series F .
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Quantum intersection numbers ⟨τd1 . . . τdn⟩l,g−l are defined by

⟨τd1 . . . τdn⟩l,g−l := i
∑

dj−3g−n+3Coefε2lℏg−l

∂nF (q)

∂td1 . . . ∂tdn

∣∣∣∣
t∗=0

.

Note that they are nonzero only if 2g − 2 + n > 0.

Remark 1.1. Our normalization of the quantum intersection numbers is different from the one
from the paper [Blo22]: the coefficient i

∑
dj−3g−n+3 is replaced by ig−l there. In [Blo22], the

author proved that his normalization gives a rational number. The two normalizations are
different by the multiplication by i

∑
dj−(n−l−3). In [Blo22], the author proved that a quantum

intersection number vanishes unless
∑
dj = n − l + 1 mod 2. So both normalizations give

rational numbers, which coincide or differ by sign. We prefer our normalization, because then
there is no sign difference in the formula relating the quantum intersection numbers with the
relative Gromov–Witten invariants of CP1 in the theorem below.

Denote S(z) := ez/2−e−z/2

z
∈ Q[[z]]. In [Blo22], the first author proved that∑

d1,...,dn≥0

⟨τd1 . . . τdn⟩0,g µ
d1
1 · · ·µdn

n =
(∑

µj

)2g−3+n

Coefz2g

(∏n
j=1 S(µjz)

S(z)

)
,(1.3)

for g ≥ 0 and n ≥ 1 + 2δg,0.

Remark 1.2. In [Blo22], this theorem was interpreted in the following way. For two tuples
µ = (µ1, . . . , µk) ∈ Zk

≥1 and ν = (ν1, . . . , νm) ∈ Zm
≥1, k,m ≥ 1, with

∑
µi =

∑
νj, denote

by Hg
µ,ν the double Hurwitz number (we assume that all the points in the preimages of 0

and ∞ in the ramified coverings that we count are marked). In [GJV05], the authors proved
that

Hg∑
µj ,(µ1,...,µn)

= r!
(∑

µj

)r−1

Coefz2g

(∏n
j=1 S(µjz)

S(z)

)
, n ≥ 1,

where r := 2g − 1 + n. Therefore, formula (1.3) can be equivalently written as

⟨τd1 . . . τdn⟩0,g = Coef
µ
d1
1 ···µdn

n

(
Hg∑

µj ,(µ1,...,µn)

r!
∑
µj

)
, g ≥ 0, n ≥ 1 + 2δg,0.

In our paper, we relate the quantum intersection numbers ⟨τ0τd1 . . . τdn⟩l,g−l to the stationary

relative Gromov–Witten invariants of (CP1, 0,∞) with an insertion of a Hodge class. For two
tuples µ = (µ1, . . . , µk) ∈ Zk

≥1 and ν = (ν1, . . . , νm) ∈ Zm
≥1, k,m ≥ 0, with

∑
µi =

∑
νj

(we allow the case µ = ν = ∅) denote by M◦
g,n(CP

1, µ, ν) the moduli space of stable relative

maps from genus g, n-pointed connected curves to (CP1, 0,∞), with ramification profiles over 0
and ∞ given by the tuples µ and ν, respectively. In our definition, we label the points in each
ramification profile. This moduli space was defined in the algebro-geometric setting in [Li01].

The moduli space M◦
g,n(CP

1, µ, ν) is endowed with

• psi-classes ψi ∈ H2(M◦
g,n(CP

1, µ, ν),Q), 1 ≤ i ≤ n, that are defined as the first Chern

classes of the cotangent line bundles over M◦
g,n(CP

1, µ, ν);

• evaluation maps evi : Mg,n(CP1, µ, ν) → CP1, 1 ≤ i ≤ n;

• Hodge classes λi := ci(E) ∈ H2i(Mg,n(CP1, µ, ν),Q), where E is the rank g vector
bundle over Mg,n(CP1, µ, ν) whose fibers are the spaces of holomorphic differentials on
nodal curves;

• virtual fundamental class [Mg,n(CP1, µ, ν)]virt ∈ H2(2g−2+k+m+n)(Mg,n(CP1, µ, ν),Q).
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Let ω ∈ H2
(
CP1,Q

)
be the Poincaré dual of a point. We denote by

(1.4)

〈
µ, λl

n∏
i=1

τdi(ω), ν

〉◦

g

, g, n, l ≥ 0, d1, . . . , dn ≥ 0,

the invariant given by ∫
[M◦

g,n(CP1,µ,ν)]
virt
λl

n∏
j=1

ψ
dj
j ev∗j(ω).

Note that the invariant (1.4) is zero unless 2g−2+ l(µ)+ l(ν) =
∑
di+ l. Therefore, the genus

can be omitted in the notation.

Let M•
g,n(CP

1, µ, ν) be the moduli space of stable relative maps with possibly disconnected
domains. The brackets ⟨ ⟩• will be used for the integration over the moduli space of stable
relative maps with possibly disconnected domains.

Theorem 1.3. Let g, l ≥ 0, n ≥ 1, and d = (d1, . . . , dn) ∈ Zn
≥0.

(1) For any k ≥ 1, the integral

Pg,l,d(a1, . . . , ak) :=

〈
A, λl

n∏
j=1

τdi(ω), (a1, . . . , ak)

〉◦

, a1, . . . , ak ∈ Z≥1, A =
∑

ai,

is a polynomial in a1, . . . , ak of degree 2g + n− 1 with the parity of n− 1.

