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Baxter Operators in Ruijsenaars Hyperbolic
System I: Commutativity of Q-Operators

N. Belousov, S. Derkachov, S. Kharchev and S. Khoroshkin

Abstract. We introduce Baxter Q-operators for the quantum Ruijsenaars
hyperbolic system. We prove that they represent a commuting family
of integral operators and also commute with Macdonald difference op-
erators, which are gauge equivalent to the Ruijsenaars Hamiltonians of
the quantum system. The proof of commutativity of the Baxter opera-
tors uses a hypergeometric identity on rational functions that generalize
Ruijsenaars kernel identities.
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1. Introduction

1.1. Ruijsenaars System

In this paper, we develop the theory of Baxter operators for relativistic hy-
perbolic Ruijsenaars system [20]. This model is parametrized by three positive
constants ω1, ω2 (“periods”) and g (coupling constant), subject to the relation

0 < g < ω1 + ω2. (1.1)

The dual coupling constant

g∗ = ω1 + ω2 − g (1.2)

is used as well everywhere.
The Ruijsenaars system is governed by commuting symmetric difference

operators

Hr(xn, g|ω) =
∑

I⊂[n]
|I|=r

∏

i∈I
j /∈I

sh
1
2 π

ω2
(xi − xj − ıg)

sh
1
2 π

ω2
(xi − xj)

· T−ıω1
I,x ·

∏

i∈I
j /∈I

sh
1
2 π

ω2
(xi − xj + ıg)

sh
1
2 π

ω2
(xi − xj)

(1.3)
acting on meromorphic functions of n complex variables analytic in the strip

| Im xi| < ω1 + ε, ε > 0.

Here and in what follows we denote tuples of n variables as

xn = (x1, . . . , xn). (1.4)

The sum in (1.3) is taken over all subsets

I ⊂ [n] = {1, . . . , n} (1.5)

of cardinality r. By T a
xi

we denote shift operators

T a
xi

:= ea∂xi , (T a
xi

f)(x1, . . . , xi, . . . , xn) = f(x1, . . . , xi + a, . . . , xn),
(1.6)

with T a
I,x being their product

T a
I,x =

∏

i∈I

ea∂xi (1.7)

for any subset I ⊂ [n].
The Ruijsenaars operators (1.3) are closely related to Macdonald opera-

tors

Mr(xn; g|ω) =
∑

I⊂[n]
|I|=r

∏

i∈I
j /∈I

sh π
ω2

(xi − xj − ıg)
sh π

ω2
(xi − xj)

· T−ıω1
I,x . (1.8)

Namely, denote by μ(z|ω) the function

μ(z|ω) = S2(ız|ω)S2(−ız + g∗|ω) (1.9)
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and by μ(xn|ω) the product

μ(xn|ω) =
n∏

i,j=1
i�=j

μ(xi − xj). (1.10)

Here S2(z|ω) is the double sine function, its definition and key properties are
given in Appendix A. Then,

√
μ(xn|ω) Mr(xn; g|ω)

1√
μ(xn|ω)

= Hr(xn, g|ω). (1.11)

Note that the function μ(xn|ω) is non-negative (assuming real constants
g, ω1, ω2), since

μ(x|ω)μ(−x|ω) = S2(ıx|ω)S2(−ıx|ω)S2(ıx + g∗|ω)S2(−ıx + g∗|ω)

=
∣∣S2(ıx|ω)S2(ıx + g∗|ω)

∣∣2.
(1.12)

Ruijsenaars operators are symmetric with respect to the pairing

(ϕ,ψ) =
∫

Rn

ϕ(xn)ψ̄(xn)dxn,

while the Macdonald operators are symmetric with respect to the pairing

(ϕ,ψ) =
∫

Rn

ϕ(xn)ψ̄(xn)μ(xn)dxn. (1.13)

1.2. Kernel Function and Kernel Identities

Unlike the original Ruijsenaars’ setting, we do not suppose that the periods
ω1, ω2 and the coupling constant g are real positive. Instead, we assume ev-
erywhere that all of them are complex numbers with positive real parts

Re ω1 > 0, Re ω2 > 0, Re g > 0. (1.14)

We also require the condition

0 < Re g < Re ω1 + Re ω2. (1.15)

Further we usually fix the periods ω = (ω1, ω2) and for brevity skip them in
the notation, for example we use the symbol S2(z) for the double sine function

S2(z) := S2(z|ω).

Denote by K(z) the following function of a complex variable

K(z) = S−1
2

(
ız +

g∗

2

)
S−1
2

(
−ız +

g∗

2

)
. (1.16)

In terms of the Ruijsenaars hyperbolic Gamma function

G(z) = S2

(
ız +

ω1 + ω2

2

)
(1.17)

using reflection formula for the double sine function (A.6) it can be written as

K(z) = G
(
z − ıg

2

)
G−1

(
z +

ıg

2

)
. (1.18)
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Also let

zn = (z1, . . . , zn), yn = (y1, . . . , yn), zi, yi ∈ C

be two tuples of n complex variables. The Ruijsenaars kernel function K(zn,yn)
is defined as a product

K(zn,yn) =
n∏

i,j=1

K(zi − yj). (1.19)

The kernel function K(zn,yn) satisfies the relations

(Mr(zn; g) − Mr(−yn; g)) K(zn,yn) = 0, r = 1, . . . , n, (1.20)

that is K(zn,y) is a zero value eigenfunction for commuting difference opera-
tors

Mr(zn; g) − Mr(−yn; g),
see [22]. The relations (1.20) are the corollary of the trigonometric version
of kernel function identity [22], valid for any tuples zn and yn of n complex
variables and arbitrary parameter α:

∑

I⊂[n]
|I|=r

∏

i∈I

⎛

⎝
∏

j∈[n]\I

sin(zi − zj − α)
sin(zi − zj)

n∏

a=1

sin(zi − ya + α)
sin(zi − ya)

⎞

⎠

=
∑

A⊂[n]
|A|=r

∏

a∈A

⎛

⎝
∏

b∈[n]\A

sin(ya − yb + α)
sin(ya − yb)

n∏

i=1

sin(zi − ya + α)
sin(zi − ya)

⎞

⎠ .

(1.21)

In the following we also use the kernel function with the second argument
being a tuple of n − 1 complex variables

K(zn,yn−1) =
n∏

i=1

n−1∏

j=1

K(zi − yj). (1.22)

1.3. Baxter Q-Operators

Let us introduce the family of Baxter Q-operators Qn(λ) parameterized by
λ ∈ C as the integral operators

(Qn(λ)f) (zn) =
∫

Rn

Q(zn,yn;λ)f(yn)dyn (1.23)

with the kernel

Q(zn,yn;λ) = e2πıλ(zn−y
n
)K(zn,yn)μ(yn) , zj , yj ∈ R. (1.24)

Here and in what follows we denote the sum of tuple components as

zn = z1 + . . . + zn.

