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Abstract. We prove that the DR hierarchy corresponding to the family of F-cohomological
field theories without unit considered in a previous work of the first author together with D.
Gubarevich can be “trivialized”, i.e. reduced to two copies of the KdV hierarchy, using a simple
nonlinear reciprocal transformation. This gives the first manifestation of a role of nonlinear
reciprocal transformation in the theory of integrable systems associated to the moduli spaces
of stable curves, beyond the dispersionless limit.

1. Introduction

There are various ways to produce integrable hierarchies of evolutionary PDEs using the
geometry of the moduli space Mg,n of stable algebraic curves of genus g with n marked points.
The central role here is played by the notion of a cohomological field theory (CohFT) introduced
by Kontsevich and Manin [KM94]. CohFTs are systems of cohomology classes on the moduli
spaces Mg,n that are compatible with natural maps between the moduli spaces. The notion of
a CohFT involves also a vector space called the phase space, a bilinear form on it called the
metric, and a special vector in the phase space called the unit.

One way to produce an integrable hierarchy from a CohFT was proposed by Dubrovin and
Zhang [DZ01] (for homogeneous semisimple CohFTs) and then generalized in [BPS12] (for gen-
eral semisimple CohFTs). It is understood now [BS24] that a generalization of the Dubrovin–
Zhang hierarchy exists for an object that is more general than a CohFT, for a so-called F-
CohFT, introduced in [BR21], where the is no metric and there are less requirements regarding
the compatibility with natural maps between the moduli spaces. All these more general hi-
erarchies will be also called the Dubrovin–Zhang (DZ) hierarchies. Note, however, that the
polynomiality property of the DZ hierarchy is proved only for semisimple CohFTs [BPS12] and
in some concrete examples [BR21, Bur23].

The DZ hierarchies include many important hierarchies from mathematical physics, for ex-
ample, the Gelfand–Dickey hierarchies, Toda hierarchies of various types, the ILW hierarchy,
the Drinfeld–Sokolov hierarchies, the discrete KdV hierarchy. Certain subclasses in the class
of DZ hierarchies can be conjecturally described independently of the geometry, using only the
language of integrable systems [DZ01, DLYZ16, LWZ21].

There is another way to produce an integrable hierarchy starting from a CohFT, which was
proposed by the first author in [Bur15], the resulting hierarchy was called the DR hierarchy.
The DR hierarchy is polynomial by construction, and it is endowed with a remarkably rich
algebraic structure, which can be described very explicitly. It is understood now that the DR
hierarchy can be associated to an arbitrary F-CohFT [BR21] (a systematic study is presented
in [ABLR21]), and it is again polynomial by construction, while the polynomiality of the
DZ hierarchy for an arbitrary F-CohFT is an open problem. Conjecturally, the DR and DZ
hierarchies are Miura equivalent: for CohFTs it was formulated in [Bur15], then in a more
precise form in [BDGR18], and currently the most general version of the conjecture is formulated
in [BS24].

Note that the DR hierarchy can be associated to a more general object than an F-CohFT, to
an F-CohFT without unit : the first explicit examples were computed in [BG23]. A construction
of a DZ hierarchy associated to an F-CohFT without unit is not developed yet.
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Having a construction of a class of integrable hierarchies, it is important to understand
whether some of them are related by changes of variables or other transformations. A lot of
work was done regarding the action of Miura transformations on the DZ and DR hierarchies.
However, there is another type of transformations, the so-called reciprocal transformations (see
e.g. [CF89, CFA89] and the references therein about the literature on reciprocal transforma-
tions), whose role in the relation to the DZ and DR hierarchies is less studied. The disper-
sionless parts of these two hierarchies are hierarchies of hydrodynamic type, and the reciprocal
transformations of such systems are well studied (see [XZ06] and the references at the end of
page 1 in [LSV24]). However, the reciprocal transformations of dispersive deformations of the
hierarchies of hydrodynamic type are much less studied (see e.g. [LZ11, LWZ23, LSV24]), and
regarding the DZ or DR hierarchies (and more generally the hierarchies controlling CohFT-
type correlators) there are only works [Ale21, LWZ23, YZ24], where the authors consider the
simplest possible reciprocal transformations, the so-called linear ones.

In our paper, we give the first application of the nonlinear reciprocal transformations in
the theory of DR hierarchies. We consider the 3-parameter family of F-CohFTs without unit
of rank 2 from the paper [BG23] and the associated DR hierarchy. In [BG23], the authors
computed explicitly the primary flows of the DR hierarchy. In our paper, we give an explicit
description of all the flows of the DR hierarchy: we prove that after the composition of a Miura
transformation and a nonlinear reciprocal transformation the two dependent variables of the
hierarchy become splitted and the resulting flows can be simply described in terms of the flows
of the KdV hierarchy (see Theorem 3.3).