(2) Let k :=
∑
dj − 2g + l + 1. Then

⟨τ0τd1 . . . τdn⟩ l,g−l =


1
k!
Coefa1···akPg,l,d, if k ≥ 1,

(−1)g
∫
Mg,2

λgλlψ
d1
1 , if k = 0 and n = 1,

0, otherwise.

In the case l = 0, the invariant (1.4) is a classical stationary relative Gromov–Witten invariant
of CP1, for which Okounkov and Pandharipande [OP06] found an explicit formula using the
infinite wedge formalism. Combining this formula with our theorem, we give a new, much
shorter, proof of formula (1.3).

1.1. Plan of the paper. In Section 2, we recall the necessary background on quantum inter-
section numbers. In Section 3, we prove Theorem 1.3. Finally, in Section 4 we give a new proof
of formula (1.3) using Theorem 1.3.

1.2. Notations and conventions.

• For n ∈ Z≥0, we denote [n] := {1, . . . , n}.
• Given a tuple of numbers (a1, . . . , an), we denote by the capital letter A the sum A :=∑n

i=1 ai. For I ⊂ [n], we denote AI :=
∑

i∈I ai, I
c := [n]\I, and aI := (ai1 , . . . , ai|I|),

where {i1, . . . , i|I|}, i1 < . . . < i|I|.

• For a topological space X, we denote by H i(X) the cohomology groups with the coef-
ficients in Q.

• The moduli space Mg,n is empty unless the condition 2g−2+n > 0 is satisfied. We will
often omit mentioning this condition explicitly, and silently assume that it is satisfied
when a moduli space is considered.
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2. Quantum intersection numbers

2.1. Hamiltonian structure of the KdV hierarchy. Let us briefly recall main notions and
notations in the formal theory of evolutionary PDEs with one spatial variable (and with one
dependent variable):

• We consider formal variables ud with d ≥ 0 and introduce the algebra of differential

polynomials Â := C[[u0]][u≥1][[ε]]. We denote u := u0, ux := u1, uxx := u2, . . . . Denote

by Âd ⊂ Â the homogeneous component of (differential) degree d, where deg ui := i
and deg ε := −1.

• An operator ∂x : Â → Â is defined by ∂x :=
∑

d≥0 ud+1
∂

∂ud
.

• The operator of variational derivative δ
δu
: Â → Â is defined by δ

δu
:=
∑

i≥0(−∂x)i ◦
∂

∂ui
.

• The space of local functionals is defined by Λ̂ := Â/(Im(∂x) ⊕ C[[ε]]). The image of

f ∈ Â under the canonical projection Â → Λ̂ is denoted by
∫
fdx. The grading on Â

induces a grading on Λ̂. We denote by Λ̂d ⊂ Λ̂ the homogeneous component of degree d.

• The kernel of the operator δ
δu
: Â → Â is equal to Im(∂x) ⊕ C[[ε]], so the operator

δ
δu
: Λ̂ → Â is well defined.

• The space Λ̂ is endowed with a Poisson bracket given by {h, g} :=
∫

δh
δu
∂x

δg
δu
dx, where

h, g ∈ Λ̂. This bracket has a lifting to a bracket {·, ·} : Â × Λ̂ → Â defined by {f, g} :=∑
n≥0

∂f
∂un

∂n+1
x

δg
δu
.

The KdV hierarchy is Hamiltonian, ∂u
∂tn

= {u, hn}, where the Hamiltonians hn can be de-

scribed using the Lax formalism: hd =
ε2d+4

(2d+3)!!

∫
resL

2d+3
2 dx, where L = ∂2x + 2ε−2u.

As we already discussed in the introduction, the Hamiltonians of the KdV hierarchy can be

considered as elements of the other space B̂ = C[p1, p2, . . .][[p0, p−1, . . . , ε]]. For this, we define

a linear map ϕ : Â → B̂[[eix, e−ix]] by

ϕ(f) := f
∣∣
ud 7→

∑
a∈Z(ia)

dpaeiax
∈ B̂[[eix, e−ix]], f ∈ Â.

The map ϕ is an injection. Consider the decomposition

ϕ(f) =
∑
a∈Z

ϕa(f)e
iax, ϕa(f) ∈ B̂.

Denote ϕ̃0(f) := ϕ0(f) − ϕ0(f)|p∗=0. We have Im(∂x) ⊕ C[[ε]] ⊂ Ker(ϕ̃0). Therefore, the map

ϕ̃0 : Λ̂ → B̂ is well defined. This linear map is injective, and moreover it is compatible with the

Poisson structures on Λ̂ and B̂,

ϕ̃0

(
{f, h}

)
=
{
ϕ̃0(f), ϕ̃0(h)

}
, f , h ∈ Λ̂,

where the Poisson structure on B̂ is defined by

{f, h} :=
∑
a∈Z

ia
∂f

∂pa

∂h

∂p−a

, f , h ∈ B̂.
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Abusing notation, we will denote a KdV Hamiltonian hd ∈ Λ̂ and its image ϕ̃0(hd) ∈ B̂ by the
same letter hd.