The Q-operator maps functions of n real variables to functions of n real vari-
ables.
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The following theorem is a simple consequence of kernel function identi-
ties (1.21); its proof is given in Sect. 2.

Theorem 1. Under the condition

0 < Re g < Re ω2 (1.25)

the operators Qn(λ) commute with Macdonald operators Mr(zn; g|ω)

Mr(zn; g)Qn(λ) = Qn(λ)Mr(zn; g), r = 1, . . . , n. (1.26)

Assume in addition to (1.14), (1.15) that

νg = Re
g

ω1ω2
> 0. (1.27)

Due to the bounds for the functions K(y) and μ(y) (B.3) proven in Appendix B,
the product of two Q-operators

Qn(λ)Qn(ρ)

is a well-defined integral operator with the kernel Qn(zn,wn;λ, ρ) given by
absolutely convergent integral

Qn(zn,wn;λ, ρ) =
∫

Rn

Q(zn,yn;λ)Q(yn,wn; ρ)dyn (1.28)

and the domain that consists of fast decreasing functions f(wn), see Proposi-
tion 5 and remark after it in Appendix B. The main result of this paper is the
commutativity of Baxter Q-operators, its proof is given in Sects. 3 and 4.

Theorem 2. Under the conditions (1.14), (1.15), (1.27) Baxter operators com-
mute

Qn(λ)Qn(ρ) = Qn(ρ)Qn(λ). (1.29)
The kernels of the operators in both sides of (1.29) are analytic functions of
λ, ρ in the strip

| Im(λ − ρ)| < Re
g

ω1ω2
. (1.30)

Remark. Both sides of the relation (1.29) depend analytically on all the pa-
rameters λ, ρ, g,ω in the region of absolute convergence of the integrals.

As it was observed for other integrable systems (see lectures [23] for re-
view), the classical analog of the Baxter Q-operator is a special canonical trans-
formation called Backlund transformation. In the paper [16] V. Kuznetsov and
E. Sklyanin proposed a general scheme that relates the kernel of a Q-operator
and generating function of the corresponding Backlund transformation. In the
work [7] M. Hallnäs and S. Ruijsenaars showed that in the certain classical
limit the kernel and measure functions K(zn,yn), μ(yn) contained in the Q-
operator kernel (1.24) give rise to the Backlund transformation for the classical
Ruijsenaars system. In this context, the Q-operator we defined is a quantum
counterpart of this transformation.

We also note that for the case of two particles n = 2 (and real constants
ω1, ω2, g) such an operator first implicitly appeared in the work [11]. Moreover,
the commutativity of Q-operators in this particular case also follows from the
results of [11].
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1.4. Hypergeometric Identities

The proof of Theorem 2 consists of residue calculation of the integrals (1.28).
This includes the proof of cancellation of higher-order poles and the equality
of sums of ordinary poles. The latter is equivalent to certain identity for ba-
sic hypergeometric series, which resembles duality transformation theorem for
multiple hypergeometric series by Y. Kajihara and M. Noumi, see [14].

Let q and t be formal variables. Denote by (z; q)k the q-analog of the
Pochhammer symbol,

(z; q)k = (1 − z)(1 − qz) · · · (1 − qk−1z). (1.31)

Let u = (u1, . . . , un) and v = (v1, . . . , vn) be two tuples of n variables.

Theorem 3. For any integer K, we have the following equality of rational func-
tions

∑

|k|=K

n∏

i=1

(qt; q)ki

(q; q)ki

×
n∏

i,j=1
i�=j

(t−1q−kj ui/uj ; q)ki

(q−kj ui/uj ; q)ki

×
n∏

a,j=1

(tuj/va; q)kj

(uj/va; q)kj

=
∑

|k|=K

n∏

a=1

(qt; q)ka

(q; q)ka

×
n∏

a,b=1
a�=b

(t−1q−kava/vb; q)kb

(q−kava/vb; q)kb

×
n∏

a,j=1

(tuj/va; q)ka

(uj/va; q)ka

.

(1.32)

Here the sum on both sides of the equality is taken over n tuples of
non-negative integers with total sum equal to K

k = (k1, . . . , kn), ki ≥ 0, k1 + . . . + kn = K. (1.33)

Note that the kernel function identity (1.21) is a particular limit of the hyper-
geometric identity (1.32), see [4] for details.

After our work was completed, O. Warnaar and H. Rosengren commu-
nicated to us that an elliptic analog of this identity was proven by different
methods in the papers [17, Corollary 4.3], [6, eq. (6.7)].

1.5. Further Results

Denote by Λn(λ) the integral operator

(Λn(λ)f) (xn) = dn−1(g)
∫

Rn−1
Λ(xn,yn−1;λ)f(yn−1)dyn−1 (1.34)

with the kernel

Λ(xn,yn−1;λ) = e
2πıλ(xn−y

n−1
)
K(xn,yn−1)μ(yn−1) (1.35)

and the constant

dn−1(g) =
1

(n − 1)!
[
√

ω1ω2S2(g)]−n+1
. (1.36)

The operator Λn(λ) maps functions of n − 1 real variables to functions of n
real variables. M. Hallnäs and S. Ruijsenaars [8] proved that for real periods
ω under the condition

0 < Re g < ω2 (1.37)
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the function

Ψλn
(xn; g|ω) = Λn(λn) Λn−1(λn−1) · · · Λ2(λ2) e2πıλ1x1 (1.38)

is given by absolutely convergent integral and represents the joint eigenfunction
of Macdonald operators

Mr(xn; g)Ψλn
(xn; g) = er

(
e2πλ1ω1 , . . . , e2πλnω1

)
Ψλn

(xn; g), r = 1, . . . , n.
(1.39)

Here er(z1, . . . , zn) is r-th elementary symmetric function,

er(z1, . . . , zn) =
∑

1≤i1<i2<...<ir≤n

zi1 · · · zir
.