Note that in the theory of DR and DZ hierarchies the KdV hierarchy is considered as the
simplest possible hierarchy, because it corresponds to the trivial CohFT where all the classes
are just units in the cohomology. The fact that the DR or DZ hierarchy corresponding to some
CohFT or F-CohFT with nontrivial R-matrix can be “trivialized”, i.e. reduced to the KdV
hierarchy, using linear reciprocal transformations was observed in several papers, see e.g. [Ale21,
Corollary 3.1] and [YZ24, Corollary 2]. As far as we know, our paper gives the first example
where this trivialization is obtained using a nonlinear reciprocal transformation. So we believe
that our result shows the importance of the role of nonlinear reciprocal transformations in the
theory of DR and DZ hierarchies, which should be clarified in the future research.

Notations and conventions.

• We use the standard convention of sum over repeated Greek indices.

• When it doesn’t lead to a confusion, we use the symbol ∗ to indicate any value, in the
appropriate range, of a sub- or superscript.

• For a topological space X, we denote by H i(X) the cohomology groups with the coef-
ficients in C. Let Heven(X) :=

⊕
i≥0H

2i(X).

Acknowledgements. The work of A. B. is an output of a research project implemented as
part of the Basic Research Program at the National Research University Higher School of
Economics (HSE University).

2. A family of F-CohFTs without unit of rank 2 and the associated DR
hierarchy

Here we recall the construction of the DR hierarchy associated to an F-CohFT without unit
and the main result from [BG23].

Definition 2.1. An F-cohomological field theory without unit (F-CohFT without unit) is a
system of linear maps

cg,n+1 : V
∗ ⊗ V ⊗n → Heven(Mg,n+1), 2g − 1 + n > 0,
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where V is an arbitrary finite dimensional vector space, such that the following axioms are
satisfied.

(i) The maps cg,n+1 are equivariant with respect to the Sn-action permuting the n copies of V
in V ∗ ⊗ V ⊗n and the last n marked points on curves from Mg,n+1, respectively.

(ii) Fixing a basis e1, . . . , edimV in V and the dual basis e1, . . . , edimV in V ∗, the following
property holds:

gl∗cg1+g2,n1+n2+1(e
α0 ⊗⊗n1+n2

i=1 eαi
) = cg1,n1+2(e

α0 ⊗⊗i∈Ieαi
⊗ eµ)⊗ cg2,n2+1(e

µ ⊗⊗j∈Jeαj
)

for 1 ≤ α0, α1, . . . , αn1+n2 ≤ dimV , where I ⊔ J = {2, . . . , n1+n2+1}, |I| = n1, |J | = n2,
and gl : Mg1,n1+2 ×Mg2,n2+1 → Mg1+g2,n1+n2+1 is the corresponding gluing map. Clearly
the axiom doesn’t depend on the choice of a basis in V .

The dimension of V is called the rank of the F-CohFT without unit.

We will use the following standard cohomology classes on Mg,n:

• The psi-class ψi ∈ H2(Mg,n), 1 ≤ i ≤ n, is the first Chern class of the line bundle
over Mg,n formed by the cotangent lines at the i-th marked point of stable curves.

• The Hodge class λj := cj(E) ∈ H2j(Mg,n), j ≥ 0, where E is the rank g Hodge vector
bundle over Mg,n whose fibers are the spaces of holomorphic one-forms on stable curves.

• The double ramification (DR) cycle DRg(a1, . . . , an) ∈ H2g(Mg,n), a1, . . . , an ∈ Z,∑
ai = 0, is defined as follows. There is a moduli space of projectivized stable maps

to CP1 relative to 0 and ∞, with ramification profile over 0 given by the negative num-
bers among the ai-s, ramification profile over ∞ given by the positive numbers among
the ai-s, and the zeros among the ai-s correspond to additional marked points (see,
e.g., [BSSZ15] for more details). This moduli space is endowed with a virtual fundamen-
tal class, which lies in homology of degree 2(2g−3+n). The DR cycle DRg(a1, . . . , an) is
the Poincaré dual to the pushforward, through the forgetful map to Mg,n, of this virtual
fundamental class. The crucial property of the DR cycle is that for any cohomology
class θ ∈ H∗(Mg,n) the integral

∫
Mg,n+1

λgDRg (−
∑
ai, a1, . . . , an) θ is a homogeneous

polynomial in a1, . . . , an of degree 2g (see, e.g., [Bur15]).