2.2. The Hamiltonians of the KdV hierarchy and the double ramification cycles.
Consider an n-tuple of integers (a1, . . . , an) such that

∑
ai = 0. Let us briefly recall the

definition of the double ramification (DR) cycle DRg(a1, . . . , an) ∈ H2g(Mg,n). The positive
parts of (a1, . . . , an) define a partition µ = (µ1, . . . , µl(µ)). The negatives of the negative parts
of (a1, . . . , an) define a second partition ν = (ν1, . . . , νl(ν)). Since the parts of (a1, . . . , an) sum
to 0, we have |µ| = |ν|. We allow the case |µ| = |ν| = 0. Let n0 := n− l(µ)− l(ν). The moduli
space

M∼
g,n0

(CP1, µ, ν)

parameterizes stable relative maps of connected algebraic curves of genus g to rubber CP1 with
ramification profiles µ, ν over the points 0,∞ ∈ CP1, respectively. There is a natural map

st : M∼
g,n0

(CP1, µ, ν) → Mg,n

forgetting everything except the marked domain curve. The moduli space M∼
g,n0

(CP1, µ, ν)

possesses a virtual fundamental class
[
M∼

g,n0
(CP1, µ, ν)

]virt
, which is a homology class of degree

2(2g − 3 + n). The double ramification cycle

DRg(a1, . . . , an) ∈ H2g(Mg,n)

is defined as the Poincaré dual to the push-forward st∗
[
M∼

g,n0
(CP1, µ, ν)

]virt ∈ H2(2g−3+n)(Mg,n).

The crucial property of the DR cycle is that for any cohomology class θ ∈ H∗(Mg,n) the inte-
gral

∫
Mg,n+1

λgDRg (−
∑
ai, a1, . . . , an) θ is a homogeneous polynomial in a1, . . . , an of degree 2g

[Bur15, Lemma 3.2].

An explicit formula for the KdV Hamiltonians hd in terms of the geometry of Mg,n was found
in [Bur15, Section 4.3.1]. For any d ∈ Z≥0, define

hd :=
∑

g≥0, n≥2

ε2g

n!

∑
d1,...,dn∈Z≥0∑

di=2g

Coef(a1)d1 ···(an)dn

(∫
Mg,n+1

λgψ
d
1DRg

(
−
∑

ai, a1, . . . , an

))
ud1 · · ·udn .

Then these differential polynomials give densities for the KdV Hamiltonians: hd =
∫
hddx. In

other language, as elements of B̂, the Hamiltonians hd are given by

hd =
∑

g≥0, n≥2

(−ε2)g

n!

∑
a1,...,an∈Z∑

ai=0

(∫
Mg,n+1

λgψ
d
1DRg (0, a1, . . . , an)

)
pa1 · · · pan .

2.3. Quantum KdV hierarchy and quantum intersection numbers. Consider the vector

space B̂[[ℏ]]. The Moyal product ⋆ on it is defined by

f ⋆ h = e
∑

k>0 iℏk
∂

∂pk

∂
∂q−k (f(p∗, ε, ℏ)h(q∗, ε, ℏ))|qc 7→pc

, f, h ∈ B̂[[ℏ]],

where qk, k ∈ Z, are additional formal variables and h(q∗, ε, ℏ) := h|pa 7→qa . The resulting algebra

structure on B̂[[ℏ]] is a deformation quantization of the Poisson algebra (B̂, {·, ·}) in the sense

that for f =
∑

i≥0 fiℏi and h =
∑

i≥0 hiℏi, fi, hi ∈ B̂, we have [f, h] = ℏ{f0, h0}+O(ℏ2).

We extend the linear maps ϕ : Â → B̂[[eix, e−ix]] and ϕ̃0 : Λ̂ → B̂ to linear maps ϕ : Â[[ℏ]] →
B̂[[ℏ]][[eix, e−ix]] and ϕ̃0 : Λ̂[[ℏ]] → B̂[[ℏ]] by coefficient-wise action. Note that if f ∈ Im(ϕ) ⊂
B̂[[ℏ]][[eix, e−ix]] and h ∈ Im(ϕ̃0) ⊂ B̂[[ℏ]], then [f, h] ∈ Im(ϕ) [BR16, formula (2.2)]. This

implies that the subspace Im(ϕ̃0) ⊂ B̂[[ℏ]] is closed under the commutator [·, ·].
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In [BR16], the authors defined elements Hd ∈ B̂[[ℏ]] by

Hd :=
∑

g≥0, n≥1

1

n!

∑
a1,...,an∈Z∑

ai=0

(∫
Mg,n+1

(
g∑

j=0

(iℏ)g−j(−ε2)jλj

)
ψd
1DRg (0, a1, . . . , an)

)
pa1 · · · pan .

Clearly, Hd = hd+O(ℏ). In [BR16, Theorem 3.4], the authors proved that [Hd1 , Hd2 ] = 0, and
so the elements Hd give a quantization of the KdV hierarchy. As we already mentioned in the
introduction, the elements Hd are called the quantum Hamiltonians.

Since the integral
∫
Mg,n+1

λjψ
d
1DRg (0, a1, . . . , an) is a polynomial in a1, . . . , an [BR16, Propo-

sition B.1], the elements Hd ∈ B̂[[ℏ]] belong to the image of the inclusion ϕ̃0 : Λ̂[[ℏ]] → B̂[[ℏ]].
Therefore,

ℏ1−n

[[
. . .

[[
δHd1

δu
,Hd2

]
, Hd3

]
, . . .

]
, Hdn

]
∈ Â[[ℏ]], n ≥ 1, d1, . . . , dn ≥ 0.