In the next paper [3], we show that the operators (1.35) can be obtained
in the certain limit from Baxter Q-operators, so that the commutativity of Q-
operators imply commutation relations between Λ-operators and Q-operators,
and between Λ-operators themselves. These relations allow to derive important
properties of the eigenfunction. In particular, we show that the eigenfunction
(1.38)

1. enjoys duality property

Ψλn
(xn; g|ω) = Ψxn

(λn, ĝ∗|ω̂), (1.40)

and consequently admits another iterative integral representation given
by Mellin–Barnes type of integrals over spectral parameters λj . Here we
denoted

â =
a

ω1ω2
(1.41)

for any a ∈ C, so that

ω̂ =
(

1
ω2

,
1
ω1

)
, ĝ =

g

ω1ω2
, ĝ∗ = ω̂1 + ω̂2 − ĝ =

g∗

ω1ω2
; (1.42)

2. is symmetric function of the coordinates xj , as well as of the spectral
variables λj ;

3. is an eigenfunction of the Baxter Q-operator with the eigenvalue
n∏

j=1

K̂(λ − λj) =
n∏

j=1

S−1
2

(
ı(λ − λj) +

ĝ

2

∣∣∣ω̂
)

S−1
2

(
−ı(λ − λj) +

ĝ

2

∣∣∣ω̂
)
;

(1.43)

4. is a solution of bispectral problem for Macdonald operators Mr(xn; g|ω)
and Ms(λn; ĝ∗|ω̂):

Mr(xn; g|ω)Ψλn
(xn; g) = er

(
e2πλ1ω1 , . . . , e2πλnω1

)
Ψλn

(xn; g),

Ms(λn; ĝ∗|ω̂)Ψλn(xn; g) = es

(
e

2πx1
ω2 , . . . , e

2πxn
ω2

)
Ψλn(xn; g),

(1.44)

if Re g < Re ω2 and Re ĝ∗ < Re ω̂2.
For the hyperbolic Calogero–Sutherland model, which represents a non-
relativistic limit of the Ruijsenaars system, the latter result was established in
[12] and [13].
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2. Baxter and Macdonald Operators Commute

Theorem 1 follows from the kernel function identity and from the invariance
of the measure μ(xn)dxn with respect to the Macdonald operators.

We present here two proofs of this theorem. Both work for complex pe-
riods ω1, ω2 and coupling constant g. The first prove is direct analytical. The
second one is its short algebraic reformulation. It exploits symmetry properties
of the Macdonald operators with respect to symmetric bilinear pairing (2.22)
in a way analogous to [18, Chapter VI, §9]. We describe here both proofs
since the first one allows to visualize the appearing restriction on the coupling
constant g, while the second outlines the responsible algebraic properties.

I. Direct proof. Let Φ(zn) be a function of n complex variables zn = (z1, . . . , zn)
analytic in a strip

Πε : − ε − Re ω1 < Im zi < Re ω1 + ε. (2.1)

We are going to prove the equality

Mr(zn; g)Qn(λ)Φ(zn) = Qn(λ)Mr(zn; g)Φ(zn), r = 1, . . . , n. (2.2)

Explicitly it looks as

Mr(zn; g)
∫

Rn

μ(yn)K(zn,yn) e2πıλ(zn−y
n
) Φ(yn) dyn

=
∫

Rn

μ(yn)K(zn,yn) e2πıλ(zn−y
n
) Mr(yn; g)Φ(yn) dyn.

(2.3)

Here we assume convergence of the corresponding integrals and zn ∈ R
n. Note

the important property of the integration contour R
n in the integral (2.3): it

separates two series of poles of the kernel function

ıyi = ızj+
g∗

2
+mω1+kω2 and ıyi = ızk−g∗

2
−mω1−kω2, m, k ≥ 0,

(2.4)
and two series of poles of the measure function

ıyi = ıyj +g+mω1+kω2 and ıyi = ıyk −g−mω1−kω2, m, k ≥ 0,
(2.5)

see (A.11), (A.12) for the poles and zeros of the double sine function.
The left hand side of (2.2) looks as

Mr(zn; g)Qn(λ)Φ(zn) =
∑

I⊂[n]
|I|=r

∏

i∈I
j∈[n]\I

sh π
ω2

(zi − zj − ıg)
sh π

ω2
(zi − zj)

· T−ıω1
I,z Qn(λ)Φ(zn),

(2.6)
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where the shift operator T−ıω1
I,z is defined in (1.7). Consider the summand

corresponding to subset I = {i1, i2, . . . , ir}. Denote this summand by JI :

JI =
sh π

ω2
(zi − zj − ıg)

sh π
ω2

(zi − zj)
· T−ıω1

I,z

∫

Rn

μ(yn)K(zn,yn)e2πıλ(zn−y
n
) Φ(yn) dyn.

(2.7)
Shifts act non-trivially on the kernel K(zn,yn) and exponent e2πıλ(zn−y

n
). By

(1.16), (1.19) we have

∏

i∈I

T−ıω1
zi

K(zn,yn) =
∏

i∈I

n∏

a=1

sh π
ω2

(zi − ya − ı g∗

2 )

sh π
ω2

(zi − ya − ı g∗
2 − ıg)

K(zn,yn),

∏

i∈I

T−ıω1
zi

e2πıλ(zn−y
n
) = e2πrλω1 · e2πıλ(zn−y

n
),

(2.8)

where in the first formula we have transformed the right hand side to the form
similar to (1.21).

The operator T−ıω1
zi

shifts zi and we have to shift the integration contour
in (2.7), so that the conditions (2.4) are satisfied with the replacement of ızi

by ızi + ω1. That is the shifted contour should separate set of poles

ıya = ızj +
g∗

2
+ mω1 + kω2, m, k ≥ 0, j �∈ I,

ıya = ızj +
g∗

2
+ (m + 1)ω1 + kω2, m, k ≥ 0, j ∈ I,

(2.9)

from

ıya = ızj − g∗

2
− mω1 − kω2, m, k ≥ 0, j �∈ I,

ıya = ızj − g∗

2
− (m − 1)ω1 − kω2, m, k ≥ 0, j ∈ I,

(2.10)

and also separate two series of poles (2.5) of the measure functions. For this,
we can use the contour

C : Im ya = −c, −Re
g∗

2
+ Re ω1 < c < Re

g∗

2
, a = 1, . . . , n (2.11)

which exists provided

Re g∗ > Re ω1, or equivalently Re g < Re ω2. (2.12)

Since the contour C does not depend on a set I, we can permute integration
and summation procedures, so that

Mr(zn; g) Qn(λ) Φ(zn) =
∑

I⊂[n]
|I|=r

JI = e2πrλω1

×
∫

C

Sr(zn, yn)μ(yn)K(zn, yn)e2πıλ(z n−y
n
) Φ(yn) dyn,

(2.13)
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where

Sr(zn,yn)

=
∑

I⊂[n]
|I|=r

∏

i∈I

⎛

⎝
∏

j∈[n]\I

sh π
ω2

(zi − zj − ıg)
sh π

ω2
(zi − zj)

n∏

a=1

sh π
ω2

(zi − ya − ı g∗

2 )

sh π
ω2

(zi − ya − ı g∗
2 − ıg)