Let us briefly recall main notions and notations in the formal theory of evolutionary PDEs
with one spatial variable:

• We fix an integer N ≥ 1 and consider formal variables u1, . . . , uN . To the formal
variables uα we attach formal variables uαd with d ≥ 0 and introduce the algebra of

differential polynomials Âu := C[[u∗0]][u∗≥1][[ε]]. We identify uα0 = uα and also denote

uαx := uα1 , u
α
xx := uα2 , . . . . Denote by Âu;d ⊂ Âu the homogeneous component of

(differential) degree d, where deg uαi := i and deg ε := −1.

• An operator ∂x : Âu → Âu is defined by ∂x :=
∑

d≥0 u
α
d+1

∂
∂uα

d
.

• An operator H : Âu → Âu is called evolutionary, if H satisfies the Leibniz rule and
commutes with ∂x. An operator H is evolutionary if and only if it has the form

H = HP :=
∑

n≥0(∂
n
xP

α) ∂
∂uα

n
for some P = (P 1, . . . , PN) ∈ ÂN

u . If the differential

polynomials Pα satisfy the condition Pα|u∗
∗=0 = 0, then we will write H|u∗

∗=0 = 0.

• We assign to an evolutionary operator HP the system of evolutionary PDEs (with one
spatial variable) ∂uα

∂t
= Pα, 1 ≤ α ≤ N . Two such systems are said to be compatible if

the corresponding evolutionary operators commute.

• An element f ∈ Âu is called a conservation law for an evolutionary operator H (or for

the corresponding system of evolutionary PDEs) if there exists an element R ∈ Âu such
that H(f) = ∂xR.
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• A Miura transformation is a change of variables uα 7→ ũα(u∗∗, ε) of the form ũα(u∗∗, ε) =

gα(u∗0)+εf
α(u∗∗, ε), where f

α ∈ Âu;1 and g
α ∈ C[[u∗0]] satisfy gα|u∗

0=0 = 0 and det
(

∂gα

∂uβ
0

)∣∣∣
u∗
0=0

̸=
0.

Lemma 2.2. Consider the case N = 1 and denote un := u1n. Consider a pair of compatible
PDEs 

∂u

∂t
= P,

∂u

∂s
= Q,

where P = uux+O(ε) ∈ Âu;1, Q = f(u)ux+O(ε) ∈ Âu;1, and f ∈ C[[u]]. Then the differential
polynomial Q is uniquely determined by P and f .

Proof. This is a slight generalization of [BR21, Lemma 4.14], with the same proof, so we
omit it. □

Consider now an arbitrary F-CohFT without unit of rank N and define differential polyno-

mials Pα
β,d ∈ Âu, 1 ≤ α, β ≤ N , d ≥ 0, by

Pα
β,d :=

∑
g,n≥0, 2g+n>0

k1,...,kn≥0∑n
j=1 kj=2g

ε2g

n!
Coef(a1)k1 ...(an)kn

(∫
DRg(−

∑n
j=1 aj ,0,a1,...,an)

λgψ
d
2cg,n+2(e

α ⊗ eβ ⊗⊗n
j=1eαj

)

)
n∏

j=1

u
αj

kj
.

The DR hierarchy is the following system of evolutionary PDEs:

∂uα

∂tβd
= ∂xP

α
β,d, 1 ≤ α, β ≤ N, d ≥ 0.(2.1)

All the equations of the DR hierarchy are pairwise compatible.

Example 2.3. Consider the trivial F-CohFT without unit given by V = C, e1 = 1 ∈ C = V ,
and

ctrivg,n+1(e
1 ⊗ e⊗n

1 ) := 1 ∈ H0(Mg,n+1).

Then the corresponding DR hierarchy is the KdV hierarchy [Bur15, Section 4.3.1] (we denote
ud := u1d and td := t1d)

∂u

∂td
= ∂xP

KdV
d ,

where

PKdV
0 = u, PKdV

1 =
u2

2
+
ε2

12
uxx, PKdV

2 =
u3

6
+
ε2

24
(2uuxx + u2x) +

ε4

240
uxxxx,

and a general formula for PKdV
d is

∂xP
KdV
d =

ε2d+2

2(2d+ 1)!!

[(
Ld+ 1

2

)
+
, L

]
, L = ∂2x + 2ε−2u,

defining PKdV
d

∣∣
u∗=0

:= 0. Note that

PKdV
d =

ud+1

(d+ 1)!
+O(ε) ∈ Âu;0.