In [BDGR20], the authors checked that the multiple commutator here is symmetric with respect
to all permutations of the numbers d1, . . . , dn. In [Blo22], the author proved that there exists a
formal power series F (q) ∈ C[[t0, t1, . . . , ε, ℏ]] satisfying equations (1.1) and (1.2), and moreover
a solution is unique up to the constant term F (q)

∣∣
t∗=0

. This constant term is chosen in such a

way that the equation

∂F (q)

∂t1
=

(∑
n≥0

tn
∂

∂tn
+ ε

∂

∂ε
+ 2ℏ

∂

∂ℏ
− 2

)
F (q) +

ε2

24
,(2.1)

called the quantum dilaton equation, is satisfied after the substitution t∗ = 0. Since

⟨τ1⟩l,g−l =


1
24
, if g = l = 1,
1

2880
, if g = 2 and l = 1,

0, otherwise,

this gives the constant term F (q)
∣∣
t∗=0

= − i
5760

ε2ℏ. In [Blo22], the author conjectured that

equation (2.1) is true: it is clearly compatible with the classical dilaton equation for the formal
power series F , and in [Blo22] the author also showed that it is true after the substitution
ε = 0, however the quantum dilaton equation is not fully proved yet.

3. Proof of Theorem 1.3

We will establish using the degeneration formula that

Coefε2lℏg−l+n−1

[[
. . .

[[
δHd1

δu
,Hd2

]
, Hd3

]
, . . .

]
, Hdn

]∣∣∣∣
p≤0=0

=(3.1)

=δk≥1

∑
a1,...,ak>0

ig+l+n−1

〈
A, λl

n∏
i=1

τdi(ω), (a1, . . . , ak)

〉◦
pa1 · · · pak

k!
eiAx

+ δk,0δn,1i
3g+l

∫
Mg,2

λgλlψ
d1
1 ,

where k :=
∑
dj − 2g + l + 1.

First, let us denote Hd−1 :=
δHd

δu
, d ≥ 0. We have

Hd−1 =
∑
g,m≥0

(iℏ)g

m!

∑
a1,...,am∈Z

(∫
Mg,m+2

DRg (0, a1, . . . , am,−A)ψd
1Λ

(
−ε2

iℏ

))
pa1 · · · pameiAx,

where Λ(s) := 1 + sλ1 + · · ·+ sgλg.



8 XAVIER BLOT AND ALEXANDR BURYAK

Then, we introduce the non associative product f⋆̃g := f ⋆g−fg. This slight modification of
the star product is convenient for the following reason: the coefficient of pa1 · · · pameAixε2lℏg−l+n−1

in both
[[
. . .
[[
Hd1−1, Hd2

]
, Hd3

]
, . . .

]
, Hdn

]
and (· · · ((Hd1−1⋆̃Hd2)⋆̃Hd3)⋆̃ · · · ⋆̃Hdn) are iden-

tical when a1, . . . , am > 0 and m ≥ 0. This occurs for two reasons: first the bracket [·, ·] defined
as the commutator of the ⋆-product is also the commutator of the ⋆̃-product, and second

Coefpa1 ···pameAixε2lℏg−l+n−1Hdn ⋆̃
[
. . .
[
Hd1−1, Hd2

]
, . . . , Hdn−1

]
= 0, a1, . . . , am > 0.

This vanishing happens because Hdn ⋆̃ (· · · ) involves a product of derivative ∂
∂pk1

· · · ∂
∂pks

, with

k1, . . . , ks > 0, from the star product acting on Hdn and since we use the ⋆̃-product we have
s ≥ 1. Consequently, when extracting the coefficient of pa1 · · · pameAixε2l with the condition
a1, . . . , am > 0, the sum of the parts of each DR-cycle from Hdn is positive, contradicting
the requirement that they sum to zero. This proves the vanishing. Then, a direct induction
justifies the statement. Thus, in (3.1) we equivalently write the LHS with commutators or with
⋆̃-products.

Before establishing (3.1), we show how this formula proves assertions 1 and 2 of Theorem 1.3.

3.1. Proving assertion 1. The polynomial behavior of Pg,l,d(a1, . . . , ak) follows from equa-
tion (3.1) by the analysis of [Blo22, Section 6]. More precisely, one first writes an expression for
(· · · (Hd1−1⋆̃Hd2)⋆̃ · · · ⋆̃Hdn) from the expression of Hd1−1 ⋆ Hd2 ⋆ · · · ⋆ Hdn given by Eq. (36) in
[Blo22], this only accounts for adding the conditions γ described in the same section. Then, after
extracting the coefficient of pa1 · · · pakeAixε2lℏg−l+n−1 in this expression of Hd1−1⋆̃Hd2 ⋆̃ · · · ⋆̃Hdn ,
the polynomality, degree and parity properties follows from [Blo22, Lemma 6.3].

3.2. Proving assertion 2. The correlator ⟨τ0τd1 . . . τdn⟩ l,g−l is obtained from (3.1) by evalu-
ating at ui = δi,1. This evaluation is done using Lemma 6.2 in [BDGR18] and directly yields
the result.

3.3. Proving (3.1). By a direct dimension counting, the coefficient of pa1 · · · pameAixε2lℏg−l+n−1

in (· · · (Hd1−1⋆̃Hd2)⋆̃ · · · ⋆̃Hdn) can only be non zero if m = k.