⎞

⎠

Define similar sum

S̃r(yn,zn)

=
∑

A⊂[n]
|A|=r

∏

a∈A

⎛

⎝
∏

b∈[n]\A

sh π
ω2

(ya − yb + ıg)
sh π

ω2
(ya − yb)

n∏

i=1

sh π
ω2

(zi − ya − ı g∗

2 )

sh π
ω2

(zi − ya − ı g∗
2 − ıg)

⎞

⎠

One can see that the sum Sr(zn,yn) is obtained from the left hand side of the
kernel function identity (1.21) by the change of variables

zk → ıπ

ω2
zk, ya → ıπ

ω2

(
ya + ı

g∗

2
+ ıg

)
, α → ıπ

ω2
ıg (2.14)

and there is the same correspondence between S̃r(yn,zn) and the right hand
side of (1.21). It implies the equality

Sr(zn,yn) = S̃r(yn,zn). (2.15)

Thus, we rewrite (2.13) as

Mr(zn; g)Qn(λ)Φ(zn)

= e2πrλω1

∫

C

S̃r(yn,zn, )μ(yn)K(zn,yn)e2πıλ(zn−y
n
) Φ(yn) dyn

(2.16)

and apply to each occurring summand the same procedure in opposite direc-
tion. Namely, for any subset A ⊂ [n] of cardinality r in the integral

J ′
A =

∫

C

∏

a∈A

⎛

⎝
∏

b∈[n]\A

sh π
ω2

(ya − yb + ıg)
sh π

ω2
(ya − yb)

n∏

i=1

sh π
ω2

(zi − ya − ı g∗

2 )

sh π
ω2

(zi − ya − ı g∗
2 − ıg)

⎞

⎠

× e2πıλ(zn−y
n
)μ(yn)K(zn,yn)Φ(yn) dyn

(2.17)
we perform the change of integration variables

ya → ya − ıω1, a ∈ A. (2.18)

We have

∏

a∈A

T −ıω1
ya

K(zn, yn) =
∏

a∈A

n∏

i=1

sh π
ω2

(ya − zi − ı g∗
2

)

sh π
ω2

(ya − zi − ı g∗
2

− ıg)
K(zn, yn),

∏

a∈A

T −ıω1
ya

μ(yn) =
∏

a∈A
b∈[n]\A

sh π
ω2

(ya − yb − ıω1)

sh π
ω2

(ya − yb)
· (−1)sh π

ω2
(ya − yb − ıg)

sh π
ω2

(ya − yb − ıg∗)
μ(yn),
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∏

a∈A

T −ıω1
ya

e2πıλ(z n−y
n
) = e−2πrλω1 · e2πıλ(z n−y

n
). (2.19)

Using (2.19) and the relations

∏

a∈A

T−ıω1
ya

∏

a∈A

⎛

⎝
∏

b∈[n]\A

sh π
ω2

(ya − yb + ıg)
sh π

ω2
(ya − yb)

n∏

i=1

sh π
ω2

(zi − ya − ı g∗

2 )

sh π
ω2

(zi − ya − ı g∗
2 − ıg)

⎞

⎠

=
∏

a∈A

⎛

⎝
∏

b∈[n]\A

(−1)sh π
ω2

(ya − yb − ıg∗)
sh π

ω2
(ya − yb − ıω1)

n∏

i=1

sh π
ω2

(zi − ya + ı g∗

2 + ıg)

sh π
ω2

(zi − ya + ı g∗
2 )

⎞

⎠

(2.20)
we see that

J ′
A =

∫

C̃

dyn μ(yn)K(zn,yn) e2πıλ(zn−y
n
)

×
∏

a∈A
b∈[n]\A

sh π
ω2

(ya − yb − ıg)
sh π

ω2
(ya − yb)

∏

a∈A

T−ıω1
ya

Φ(yn),
(2.21)

where the contour C̃ is the deformation of the contour C according to the
change of variables (2.18). In the assumption Re g∗ > Re ω1 we may choose
again C̃ = R

n provided the conditions (2.5) on separation of the poles of the
measure are not spoiled during the move of the contour. Note that zeros of
the measure μ(yn) cancel the poles of the hyperbolic sine functions in the last
line of (2.21).

On the other hand, zeros of the sine functions

sh
π

ω2
(ya − yb − ıg)

cancel poles

yb = ya − ıg − ıpω2, p ≥ 0

of the measure function, so that the first pole which we can meet during the
move of the contour is

yb = ya − ıg − ıω1

and its shift does not touch the real plane. Then, we can deform the contour
C̃ to its original position R

n. Summing up (2.21) with the integration contour
replaced by R

n we arrive at the statement of Theorem 1. �
II. Algebraic version. In the space of functions ϕ(zn) analytical in the strip
Πε (2.1) and satisfying the bound

ϕ(zn) = O(|zn|−1), Re z → ∞, z ∈ Πε

introduce the symmetric bilinear pairing

(ϕ,ψ) =
∫

Rn

ϕ(yn)ψ(−yn)μ(yn)dyn. (2.22)
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Denote by τy the operator that changes the sign of argument in a function

τyϕ(yn) = ϕ(−yn).

Then, we can rewrite this pairing as

(ϕ,ψ) =
∫

Rn

ϕ(yn)τy[ψ(yn)]μ(yn)dyn. (2.23)

The eigenvalue property (1.20) of the Ruijsenaars kernel function K(zn,yn)
can be written as

Mr(zn; g)K(zn,yn) = τyMr(yn; g)τyK(zn,yn). (2.24)

However, if we want to use the relation (2.24) for the operator with a kernel
containing K(zn,yn), we should impose the condition (2.12) in order to have
correctly defined shift operators. Macdonald operators are symmetric with
respect to the pairing (2.6) (compare with [18, Chapter VI, §9, eq.(9.4)])

(Mr(yn; g)ϕ(yn), ψ(yn)) = (Mr(yn; g)ψ(yn), ϕ(yn)) . (2.25)

Then, the left hand side of the relation (2.2) can be written as

Mr(zn; g)
(
K(zn,yn) e2πıλzn , e2πıλy

n τy Φ(yn)
)

= e2πrλω1 e2πıλzn
(
Mr(zn; g)K(zn,yn), e2πıλy

n τy Φ(yn)
)
.

(2.26)

Using (2.24) we rewrite (2.26) as

e2πrλω1e2πıλzn
(
τyMr(yn; g)τyK(zn,yn), e2πıλy

n τy Φ(yn)
)

= e2πrλω1e2πıλzn
(
Mr(yn; g)τyK(zn,yn), e−2πıλy

n Φ(yn)
)
.