RECIPROCAL TRANSFORMATIONS AND DR HIERARCHIES 5

In [BG23], the authors considered the following family of F-CohFTs without unit, with phase
space V = C2, parameterized by a vector G = (G1, G2) ∈ C2:

ctriv,Gg,n+1(e
i0 ⊗⊗n

j=1eij) :=

{
(Gi0)g, if i0 = i1 = . . . = in,

0, otherwise,

where e1, e2 is the standard basis of C2. Then the authors of [BG23] applied to this F-CohFT
without unit the R-matrix Id +R1z with

R1 =

(
0 ξ
0 0

)
, ξ ∈ C,

see the details about this action in [BG23]. The resulting F-CohFT without unit is denoted
by
(
(Id +R1z)c

triv,G
)
g,n+1

. In [BG23, Theorem 4.1], the authors considered the corresponding

DR hierarchy and proved that after the Miura transformation

ũ1 = u1 + ξ
(u2)2

2
+
ε2

24
∂2x

(
ξG2u2 +

G1

1 + ξu2

)
, ũ2 = u2,

the flows ∂
∂t10

and ∂
∂t20

of the DR hierarchy become

∂ũ1

∂t10
=∂x

[
ũ1

1 + ξũ2

]
,(2.2)

∂ũ2

∂t10
=0,(2.3)

∂ũ1

∂t20
=ξ∂x

[
ũ1ũ2

1 + ξũ2
− 1

2

(ũ1)2

(1 + ξũ2)2
− ε2G1

12

(((
ũ1

1 + ξũ2

)
x

1

1 + ξũ2

)
x

1

1 + ξũ2

)]
,(2.4)

∂ũ2

∂t20
=ũ2x,(2.5)

and moreover

∂ũ2

∂t1d
= 0,

∂ũ2

∂t2d
= ∂xP

KdV
d

∣∣
un 7→ũ2

n, ε 7→
√
G2ε

.(2.6)

3. Reciprocal transformations and the main result

3.1. Linear and nonlinear reciprocal transformations: overview. Here, without speci-
fying technical details, we recall the definitions of two types of reciprocal transformations.

Consider a compatible system of PDEs

∂uα

∂ti
= Pα

i , Pα
i ∈ Âu, 1 ≤ α ≤ N, i ≥ 1.(3.1)

A linear reciprocal transformation is a change of the spatial variable x of the following form:

x 7→ y = γ0x+
∑
i≥1

γiti, γ0, γ1, γ2, . . . ∈ C.

These transformations will not be considered in this paper. Suppose now that f ∈ Âu is a
nonconstant conservation law for our system (3.1):

∂f

∂ti
= ∂xRi, Ri ∈ Âu.

A nonlinear reciprocal transformation is a change of the spatial variable x 7→ y of the form

dy = fdx+
∑
i≥1

Ridti.
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In the next section, we will describe how this transformation changes the system (3.1). In
particular, some conditions on our system and on f will be added, so that the transformed
system does not go beyond the class of systems of evolutionary PDEs that we consider.

3.2. Nonlinear reciprocal transformations: formal definition. Proofs of the properties
of nonlinear reciprocal transformations can be found, for example, in [LZ11], however for com-
pleteness we present short proofs in the appendix.

Consider two N -tuples of variables u1, . . . , uN and v1, . . . , vN , and the associated algebras of

differential polynomials Âu and Âv. In the algebra Âv, let us denote the spatial variable by y,
i.e. we denote ∂y :=

∑
n≥0 v

α
n+1

∂
∂vαn

, and also vαy := vα1 , v
α
yy := vα2 , . . .. Choose a nonzero element

f ∈ Âu;0 such that f |u∗
∗=0 = 0. Then the element 1 + f ∈ Âu;0 is invertible. Define an algebra

homomorphism Φf : Âv → Âu by

Φf (P ) := P |vαk 7→((1+f)−1∂x)
k(uα) , P ∈ Âv.

The homomorphism Φf is an isomorphism. It is called a nonlinear reciprocal transformation.
We have

(1 + f)−1∂x ◦ Φf = Φf ◦ ∂y,

and therefore under the isomorphism Φf : Âv → Âu the operators ∂y and (1 + f)−1∂x become
identified.

By abuse of notation, we will identify elements of Âv and their images under Φf in Âu, as well
as the operators ∂y and (1+ f)−1∂x. Note that under this identification evolutionary operators

on Âv in general do not correspond to evolutionary operators on Âu. However, suppose f

is a conservation law for an evolutionary operator H on Âu, so that H(f) = ∂xR for some

R ∈ Âu. Then H − R∂y is an evolutionary operator on Âv. Moreover, let us denote H1 := H,

R1 := R, and suppose that f is a conservation law for another evolutionary operator H2 on Âu,
H2(f) = ∂xR2, which commutes with H1. Suppose also that H1|u∗

∗=0 = H2|u∗
∗=0 = 0. Then the

corresponding evolutionary operators H1 −R1∂y and H2 −R2∂y on Âv commute.