If k = 0, then Coefε2lℏg−l+n−1(· · · (Hd1−1⋆̃Hd2)⋆̃ · · · ⋆̃Hdn)
∣∣
p∗=0

vanishes for n > 1 since, once

again, the parts of the DR cycles coming from Hdn after the action of the ⋆̃-product and the
evaluation p∗ = 0 cannot add up to zero. When n = 1, we have Coefε2lℏg−l+n−1Hd1−1|p∗=0 =

ig+l
∫
Mg,2

DRg(0, 0)ψ
d1
1 λl and the property of the DR cycle DRg(0, 0) = (−1)gλg yields the

result.

We now prove the main ingredient of (3.1): when k > 0, we show that

(3.2)
∑

a1,...,ak>0

〈
A, λl

n∏
i=1

τdi(ω), (a1, . . . , ak)

〉◦
pa1 · · · pak

k!
eiAx =

= (−i)g+l+n−1 Coefε2lℏg−l+n−1(· · · (Hd1−1⋆̃Hd2)⋆̃ · · · ⋆̃Hdn)
∣∣
p≤0=0

.

The proof is done by the induction over n using the degeneration formula and the following
lemma.

Lemma 3.1. Fix g, n ≥ 0 such that 2g − 1 + n > 0. Let b1, . . . , bn ∈ Z such that
∑n

i=1 bi = 0.
We have ∫

Mg,n+1

DRg(0, b1, . . . , bn)ψ
d
1λl =

∫
[M◦

g,1+n0
(CP1,µ,ν)]

virt
λlψ

d
1ev

∗
1(ω),

where µ, ν are the positive and the negatives of the negative parts of (0, b1, . . . , bn), respectively,
and n0 + 1 is the number of parts equal to 0.
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Proof. Let Ψ1 ∈ H2
(
M∼

g,n0+1

(
CP1, µ, ν

))
be the first Chern class of the cotangent line bundle

at the point 1. The cotangent line bundle at the point 1 over M∼
g,n0+1

(
CP1, µ, ν

)
is identified

with the pull-back by the map st : M∼
g,n0+1

(
CP1, µ, ν

)
→ Mg,n+1 of the cotangent line bundle

at the point 1 over Mg,n+1 since the component of the point 1 is not stabilised by the forgetful
map, thus we have Ψ1 = st∗(ψ1). Moreover, since the DR cycle is, by definition, the push-
forward by st of the virtual fundamental class of M∼

g,n0+1

(
CP1, µ, ν

)
, and furthermore, since

λi = st∗(λi), we get by the projection formula∫
Mg,n+1

DRg(0, b1, . . . , bn)ψ
d
1λl =

∫
[M∼

g,n0+1(CP1,µ,ν)]
virt

Ψd
1λl.

Let p : M◦
g,n0+1(CP

1, µ, ν) → M∼
g,n0+1(CP

1, µ, ν) be the canonical forgetful map. By [MP06,

Lemma 2], we have
[
M∼

g,n0+1(CP
1, µ, ν)

]virt
= p∗

(
ev∗1(ω) ∩

[
M◦

g,n0+1(CP
1, µ, ν)

]virt)
, which

by the projection formula yields the result. □

The case n = 1 in (3.2) directly follows from the statement of the lemma.

We now prove (3.2) for n ≥ 2. The degeneration formula [Li02, Theorem 3.15] gives〈
A, λl

n∏
j=1

τdj(ω), (a1, . . . , ak)

〉•

=(3.3)

=
∑

l1+l2=l

∑
p≥1

∑
µ=(µ1,...,µp)∈Zp

≥1

µ1+···+µp=A

µ1 · · ·µp

p!

〈
A, λl1

n−1∏
j=1

τdj(ω), µ

〉•

⟨µ, λl2τdn(ω), (a1, . . . , ak)⟩
• ,

where we considered that the target CP1 degenerates to CP1∪CP1 intersecting at a node, such
that the first CP1 contains the relative point associated to the total ramification A and the
images of the points 1, . . . , n−1, and the second CP1 contains the second relative point and the
image of the point n. Note that, as in [Li02], we label the points in the ramification profiles.
We now explain how the disconnected contributions on each side of (3.3) compensate to give a
formula involving only connected invariants.

LHS of (3.3). The term
〈
A, λl

∏n
j=1 τdj(ω), (a1, . . . , ak)

〉•
on the left-hand side (LHS) of (3.3)

equals the connected contribution
〈
A, λl

∏n
j=1 τdj(ω), (a1, . . . , ak)

〉◦
, plus contributions with

disconnected domains. Since the preimage of 0 is given by a unique point with total ramifica-
tion A, the disconnected contributions correspond to whenever the point 1, or the point 2, . . . ,
or the point n is on a component of degree 0. Furthermore, since ω2 = 0, if the two marked
points are on the same component of degree 0, this contribution vanishes. We get〈

A, λl

n∏
j=1

τdj(ω), (a1, . . . , ak)

〉•

=

〈
A, λl

n∏
j=1

τdj(ω), (a1, . . . , ak)

〉◦

(3.4)

+
∑
I⊊[n]

∑
m : {0}⊔I→Z≥0

m(0)+
∑

i∈I m(i)=l

〈
A, λm(0)

∏
j∈Ic

τdj(ω), (a1, . . . , ak)