(2.27)

Next applying (2.25) we have

e2πrλω1e2πıλzn
(
τyK(zn,yn), Mr(yn; g)e−2πıλy

n Φ(yn)
)

= e2πıλzn
(
τyK(zn,yn), e−2πıλy

nMr(yn; g)Φ(yn)
)

= e2πıλzn
(
K(zn,yn), e2πıλy

nτy Mr(yn; g)Φ(yn)
)
.

(2.28)

The last line of (2.28) coincides with the right hand side of (2.2). �

3. Commutativity of Baxter Operators

The commutativity of Q-operators

Qn(ρ)Qn(ρ′) = Qn(ρ′)Qn(ρ) (3.1)

follows from the equality of the kernels

Qn(zn,xn; ρ, ρ′) = Qn(zn,xn; ρ′, ρ) (3.2)

of their products

Qn(zn,xn; ρ, ρ′) =
∫

Rn

dyn Q(zn,yn; ρ)Q(yn,xn; ρ′), zj , xj ∈ R. (3.3)
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One can further note that the variables zn and xn enter the equality (3.2) in
a similar way. Thus, we combine them into a common 2n array

z2n = {z1, . . . , zn, x1, . . . , xn}
and set

Qn(z2n;λ) =
∫

Rn

e2πıλy
n

2n∏

a=1

n∏

i=1

K(za − yi)μ(yn)dyn. (3.4)

Then, the equality (3.2) takes the form of the following integral identity

Qn(z2n;λ) = e2πıλz2nQn(z2n;−λ), (3.5)

where we put

λ = ρ′ − ρ.

Under the condition (1.27), both integrals in (3.5) absolutely converge uni-
formly on compact subsets of the parameters, see Proposition 5 in Appen-
dix B. Thus, both sides of the equality (3.5) are analytic functions of all the
parameters therein. Having in mind these analyticity properties we prove the
equality (3.5) step by step following the plan below.

1. We prove that for complex periods ω1, ω2 with Re ωi > 0 and ω1/ω2 �∈ R

both integrals may be calculated by residues technique for big enough
negative values of Reλ. In other words, one can find a sequence of con-
tours that in the limit encircle all poles in the corresponding half plane
(for each integration variable) and such that the integrals over encircling
contours tend to zero.

2. Next we assume that the real parameters zi are generic. Under this as-
sumption, we prove that the sum of residues over higher order poles van-
ishes. For this, we accumulate the vanishing properties of the integration
measure μ(yn) into Lemma 4, which says that the sum of 4r integrand
values over the points with interchanged coefficients at the periods gives
zero of order 2r. This lemma is used to describe the result of k successive
integrations computed by residues and to show that after each integration
higher-order poles vanish.

3. At this stage, we are left with the sum of simple poles on both sides; each
of them is a product of one-dimensional residues integrals over shifted pa-
rameters zi. Their sums decompose into the sums of

(
2n
n

)
series, depend-

ing of which parameters zi enter the residue calculations. The equalities
of corresponding series reduce to certain identities on rational functions
which we prove separately. The identities generalize Ruijsenaars’ kernel
function identity and could be treated as certain duality transformations
for multivalued basic hypergeometric series [14].

4. Finally, due to analyticity of the statement (3.5) we conclude that it
is valid first for all values of the parameters zi, Re λ and as well for
ω1/ω2 ∈ R (in particular, for real values of the periods ω1, ω2).
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3.1. Estimates of Integrals Over Encircling Contours

In the end of this subsection, we prove that the integrals in Q-commutativity
identity (3.5) can be calculated by residues in the case ω1/ω2 �∈ R.

Denote by σi the arguments of the periods ωi, |σi| < π/2. Since the double
sine function is invariant under permutation of ω1, ω2, suppose for definiteness
that σ1 ≥ σ2. Let D+ and D− be the cones of poles (A.11) and zeros (A.12)
of the double sine function S2(z|ω):

D+ = {z : σ2 < arg z < σ1}, D− = {z : π + σ2 < arg z < π + σ1},

D = D+ ∪ D−.

In the first step of our plan, we consider contour in the limit encircling big
interval in the real line to a big semicircle in the corresponding half plane.
This contour contains three different parts and inside each part the needed
bounds are obtained in different ways. In the part of the contour close to the
real plane we apply the bound given in Proposition 6 in Appendix B. In the
next part of the contour which lies in the regular region C \ D, we use the
general statements about at most exponential growth of the functions K and
μ, see (A.29), (A.33).

A subtle point is the estimate of the integrand along the part of the
contour lying in “forbidden” areas D+ ∪ D− and passing between poles of the
double sine function. This estimate is not possible for purely real periods or for
periods whose ratio is real. Therefore, for the estimates in the area D+ ∪ D−
we assume

Im
ω1

ω2
> 0. (3.6)

Then, we use an infinite product representation of the double sine function,

S2(z|ω) = e
πı
2 B2,2(z|ω)ϕ(z|ω) = e− πı

2 B2,2(z|ω)ϕ′(z|ω) (3.7)

where

ϕ(z|ω) =
r(z|ω)
s(z|ω)

=

∞∏
m=0

(
1 − q2me

2πiz
ω2

)

∞∏
m=1

(
1 − q̃2me

2πiz
ω1

) , (3.8)

ϕ′(z|ω) =
r′(z|ω)
s′(z|ω)

=

∞∏
m=0

(
1 − q̃2me− 2πiz

ω1

)

∞∏
m=1

(
1 − q2me− 2πiz

ω2

) (3.9)

with
q = eπı

ω1
ω2 , q̃ = e−πı

ω2
ω1 (3.10)

and B2,2(z|ω) is a particular multiple Bernoulli polynomial (A.2). For any real
t0 and ε, 0 < ε < 1 denote by Π1,+(t0, ε) the strip in the complex plane of the
variable z, bounded from one side

Π1,+(t0, ε) = {z = tω1 + θω2 | t > t0, ε < θ < 1 − ε}. (3.11)
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Lemma 1. The function ϕ(z|ω) is restricted and bounded from zero in any
strip Π1,+(t0, ε),

0 < C1 < |ϕ(z|ω)| < C2 for z ∈ Π1,+(t0, ε). (3.12)

Proof. Let ω1/ω2 = α + iβ, β > 0 and assume first that t0 > 0. Consider the
nominator of ϕ(z|ω). It could be written as

r(z|ω) =
∏

m≥0

(
1 − q2me2πı

tω1+θω2
ω2

)
=

∏

m≥0

(
1 − e2πı

(
(m+t)

ω1
ω2

+θ
))

=
∏

m≥0

(
1 − e−2πβ(m+t)e2πı(α(m+t)+θ)

)
.