We know that any evolutionary operator H on Âu has the form H = HP , where P =

(P 1, . . . , PN) ∈ ÂN
u , and we assign to H the system of PDEs

∂uα

∂t
= Pα, 1 ≤ α ≤ N.(3.2)

Given a conservation law f ∈ Âu;0 of H, H(f) = ∂xR, satisfying f |u∗
∗=0 = 0, we obtain the

evolutionary operator H −R∂y on Âv, to which we assign the system of PDEs

∂vα

∂t
= Pα −Rvαy , 1 ≤ α ≤ N.(3.3)

We will say that the system (3.3) is obtained from the system (3.2) by the nonlinear reciprocal
transformation given by the conservation law f .

Remark 3.1. Let us describe how the nonlinear reciprocal transformations act on solutions
of systems of PDEs. Consider a collection of pairwise commuting evolutionary operators Hi,

i ≥ 1, on Âu, Hi = HP i
, and suppose that Pα

i |u∗
∗=0 = 0. Suppose that 0 ̸= f ∈ Âu;0 satisfying

f |u∗
∗=0 = 0 is a common conservation law for the evolutionary operators Hi, Hif = ∂xRi.

Consider a solution (u1, . . . ,uN) ∈ C[[x, t∗, ε]]N , uα|x=t∗=0 = 0, of the system of PDEs

∂uα

∂ti
= Pα

i , 1 ≤ α ≤ N, i ≥ 1.(3.4)
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Define a formal power series y ∈ C[[x, t∗, ε]] satisfying y|x=t∗=0 = 0 by the equation

dy =
(
1 + f |uα

n=∂n
xu

α

)
dx+

∑
i≥1

(
Ri|uα

n=∂n
xu

α

)
dti.

The 1-form on the right-hand side is closed because Hi(f) = ∂xf and Hi(Rj) = Hj(Ri). The
last equality is true because ∂x(Hi(Rj)−Hj(Ri)) = Hi(Hj(f))−Hj(Hi(f)) = 0, which implies
that Hi(Rj) −Hj(Ri) ∈ C[[ε]]. However, since Hi|u∗

∗=0 = Hj|u∗
∗=0 = 0, we immediately obtain

Hi(Rj)−Hj(Ri) = 0. Let vα ∈ C[[y, t∗, ε]] be a unique formal power series satisfying

vα|y=y = uα.

Then (v1, . . . ,vN) is a solution of the system

∂vα

∂ti
= Pα

i −Riv
α
y , 1 ≤ α ≤ N, i ≥ 1,

which is obtained from the system (3.4) by the nonlinear reciprocal transformation given by
the common conservation law f of the evolutionary operators Hi.

Example 3.2. Consider the KdV hierarchy

∂u

∂td
= ∂xP

KdV
d , d ≥ 0.

We see that u is a common conservation law of the flows of the KdV hierarchy. So for any
ξ ∈ C∗ we have the nonlinear reciprocal transformation of the KdV hierarchy given by the
conservation law ξu:

∂v

∂td
= ∂xP

KdV
d − ξPKdV

d vy︸ ︷︷ ︸
=:Qξ−KdV

d ∈Âv

, d ≥ 0.

Since u2 is a conservation law of the KdV hierarchy, we obtain u∂xP
KdV
d ∈ Im(∂x), which

implies that (1 + ξu)∂xP
KdV
d − ξPKdV

d ux ∈ Im(∂x), and therefore Qξ−KdV
d ∈ Im(∂y). Thus, the

nonlinear reciprocal transformation of the KdV hierarchy given by the conservation law ξu has
the form

∂v

∂td
= ∂yP

ξ−KdV
d , d ≥ 0,

where P ξ−KdV
d

∣∣∣
v∗=0

= 0. For example,

P ξ−KdV
0 = v, P ξ−KdV

1 =
v2

2
+ ξ

v3

6
+
ε2

12
(1 + ξv)3vyy.

Consider again the DR hierarchy associated to the F-CohFT without unit
(
(Id +R1z)c

triv,G
)
g,n+1

from Section 2. Since P 2
1,d = 0 and P 2

2,d doesn’t depend on u1n for any n ≥ 0, after any Miura

transformation that doesn’t change the variable u2, this variable will be a conservation law for
the transformed hierarchy.