〉◦∏
i∈I

〈
∅, λm(i)τdi(ω), ∅

〉◦

+ δk,1⟨A, 1, A⟩◦︸ ︷︷ ︸
=1/A

∑
m1+···+mn=l

n∏
i=1

⟨∅, λmi
τdi(ω), ∅⟩

◦ ,

where Ic := [n]\I, moreover we used in the last term that ⟨A, λl, (a1, . . . , ak)⟩◦ ̸= 0 only for
l = 0 and k = 1 by dimension counting.
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RHS of (3.3). Similarly, the factor
〈
A, λl1

∏n−1
j=1 τdj(ω), (µ1, . . . , µp)

〉•
on the right-hand side

(RHS) of equation (3.3) is equal to the connected contribution
〈
A, λl1

∏n−1
j=1 τdj(ω), (µ1, . . . , µp)

〉◦
plus disconnected contributions such that the point 1, or 2, . . . , or n − 1 lies on a degree 0
component, we get

⟨A, λl1
n−1∏
j=1

τdj(ω), (µ1, . . . , µp)⟩• =

〈
A, λl1

n−1∏
j=1

τdj(ω), (µ1, . . . , µp)

〉◦

+
∑

I⊊[n−1]

∑
m : {0}⊔I→Z≥0

m(0)+
∑

i∈I m(i)=l1

〈
A, λm(0)

∏
j∈Ic

τdj(ω), (µ1, . . . , µp)

〉◦∏
i∈I

〈
∅, λm(i)τdi(ω), ∅

〉◦

+ δp,1 ⟨A, 1, A⟩◦
∑

m1+···+mn=l1

n∏
i=1

⟨∅, λmi
τdi(ω), ∅⟩

◦ .

The factor ⟨(µ1, . . . , µp) , λl2τdn(ω), (a1, . . . , ak)⟩
• is more complicated because we can split the

profile above 0 and above ∞ on different domains, we get

⟨(µ1, . . . , µp) , λl2τdn(ω), (a1, . . . , ak)⟩
• =

∑
I1⊔I2=[p]

I2 ̸=∅

∑
J1⊔J2=[k]

J2 ̸=∅

⟨µI1 , 1, aJ1⟩
• ⟨µI2 , λl2τdn(ω), aJ2⟩

◦

+ ⟨(µ1, . . . , µp) , 1, (a1, . . . , ak)⟩• ⟨∅, λl2τdn(ω), ∅⟩
◦ .

Note that a dimension counting forces the λ-class to entirely lie on the component with the
n-th marked point. In addition, the term ⟨µI1 , 1, aJ1⟩

• is, again by dimension counting, equal
to a product of relative connected invariants with genus 0 domain and 2 marked points, each
of them contributing as ⟨a, 1, a⟩◦ = 1

a
, a > 0. Same story for ⟨(µ1, . . . , µp) , 1, (a1, . . . , ak)⟩•.

Finally, the contributions of the LHS and RHS of (3.3) such that at least one marked point
from 1, . . . , n lies on a component of degree 0 compensate. After simplifications, one gets〈

A, λl

n∏
j=1

τdj(ω), (a1, . . . , ak)

〉◦

=(3.5)

=
∑

J1⊔J2=[k]
l1+l2=l
p≥1

∑
µ=(µ1,...,µp)∈Zp

≥1

µ1+···+µp=AJ2

µ1 · · ·µp

p!

〈
A, λl1

n−1∏
j=1

τdj(ω), (µ, aJ1)

〉◦

⟨µ, λl2τdn(ω), aJ2⟩
◦ ,

where (µ, aJ1) is the (p + |J1|)-tuple obtained by concatenation from the tuples µ and aJ1 .
Now, using Lemma 3.1 and the induction hypothesis, we find that after the multiplication
by

pa1 ···pak
k!

eiAx and summing over a1, . . . , ak > 0 the RHS of (3.5) equals the coefficient of

ε2lℏg−l+n−1 in the ⋆̃-product (· · · (Hd1−1⋆̃Hd2)⋆̃ · · · ⋆̃Hdn)
∣∣
p≤0=0

, after the multipliation by (−i)g+l+n−1.

This establishes (3.2), thereby concluding the proof.

4. A new proof of formula (1.3)

Using the quantum string equation, we observe that formula (1.3) follows from the equality∑
g≥0

∑
d1,...,dn≥0

⟨τ0τd1 . . . τdn⟩0,g z
2gµd1

1 · · ·µdn
n =

(∑
µj

)n−2
∏n

i=1 S (µi(
∑
µj)z)

S ((
∑
µj)z)

, n ≥ 2,
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which can be equivalently written as

∑
g,d1,...,dn≥0

⟨τ0τd1 . . . τdn⟩0,g t
∑

di−2g+1µd1
1 · · ·µdn

n = tn−1
(∑

µj

)n−2
∏n

i=1 S (µi(
∑
µj)t)

S (
∑
µj)

, n ≥ 2.

(4.1)

For two tuples µ = (µ1, . . . , µk) ∈ Zk
≥1 and ν = (ν1, . . . , νm) ∈ Zm

≥1, k,m ≥ 0, with
∑
µi =

∑
νj,

we introduce the generating series

F ◦
µ,ν(z1, . . . , zn) :=

∑
d1,...,dn≥0

〈
µ,

n∏
i=1

τdi(ω), ν

〉◦

zd1+1
1 · · · zdn+1

n .