(3.13)

We have for t > 0

|e−2πβ(m+t)e2πı(α(m+t)+θ)| = e−2πβ(m+t) < 1. (3.14)

Due to inequality
1 − |a| < |1 − a| < 1 + |a| (3.15)

we get the following bound for the nominator r(z|ω) of ϕ(z|ω)

ξβ(t0) < |r(z|ω)| < ηβ(t0)

where

ξβ(t0) =
∏

m≥0

(
1 − e−2πβ(m+t0)

)
, ηβ(t0) =

∏

m≥0

(
1 + e−2πβ(m+t0)

)
.

Both these infinite products are converging products not equal to zero. In
order to extend the desired bound for negative values of t0, we note that this
extension adds finite product of factors; each of them is bounded from zero
due to the restriction on θ. Let

ω2

ω1
= c − ıd, d > 0.

Consider the denominator s(z|ω) of ϕ(z|ω). It looks as

s(z|ω) =
∏

m≥1

(
1 − q̃2me2πı z

ω1

)
=

∏

m≥1

(
1 − e−2πd(m−θ)e2πı(−c(m−θ)+t)

)
.

(3.16)
For θ < 1, we have

|e−2πd(m−θ)e2πı(−c(m+θ)−t)| = e−2πd(m−θ) < 1.

Again, using inequality (3.15) we get the bound

ξ′
d(ε) < |s(z|ω)| < η′

d(ε)

where

ξ′
d(ε) =

∏

m≥0

(
1 − e−2πd(m+ε)

)
, η′

d(ε) =
∏

m≥0

(
1 + e−2πd(m+ε)

)
(3.17)

are convergent infinite products. �

Remarks. Similar arguments give the two-sided bound for the values of the
functions ϕ(z|ω) and ϕ′(z|ω) in generic strips.
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Figure 1. The parameter m ∈ Z controls a place of the
strip Πj,± in the (Zω1,Zω2)-lattice. The value of t0 determines
where strip starts, and the parameter ε defines its thickness

1. The function ϕ(z|ω) and its inverse are restricted in strips

Π1,+(t0,m, ε) = {z = tω1 + θω2 | t > t0, m + ε < θ < m + 1 − ε} , (3.18)

Π2,−(t0,m, ε) = {z = −tω2 − θω1 | t > t0, m + ε < θ < m + 1 − ε} (3.19)

where m ∈ Z, 0 < ε < 1.
2. The function ϕ′(z|ω) and its inverse are restricted in any strip

Π2,+(t0,m, ε) = {z = tω2 + θω1 | t > t0, m + ε < θ < m + 1 − ε} , (3.20)

Π1,−(t0,m, ε) = {z = −tω1 − θω2 | t > t0, m + ε < θ < m + 1 − ε} (3.21)

where m ∈ Z, 0 < ε < 1.

Next we consider the function ϕ(z|ω)ϕ−1(z + g|ω). Assume that

g �∈ Zω1 + Zω2. (3.22)

First of all note that for any t0 ∈ R there exist 0 < ε′ < ε, t′0 ∈ R and N0 ∈ Z

such that the strip {z = −g + tω1 + θω2 | t > t0, ε′ < θ < 1 − ε′} is inside the
strip Π1,+(t′0, N0, ε). Then, for any N ∈ Z+ the ratio ϕ(z|ω)ϕ−1(z + g|ω) has
no poles and no zeros in the strip Π1,+(t0, N, ε) and is restricted in this strip.
We now show that its bound is not more than exponential on N .

Lemma 2. There exist real a, b and C1, C2 > 0, such that

C1e
aN <

∣∣ϕ(z|ω)ϕ−1(z + g|ω)
∣∣ < C2e

bN

in the strip Π1,+(t0, N, ε).
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Proof. First of all note that the bounds for the product r(z|ω) do not depend
on N for any strip Π1,+(t0, N, ε) (the bound (3.14) doesn’t depend on the
range of θ). We just have to estimate the ratio s(z|ω)s−1(z + g|ω) in the strip
Π1,+(t0, N, ε). This product can be divided into two parts: one is an infinite
convergent product

s∞(z|ω) =

∏
m≥N

(
1 − q̃2me2πı z

ω1

)

∏
m≥N+N0

(
1 − q̃2me2πı z+g

ω1

) , (3.23)

which after the change of the product indices can be evaluated in the strip
Π1,+(t0, N, ε) independently of N

ξ′
d(ε)

η′
d(ε)

< |s∞(z|ω)| <
η′

d(ε)
ξ′
d(ε)

, (3.24)

where ξ′
d(ε) and η′

d(ε) are given in (3.17); and another is a finite product

s0(z|ω ) =

∏
1≤m<N

(
1 − q̃2me

2πı z
ω1

)

∏
1≤m<N+N0

(
1 − q̃2me

2πı z+g
ω1

)

=
q̃−N(N−1)e

2πı(N−1) z′
ω1

q̃−(N+N0)(N+N0−1)e
2πı(N+N0−1) z′′

ω1

·

∏
1≤m<N

(
q̃2me

−2πı z′
ω1 − 1

)

∏
1≤m<N+N0

(
q̃2me

−2πı z′′
ω1 − 1

) ,

(3.25)
where both z′ = z − Nω2 and z′′ = z + g − (N + N0)ω2 are now in the strip
Π1,+(t0, 0, ε) = Π1,+(t0, ε). The second fraction can be bounded from both
sides independently of N with a help of analogous infinite product, that is

ξ′
d(ε)

η′
d(ε)

<

∣∣∣∣∣∣∣∣

∏
1≤m<N

(
q̃2me−2πı z′

ω1 − 1
)

∏
1≤m<N+N0

(
q̃2me−2πı z′′

ω1 − 1
)

∣∣∣∣∣∣∣∣
<

η′
d(ε)

ξ′
d(ε)

(3.26)

The estimate of the first one is also pure exponential

C1e
2πdN(2ε−1−N0) < |q̃|2N0N+N0(N0−1)e2πd(N−1)(θ′−θ′′)e−2πdN0

< C2e
2πdN(1−2ε−N0) (3.27)

This ends the proof of Lemma 2. �

Analogous statement holds for the function ϕ′(z|ω) in corresponding
strips.

For each 0 < ε < 1 and positive integers M,N denote by Π1,+(t0, N,M, ε)
the bounded open region

Π1,+(t0,M,N, ε) = {z = tω1 + θω2 | t0 < t < N, M + ε < θ < M + 1 − ε}.
(3.28)
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Lemma 2, its analog for the function ϕ′(z|ω) and the relations (3.7) immedi-
ately imply the following corollary.