Theorem 3.3. Consider the F-CohFT without unit
(
(Id +R1z)c

triv,G
)
g,n+1

, with ξ ̸= 0, and

the associated DR hierarchy. Then the composition of the Miura transformation

û1 =
1

1 + ξu2

(
u1 + ξ

(u2)2

2
+
ε2

24
∂2x

(
ξG2u2 +

G1

1 + ξu2

))
, û2 = u2,(3.5)
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and the nonlinear reciprocal transformation given by the conservation law ξû2 transforms the
DR hierarchy to the system

∂v1

∂t1d
=
(
∂xP

KdV
d

)∣∣
ul 7→v1l , ε 7→

√
G1ε

,
∂v2

∂t1d
= 0,

∂v1

∂t2d
= −

(
ξ∂xP

KdV
d+1

)∣∣
ul 7→v1l , ε 7→

√
G1ε

,
∂v2

∂t2d
=
(
∂yP

ξ−KdV
d

)∣∣∣
vl 7→v2l , ε 7→

√
G2ε

.

4. Proof of Theorem 3.3

4.1. Computation of the dispersionless part of the hierarchy. Let us recall how to
compute the dispersionless part, i.e. when ε = 0, of the DR hierarchy associated to an arbitrary
F-CohFT without unit {cg,n+1 : V

∗ ⊗ V ⊗n → Heven(Mg,n+1)}. For this, define an N -tuple of
formal power series (F 1, . . . , FN) ∈ C[[u1, . . . , uN ]]N by

Fα :=
∑
n≥2

1

n!

∑
1≤α1,...,αn≤N

(∫
M0,n+1

c0,n+1(e
α ⊗⊗n

j=1eαj
)

)
n∏

j=1

uαj .

Let cαβγ = ∂2Fα

∂uβ∂uγ and define N × N matrices Cγ := (cαβγ)1≤α,β≤N . Then the N × N matrices

P
[0]
d := (Pα

β,d|ε=0)1≤α,β≤N are uniquely determined by the relations

∂P
[0]
d

∂uγ
= Cγ · P [0]

d−1, P
[0]
d

∣∣∣
u∗=0

= 0, d ≥ 0, 1 ≤ γ ≤ N,(4.1)

where P
[0]
−1 := Id.

Let us return to our F-CohFT without unit
(
(Id +R1z)c

triv,G
)
g,n+1

.

Lemma 4.1. We have

F 1(u1, u2) =
(u1)2

2
+ u1 · ξ(u2)2

2
− ξ(u2)3

24
(4 + ξu2)

1 + ξu2
, F 2(u1, u2) =

(u2)2

2
.

Proof. We proceed in the same way as in [BG23, proof of Theorem 4.1]: in order to compute
the integrals ∫

M0,n+1

(
(Id +R1z)c

triv,G
)
0,n+1

(eα ⊗⊗n
j=1eαj

),

we express the class
(
(Id +R1z)c

triv,G
)
0,n+1

(eα ⊗ ⊗n
j=1eαj

) as a sum over stable trees. All the

trees that give a nontrivial contribution to the integral are depicted in Figure 1, where the first
four trees contribute to F 1(u1, u2), and the last one contributes to F 2(u1, u2). The respective
sums are

F 1(u1, u2) =
(u1)2/2

1 + ξu2
+
u1 · ξ(u2)2/2

1 + ξu2
+
ξ2(u2)4/8

1 + ξu2
− ξ(u2)3

6
, F 2(u1, u2) =

(u2)2

2
.

□

Lemma 4.2. For any d ≥ 0, we have

P
[0]
d =

(
(ū1)d+1

(d+1)!
Md

0 (ū2)d+1

(d+1)!

)
,

where

ū1 := û1|ε=0 =
u1 + ξ(u2)2

2

1 + ξu2
, ū2 := u2, Md := −

ξ
(
(ū1)d+2 − (d+ 2)ū1(ū2)d+1 + (d+ 1)(ū2)d+2

)
(d+ 2)!

.
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0
...(−ξψe1)⊗n

e1

e1

e1 0

0

...(−ξψe1)⊗n

e1

e2e2

e1

ξe2 ⊗ e1

0

0 0

...(−ξψe1)⊗n

e1

e2e2 e2e2

ξe2 ⊗ e1 ξe2 ⊗ e1

0 e2

−ξψe2

e2

e2 0

e2

e2e2

Figure 1. Stable trees contributing to (F 1, F 2)

Proof. We compute

(4.2) C1 =

(
1

1+ξū2

ξ(ū2−ū1)
1+ξū2

0 0

)
, C2 =

(
ξ(ū2−ū1)
1+ξū2

ξ(ū1−ū2)(1+ξū1)
1+ξū2

0 1

)
.