Using Theorem 1.3, we see that formula (4.1) follows from

1

k!
Coefa1···akF

◦
A,(a1,...,ak)

(z1, . . . , zn) =

(
n∏

i=1

zi

)
Zn−2

S (Z)
Coeftk−n+1

(
n∏

i=1

S (ziZt)

)
, k ≥ 1, n ≥ 1,

which is equivalent to

1

k!
Coefa1···akF

◦
A,(a1,...,ak)

(z1, . . . , zn) =
1

Zς(Z)
Coeftk+1

(
n∏

i=1

ς(ziZt)

)
, k ≥ 1, n ≥ 1,(4.2)

where Z :=
∑n

i=1 zi and ς(z) := zS(z) = ez/2 − e−z/2.

Recall that a relative Gromov–Witten invariant ⟨µ,
∏n

i=1 τdi(ω), ν⟩
•
g, g ∈ Z, n ≥ 0, d1, . . . , dn ≥

0, is zero unless 2g − 2 + l(µ) + l(ν) =
∑
di. We adopt the convention〈

µ, τ−2(ω)
lτ−1(ω)

m

n∏
i=1

τdi(ω), ν

〉•

g

:= δm,0

〈
µ,

n∏
i=1

τdi(ω), ν

〉•

g+l

.

So we will consider the numbers〈
µ,

n∏
i=1

τki(ω), ν

〉•

g

, g ∈ Z, n ≥ 0, k1, . . . , kn ≥ −2.

Note that it is still true that such a number vanishes unless the condition 2g−2+ l(µ)+ l(ν) =∑
ki is satisfied. So we can still omit the genus in the notation. Introduce the generating series

F •
µ,ν(z1, . . . , zn) :=

∑
k1,...,kn≥−2

〈
µ,

n∏
i=1

τki(ω), ν

〉•

zk1+1
1 · · · zkn+1

n .

Note that (see e.g. [OP06, eq. (0.26)])∑
d≥0

⟨∅, τd(ω), ∅⟩◦ zd+1 =
1

ς(z)
− 1

z
,

which implies that ∑
d≥−2

⟨∅, τd(ω), ∅⟩• zd+1 =
1

ς(z)
,

and then using (3.4) we obtain

F •
A,(a1,...,ak)

(z1, . . . , zn) =
∑
J⊂[n]

F ◦
A,(a1,...,ak)

(zJc)∏
j∈J ς(zj)

, k ≥ 1, a1, . . . , ak ≥ 1.

Note that

F ◦
A,(a1,...,ak)

() =

{
1
a1
, if k = 1,

0, if k ≥ 2.
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So formula (4.2) implies that

1

k!
Coefa1···akF

•
A,(a1,...,ak)

(z1, . . . , zn) =
∑
J⊊[n]

Coeftk+1

(∏
j∈Jc ς (zjZJct)

)
(∏

j∈J ς(zj)
)
ZJcς (ZJc)

, k, n ≥ 1.(4.3)

On the other hand, using the induction on n, one can easily see that formula (4.3) implies
formula (4.2). Let us now prove formula (4.3).

We will use an explicit formula for F •
A,(a1,...,ak)

(z1, . . . , zn) obtained in [OP06] using the infinite

wedge formalism (see [OP06, Section 2]), which we briefly recall now. We consider a vector
space V with basis {k} indexed by the half-integers:

V =
⊕

k∈Z+ 1
2

Ck.

Denote by Λ
∞
2 V the vector space spanned by the infinite wedge products

a1 ∧ a2 ∧ . . . with ai = −i+ 1

2
+ c for some c ∈ Z and i big enough.

For any k ∈ Z+ 1
2
, define linear operators ψk, ψ

∗
k : Λ

∞
2 V → Λ

∞
2 V by

ψk(a1 ∧ a2 ∧ . . .) := k ∧ a1 ∧ a2 ∧ . . . ,

ψ∗
k(a1 ∧ a2 ∧ . . .) :=

∞∑
i=1

(−1)i−1δai,k a1 ∧ . . . ∧ âi ∧ . . . .

These operators satisfy the anti-commutation relations

ψiψ
∗
j + ψ∗

jψi = δi,j, ψiψj + ψjψi = ψ∗
iψ

∗
j + ψ∗

jψ
∗
i = 0.

Normally ordered products are defined by

: ψiψ
∗
j :=

{
ψiψ

∗
j , if j > 0,

−ψ∗
jψi, if j < 0.

Let v∅ := −1
2
∧ −3

2
∧ . . .. For an operator A : Λ

∞
2 V → Λ

∞
2 V denote by ⟨A⟩ the coefficient

of v∅ in the decomposition of A(v∅) in the basis{
a1 ∧ a2 ∧ . . . ∈ Λ

∞
2 V

∣∣∣∣a1 > a2 > . . . , ai = −i+ 1

2
+ c for some c ∈ C and i big enough

}
.

For any r ∈ Z, define an operator Er(z) on Λ
∞
2 V by

Er(z) =
∑

k∈Z+ 1
2

ez(k−
r
2
) : ψk−rψ

∗
k : +

δr,0
ς(z)

.

These operators satisfy the commutation relation

[Ea(z), Eb(w)] = ς(aw − bz)Ea+b(z + w).

Finally, we define operators αk := Ek(0) for k ̸= 0. We have the commutation relations

[αa, Eb(z)] = ς(az)Ea+b(z), a ̸= 0,

[αa, αb] = aδa+b,0, a, b ̸= 0.