Corollary 1. The ratio S2(z|ω)S−1
2 (z + g|ω) admits a two sided exponential

bound in the region Π1,+(t0,M,N, ε)

C1e
a(N+M) < |S2(z|ω)S−1

2 (z + g|ω)| < C2e
b(N+M) (3.29)

for some real a, b and C1, C2 > 0.

Remark. Analogous exponential bounds hold for the regions
Π2,+(t0,M,N, ε) ={z = tω2 + θω1 | t0 < t < N, M + ε < θ < M + 1 − ε}
Π1,−(t0,M,N, ε) ={z = −tω1 − θω2 | t0 < t < N, M + ε < θ < M + 1 − ε}
Π2,−(t0,M,N, ε) ={z = −tω2 + θω1 | t0 < t < N, M + ε < θ < M + 1 − ε}

(3.30)
The proofs are similar.

Corollary 2. For big negative values of the real part of the parameter λ the
integral in the left hand side of (3.5) can be computed by residues calculation,
moving the integration contours to the lower half plane; and the integral in the
right hand side of (3.5) can be also computed by residues calculation, moving
the integration contours to the upper half plane.

Proof. The residue calculation means that the initial straight contour in the
integral in the left hand side of (3.5) is enclosed by a contour where, for in-
stance,

|y1| 
 |y2| 
 . . . 
 |yn| 
 1, Im yi < 0
and we argue that the integral over this enclosing contour tends to zero when
the contour grows. For each variable yi its integration contour is either lies in
the regular region for all occurring function S(ıyi − aj)S−1(ıyi + g − aj) or in
the cones of singularities of these functions. In the part of the contour close
to the real line, we apply the bound given in Proposition 6 in Appendix B. In
the next part of the contour which lies in the regular region C\D, using the
general statements about at most exponential growth, see (A.29), (A.33), we
suppress the integrand by fast decreasing exponent e2πıλyn with sufficiently
big negative values of Reλ. Inside the irregular cone D we put the contour into
proper regions Πk,±(ti,Mi, Ni, εi), k = 1, 2 for sufficiently large Mi and Ni.
In the proper regions all functions grow at most exponentially, see Corollary 1
and remark after it, therefore we suppress them by fast decreasing exponent
e2πıλyn as well. The same procedure for the integral in the right hand side of
(3.5).

In the case n = 1 the Q-commutativity integral (3.4) is one-dimensional

Q1(z1, z2;λ) =
∫

R

dy1 K(z1 − y1)K(z2 − y1) e2πıλy1 , (3.31)

and the corresponding enclosing contour CN,M that appears when we calculate
it by residues ∫

R

=
∫

CN,M

+
∑

Res (3.32)
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Figure 2. The contour in the case n = 1. We denoted z∗
j =

zj − ıg∗/2 and for clarity circled all labeled poles

is shown in Fig. 2. There are two sequences of poles in the lower half-plane

y1 = zj − ıg∗

2
− ım1ω1 − ım2ω2, j = 1, 2, mi ≥ 0. (3.33)

Small circles around poles in Fig. 2 are restricted regions: the broken line stays
away from the poles at the distance more than their radii (consequently, we
have fixed exponent parameters a, b from Corollary 1). The angle σ is deter-
mined from the condition (B.16), so that we have exponentially decreasing
bound near the real line given in Proposition 6. The integers N,M are chosen
such that the contour CN,M passes right above the pole z1 − ıg∗/2 − ıNω2

from the left and the pole z2 − ıg∗/2 − ıMω1 from the right. �

3.2. Reduction to Simple Poles

3.2.1. Chains of Integrals and Double Zeros Lemma. Denote by F the inte-
grand of the left hand side of Q-commutativity relation (3.4)

F (yn,z2n) = e2πıλy
n

2n∏

a=1

n∏

i=1

K(yi − za)
n∏

i,j=1
i�=j

μ(yi − yj). (3.34)

We integrate this function over yj by residues in the order of increasing indices.
Let Gm be the result of m successive integrations

Gm(ym+1, . . . , yn,z2n) =
∫

R

dym · · ·
∫

R

dy1 F (yn,z2n). (3.35)
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Moving contours to the lower half-plane we meet poles of the function K(yi −
za)

ıyi = ıza +
g∗

2
+ m1ω1 + m2ω2, ıyi = ıza − g∗

2
− m1ω1 − m2ω2 (3.36)

and of the function μ(yi − yj)

ıyi = ıyj + g + m1ω1 + m2ω2, ıyi = ıyj − g − m1ω1 − m2ω2 (3.37)

where m1,m2 ≥ 0. Below we prove (see Proposition 1) that the resulting
function Gm can be written solely in terms of two typical residue integrals
with simple poles.

The first typical integral is J1(za|b,m1,m2). It depends on a complex
parameter za, on the index b of the variable yb and on the pair (m1,m2) of
non-negative integers. It is given by one-dimensional residue

J1(za|b,m1,m2) = −2πı Resıyb=ıza+
g∗
2 +m1ω1+m2ω2

F (yn,z2n). (3.38)

Additionally, it is a function of all other parameters zc and variables yj different
from yb. This residue is nonzero due to the poles of functions K (3.36).

The second typical integral is k-fold residue integral Ik (yi0 |ik,mk). It
depends on a complex valued variable yi0 with i0 ∈ [n] = {1, . . . , n}, on a
sequence ik of k distinct indices

ik = (i1, . . . , ik), ia ∈ [n] \ {i0}
corresponding to variables yia

in (3.34), and on two non-negative sequences of
k integers

mk = (m1
1, . . . ,m

1
k;m2

1, . . . ,m
2
k), mi

j ≥ 0.

We define Ik (yi0 |ik,mk) as the following k-fold residue integral

Ik (yi0 |ik,mk) = (−2πı)k Resıyi1=ıyi0+g+m1
1ω1+m2

1ω2
· · ·

· · · Resıyik
=ıyik−1+g+m1

kω1+m2
kω2

F (yn,z2n). (3.39)

Additionally, it is a function of parameters za and all variables yj which are
not engaged in the integration procedure. It naturally refers to the point

ıyi1 = ıyi0 + g + m1
1ω1 + m2

1ω2,

ıyi2 = ıyi0 + 2g +
(
m1

1 + m1
2

)
ω1 +

(
m2

1 + m2
2

)
ω2,

...

ıyik
= ıyi0 + kg +

(
m1

1 + . . . + m1
k

)
ω1 +

(
m2

1 + . . . + m2
k

)
ω2.

(3.40)

This residue is nonzero due to the poles of functions μ (3.37). Note that,
although in Gm (3.35) we integrate over yia

in the order of increasing indices
ia, the multidimensional pole (3.40) is simple, so the definition (3.39) does not
depend on the order of residues.