Then one directly checks the relations (4.1), expressing

∂

∂u1
=

1

1 + ξū2
∂

∂ū1
,

∂

∂u2
= ξ

ū2 − ū1

1 + ξū2
∂

∂ū1
+

∂

∂ū2
.

□

Proposition 4.3. After the composition of the Miura transformation (3.5) and the nonlinear
reciprocal transformation given by the conservation law ξû2, the DR hierarchy of Theorem 3.3
has the form

∂v1

∂t1d
= ∂y

(
(v1)d+1

(d+ 1)!

)
+O(ε),

∂v2

∂t1d
= 0,

∂v1

∂t2d
= −ξ∂y

(
(v1)d+2

(d+ 2)!

)
+O(ε),

∂v2

∂t2d
=
(
∂yP

ξ−KdV
d

)∣∣∣
vl 7→v2l , ε 7→

√
G2ε

.

Proof. This is a direct computation. We apply the Miura transformation (3.5) to the disper-
sionless part of the DR hierarchy, computed in Lemma 4.2, and obtain

∂û1

∂t1d
=

1

1 + ξû2
∂x

(
(û1)d+1

(d+ 1)!

)
+O(ε),

∂û2

∂t1d
= 0,

∂û1

∂t2d
= −ξ

û1x
(
(û1)d+1 − (û2)d+1

)
(d+ 1)!(1 + ξû2)

+O(ε),
∂û2

∂t2d
= ∂xP

KdV
d

∣∣
un 7→û2

n, ε 7→
√
G2ε

.

One can easily see that after the nonlinear reciprocal transformation given by the conservation
law ξû2 the hierarchy has the desired form. □
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4.2. The full hierarchy. We are ready to finish the proof of Theorem 3.3. We know that after
the composition of the Miura transformation (3.5) and the nonlinear reciprocal transformation
given by the conservation law ξû2, the DR hierarchy has the form

∂v1

∂t1d
= Sd,

∂v2

∂t1d
= 0,

∂v1

∂t2d
= Td,

∂v2

∂t2d
=
(
∂yP

ξ−KdV
d

)∣∣∣
vl 7→v2l , ε 7→

√
G2ε

,

where

Sd = ∂y

(
(v1)d+1

(d+ 1)!

)
+O(ε) ∈ Âv;1, Td = −ξ∂y

(
(v1)d+2

(d+ 2)!

)
+O(ε) ∈ Âv;1.

A direct computation using formulas (2.2)–(2.5) gives that

S0 = v1y, T0 = −ξ∂y
(
(v1)2

2
+
ε2G1

12
v1yy

)
.

Let us prove that Sd and Td don’t depend on the variables v2n. Indeed, the fact that the flows
∂
∂t10

and ∂
∂t1d

commute gives that

0 =
∂

∂t1d

∂v1

∂t10
− ∂

∂t10

∂v1

∂t1d
= ∂ySd −

∑
n≥0

v1n+1

∂Sd

∂v1n
=
∑
n≥0

v2n+1

∂Sd

∂v2n
,

which implies that ∂Sd

∂v2n
= 0 for any n. In the same way, the commutativity of the flows ∂

∂t10

and ∂
∂t2d

gives that ∂Td

∂v2n
= 0 for any n. Since the flows of the KdV hierarchy pairwise com-

mute, Proposition 4.3 and Lemma 2.2 imply that Sd =
(
∂xP

KdV
d

)∣∣
ul 7→v1l , ε 7→

√
G1ε

and Td =

−
(
ξ∂xP

KdV
d+1

)∣∣
ul 7→v1l , ε 7→

√
G1ε

. This completes the proof of Theorem 3.3.

Appendix A. Nonlinear reciprocal transformations

Here, for completeness, we present short proofs of the properties of nonlinear reciprocal
transformations mentioned in Section 3, see Parts 1 and 2 of Proposition A.1. There are also
Part 3 in Proposition A.1 and Remark A.2, which we think are of independent interest, and
which as far as we know didn’t appear in the literature before.

Proposition A.1. Suppose 0 ̸= f ∈ Âu;0 satisfying f |u∗
∗=0 = 0 is a conservation law for an

evolutionary operator H on Âu, so that H(f) = ∂xR for some R ∈ Âu. Consider the associated

nonlinear reciprocal transformation Φf : Âv → Âu.

1. H −R∂y is an evolutionary operator on Âv.

2. Denote H1 := H, R1 := R, and suppose that f is a conservation law for another

evolutionary operator H2 on Âu, H2(f) = ∂xR2, which commutes with H1. Suppose
also that H1|u∗

∗=0 = H2|u∗
∗=0 = 0. Then the evolutionary operators H1 − R1∂y and

H2 −R2∂y on Âv commute.