By [OP06, Proposition 3.1], we have

F •
A,(a1,...,ak)

(z1, . . . , zn) =
1

A
∏k

j=1 aj

〈
αA

n∏
i=1

E0(zi)
k∏

j=1

α−aj

〉
, k, n ≥ 1.
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In order to transform the expression
〈
αA

∏n
i=1 E0(zi)

∏k
j=1 α−aj

〉
, we move the operators α−aj

through the operators E0(zi) to the left, using the commutation relation

[Er(z), α−k] = ς(kz)Er−k(z).

We obtain

1

A
∏k

j=1 aj

〈
αA

n∏
i=1

E0(zi)
k∏

j=1

α−aj

〉
=

∑
I1⊔...⊔In=[k]

∏n
l=1

∏
i∈Il ς(aizl)

A
∏k

j=1 aj

〈
αAE−AI1

(z1) · · · E−AIn
(zn)

〉
+

+
δk,1
a21

⟨αa1α−a1E0(z1) · · · E0(zn)⟩ .

In order to transform the expression
〈
αAE−AI1

(z1) · · · E−AIn
(zn)

〉
, we move the operators E−AIi

(zi)
through the operator αA to the left, using the commutation relation

[Ea(z), Eb(w)] = ς(aw − bz)Ea+b(z + w).

At the first step, we obtain〈
αAE−AI1

(z1) · · · E−AIn
(zn)

〉
=

=ς(Az1)
〈
EA−AI1

(z1)E−AI2
(z2) · · · E−AIn

(zn)
〉
+ δI1,∅

〈
E0(z1)αAE−AI2

(z2) · · · E−AIn
(zn)

〉
.

In the same way, at each step the number of summands doubles. After n steps, we obtain 2n

summands that are in one-to-one correspondence with subsets J ⊂ [n]: the summand cor-
responding to a subset J ⊂ [n] contains the coefficient

∏
j∈J δIj ,∅. Note that the summand

corresponding to J = [n] vanishes, because at least one from the subsets Ii is nonempty. The
summand corresponding to the subset J = ∅ is equal to

Q(AI1 , . . . , AIn ; z1, . . . , zn),

where

Q(b1, . . . , bn; z1, . . . , zn) :=
ς(Bz1)ς((B−b1)z2+b2z1)ς((B−b1−b2)z3+b3(z1+z2))···ς((B−b1−...−bn−1)zn+bn(z1+...+zn−1))

ς(z1+...+zn)
.

In total, we obtain

〈
αAE−AI1

(z1) · · · E−AIn
(zn)

〉
=
∑
J⊊[n]

(∏
j∈J

δIj ,∅

ς(zj)

)
Q(AIj1

, . . . , AIj|Jc|
; zj1 , . . . , zj|Jc|),

where J c = {j1, . . . , j|Jc|}, j1 < j2 < . . . < j|Jc|. As a result,

F •
A,(a1,...,ak)

(z1, . . . , zn) =

=
∑
J⊊[n]

1∏
j∈J ς(zj)

∑
I1⊔...⊔I|Jc|=[k]

∏|Jc|
l=1

∏
i∈Il ς(aizjl)

a1 · · · ak
Q(AI1 , . . . , AI|Jc| ; zj1 , . . . , zj|Jc|)

A
+

+
δk,1
a21

⟨αa1α−a1E0(z1) · · · E0(zn)⟩ .

Now we need to take the coefficient of a1 · · · ak. Note that∏|Jc|
l=1

∏
i∈Il ς(aizjl)

a1 · · · ak
= z

|I1|
j1

· · · z|I|Jc||
j|Jc|

|Jc|∏
l=1

∏
i∈Il

S(aizjl).
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Therefore,

1

k!
Coefa1···akF

•
A,(a1,...,ak)

(z1, . . . , zn) =

=
∑
J⊊[n]

1∏
j∈J ς(zj)

∑
I1⊔...⊔I|Jc|=[k]

z
|I1|
j1

· · · z|I|Jc||
j|Jc|

1

k!
Coefa1···ak

(
Q(AI1 , . . . , AI|Jc| ; zj1 , . . . , zj|Jc|)

A

)
.

Let us fix J ⊊ [n] and denote m = |J c|. Then we compute∑
I1⊔...⊔Im=[k]

z
|I1|
j1

· · · z|Im|
jm

1

k!
Coefa1···ak

(
Q(AI1 , . . . , AIm ; zj1 , . . . , zjm)

A

)
=

=
∑

I1⊔...⊔Im=[k]

z
|I1|
j1

· · · z|Im|
jm

|I1|! · · · |Im|!
k!

Coef
b
|I1|
1 ···b|Im|

m

(
Q(b1, . . . , bm; zj1 , . . . , zjm)

b1 + . . .+ bm

)
=

=
∑

k1+...+km=k

zk1j1 · · · z
km
jm

Coef
b
k1
1 ···bkmm

(
Q(b1, . . . , bm; zj1 , . . . , zjm)

b1 + . . .+ bm

)
=

=Coeftk

(
Q(tzj1 , . . . , tzjm ; zj1 , . . . , zjm)

tZJc

)
=

=
1

ZJc

Coeftk+1Q(tzj1 , . . . , tzjm ; zj1 , . . . , zjm).

It remains to note that

Q(tzj1 , . . . , tzjm ; zj1 , . . . , zjm) =

∏
i∈Jc ς(zjZJct)

ς(ZJc)
,

which completes the proof of equality (4.3).
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[BDGR18] A. Buryak, B. Dubrovin, J. Guéré, P. Rossi. Tau-structure for the double ramification hierarchies.
Communications in Mathematical Physics 363 (2018), 191–260.
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