3. The map g 7→ g
1+f

gives a one-to-one correspondence between the conservation laws

of the operator H on Âu and the conservation laws of the operator H − R∂y on Âv.

Moreover, if H(g) = ∂xRg, then (H −R∂y)
(

g
1+f

)
= ∂y

(
Rg − gR

1+f

)
.
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Proof. 1. The Leibniz rule holds for H−R∂y by linearity, so we only need to check the equality
[H −R∂y, ∂y] = 0. Indeed,

[H −R∂y, ∂y] = [H, ∂y]− [R∂y, ∂y] =

[
H,

1

1 + f
∂x

]
− [R∂y, ∂y] =

= H

(
1

1 + f

)
∂x + (∂yR)∂y = − H(f)

(1 + f)2
∂x +

∂xR

(1 + f)2
∂x = 0.

2. We observe that H2(R1) − H1(R2) = 0. Indeed, ∂x(H2(R1) − H1(R2)) = H2H1(f) −
H1H2(f) = 0, which implies that H2(R1) − H1(R2) ∈ C[[ε]]. However, since H1|u∗

∗=0 =
H2|u∗

∗=0 = 0, we immediately obtain H2(R1)−H1(R2) = 0. We further compute

[H1 −R1∂y, H2 −R2∂y] = [H1, H2]− [H1, R2∂y]− [R1∂y, H2] + [R1∂y, R2∂y] =

= −
[
H1,

R2

1 + f
∂x

]
−
[
R1

1 + f
∂x, H2

]
+ [R1∂y, R2∂y] ,

−
[
H1,

R2

1 + f
∂x

]
=

(
−H1(R2)

1 + f
+
R2 ·H1(f)

(1 + f)2

)
∂x =

(
−H1(R2)

1 + f
+
R2 · ∂xR1

(1 + f)2

)
∂x,

−
[
R1

1 + f
∂x, H2

]
=

(
H2(R1)

1 + f
− R1 ·H2(f)

(1 + f)2

)
∂x =

(
H2(R1)

1 + f
− R1 · ∂xR2

(1 + f)2

)
∂x,

[R1∂y, R2∂y] = (R1 · ∂yR2 −R2 · ∂yR1) ∂y =
1

(1 + f)2
(R1 · ∂xR2 −R2 · ∂xR1) ∂x.

We see that all terms in the resulting sum cancel out.

3. If H(g) = ∂xRg, then we have

(H −R∂y)

(
g

1 + f

)
=
H(g)

1 + f
− g ·H(f)

(1 + f)2
− R · ∂yg

1 + f
+
gR · ∂yf
(1 + f)2

=

= ∂yRg −
g · ∂yR
1 + f

− R · ∂yg
1 + f

+
gR · ∂yf
(1 + f)2

=

= ∂y

(
Rg −

gR

1 + f

)
.

Conversely, if (H − R∂y)g̃ = ∂yRg̃, then in the same way we check that H ((1 + f)g̃) =
∂x (Rg̃ + g̃R). □

Remark A.2. We see that the nonlinear reciprocal transformations give an action of the set

CL(H) := {f ∈ Âu;0|H(f) ∈ Im(∂x), f |u∗
∗=0 = 0} on the evolutionary operator H: given

f ∈ CL(H), we transform the operator H to the operator H − Rf∂y, where Rf is given by
H(f) = ∂xRf with Rf |u∗

∗=0 = 0. Since, by Part 3 of the proposition, there is a one-to-one
correspondence between the conservation laws of the operator H and the conservation laws of
the operator H − Rf∂y, we can further act on H − Rf∂y by any g ∈ CL(H), meaning that
we act on H − Rf∂y by g

1+f
∈ CL(H − Rf∂y). Let us compute the composition of two such

transformations. Indeed, for this we consider another N -tuple of formal variables w1, . . . , wN

and the nonlinear reciprocal transformation Φ g
1+f

: Âw → Âv. Let us denote the spatial variable

in the algebra Âw by z. Acting by the conservation law g
1+f

∈ CL(H − Rf∂y) on the operator

H −Rf∂y, we obtain the evolutionary operator H −Rf∂y −
(
Rg − gRf

1+f

)
∂z on Âw, and a direct

computation shows that it is equal to the operator H−(Rf+Rg)∂z. So the result is the same as
the result of the action on H by f +g ∈ CL(H). Thus, the constructed action of the set CL(H)
on the evolutionary operator H is actually a group action with the respect to the standard
additive group structure on CL(H).
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