We name the integrals J1(za|b,m1,m2) and Ik (yi0 |ik,mk) as chain in-
tegrals and picture them as chains of vertices with the corresponding labels,
see Fig. 3. Note that length of the line in J1-chain is twice smaller than in
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Figure 3. Chain integrals

Ik-chains. This rule reflects difference between constants g∗/2 and g in residue
points of chain integrals.

The chain integrals are parametrized by the cycles in the space of cor-
responding integration variables. It is natural to define the direct product of
chain integrals as the integrals over direct products of corresponding cycles.
More precisely, assume that all the variables yia

of the first chain integral in-
cluding integration variables and the free variable are different from those of
the second chain integral. Then, the direct product of these two chain inte-
grals is defined as the integral over corresponding product of the contours. For
instance, the direct product

Ik (yi0 |ik,mk) × Il

(
yi′

0
|i′

l,m
′
l

)

of two chain integrals is defined for disjoint sets ik and i′
l and generic param-

eters yi0 and yi′
0

as k + l fold residue integral

(−2πı)k+l Resıyi1=ıyi0+g+m1
1ω1+m2

1ω2
· · · Resıyik

=ıyik−1+g+m1
kω1+m2

kω2

Resıyi′
1
=ıyi′

0
+g+m′1

1ω1+m′2
1ω2

· · ·
Resıyi′

l
=ıyi′

l−1
+g+m′1

l ω1+m′2
l ω2

F (yn,z2n)

A direct product of integrals will be pictured simply by placing the cor-
responding chains next to each other, see Fig. 4.

The main technical result of this subsection is the following statement.

Proposition 1. For generic ω, g and z2n the function Gm(ym+1, . . . , yn,z2n)
defined by (3.35) is a sum of all possible direct products of chains J1(za|
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Figure 4. Direct product of three chain integrals

Figure 5. All possible direct products for n = 3,m = 2. The
sum over all possible edge parameters and indices i, j, a, b is
implied

b,m1,m2) and Ik (yi0 |ik,mk), such that parameters za are distinct inside each
summand and indices of integration variables do not exceed m.

Note that the function Gn(∅,z2n) coincides with the integral (3.4)

Gn(∅,z2n) = Qn(z2n;λ). (3.41)

An immediate corollary of Proposition 1 is the following observation.

Corollary 3. The integral in the left hand side of (3.5) is the sum of all possible
direct products of one-dimensional residues J1(za|b,m1,m2) with distinct za.

Indeed, in this case free parameters of possible chains could not be any
integration variables ya, so we have a sum of direct products of chain integrals
J1(za|b,m1,m2). The same result holds for the right hand side of (3.5).

For the proof of Proposition 1, we need the following property of zeros
location of the measure function μ(yn). Choose a pair of variables, say y1 and
y2. Let

ıy1 = a + ε + p1ω1 + p2ω2, ıy2 = a + q1ω1 + q2ω2, pi, qi ∈ Z. (3.42)

Set

m1 = p1 − q1, m2 = p2 − q2.
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Let the operator τ1,m1

12 permute p1 and q1 and the operator τ2,m2

12 permute p2

and q2, so that

τ1,m1

12 F (y1, y2, . . . , yn,z2n)

= F (a + ε + q1ω1 + p2ω2, a + p1ω1 + q2ω2, . . . , yn,z2n),

τ2,m2

12 F (y1, y2, . . . , yn,z2n)

= F (a + ε + p1ω1 + q2ω2, a + q1ω1 + p2ω2, . . . , yn,z2n).

In other words, the operators τ1,m1

12 and τ2,m2

12 are the following shift operators:

τ1,m1

12

(
ıy1
ıy2

)
=

(
ıy1 − m1ω1

ıy2 + m1ω1

)
, τ2,m2

12

(
ıy1
ıy2

)
=

(
ıy1 − m2ω2

ıy2 + m2ω2

)
. (3.43)

Lemma 3. For generic a, variables yj and parameters zb

(1 + τ1,m1

12 )(1 + τ2,m2

12 )F (yn,z2n) = O(ε2), ε → 0. (3.44)

In other words, the sum of four summands

F (yn,z2n) + τ1,m1

12 F (yn,z2n) + τ2,m2

12 F (yn,z2n) + τ1,m1

12 τ2,m2

12 F (yn,z2n)
(3.45)

has zero of the second order at the hyperplane

ı(y1 − y2) = m1ω1 + m2ω2. (3.46)

Proof of Lemma 3. Note that shift operators in (3.44) act only on y1, y2. De-
note by A the part of function F that does not depend on y1, y2

F (yn,z2n) = e2πıλ(y1+y2)A(y3, . . . , yn,z2n)B(yn,z2n). (3.47)

The exponent is invariant under the shifts. Using reflection formula

S−1
2 (z) = S2(ω1 + ω2 − z) (3.48)

we can write the remaining part B in the form

B = S2(ı(y1 − y2))S2(ı(y2 − y1))S2(ı(y1 − y2) + g∗)S2(ı(y2 − y1) + g∗)

×
∏

(b,b′)

S2(ıy1 − b)S2(ıy2 − b)S2(b′ − ıy1)S2(b′ − ıy2), (3.49)

where pairs (b, b′) contain all other variables yj , za (j �= 1, 2) and constants.
Moreover, the first two functions can be written as (A.5)

S2(ı(y1 − y2))S2(ı(y2 − y1)) = −4 sin
ıπ

ω1
(y1 − y2) sin

ıπ

ω2
(y1 − y2). (3.50)

For the variables y1, y2 at the points (3.42) we use the last formula with a
factorization property (A.10)

S2(z + p1ω1 + p2ω2) = (−1)p1p2
S2(z + p1ω1)S2(z + p2ω2)

S2(z)
, pj ∈ Z

(3.51)
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to separate coordinates pj , qj in the function B

B(p1, q1; p2, q2) = C B1(p1, q1)B2(p2, q2) (3.52)

where C does not depend on any pj , qj . The signs coming from (3.51) disappear
since each of them occurs an even number of times. Clearly, Bj differ only by
ωj . Therefore, it is sufficient to prove that

(1 + τ1,m1

12 )B1(p1, q1) = O(ε). (3.53)

Evaluating B1 at ε = 0 we obtain a function antisymmetric with respect to
p1, q1:

B1(p
1, q1)

∣∣
ε=0

= (−1)p1+q1
sin

πω1

ω2
(p1 − q1) S2((p

1 − q1)ω1 + g∗) S2((q
1 − p1)ω1 + g∗)

×
∏

(b,b′)

S2(p
1ω1 + a − b) S2(q

1ω1 + a − b) S2(b
′ − a − p1ω1) S2(b

′ − a − q1ω1).

(3.54)

Since all functions in B1 are analytic, the identity (3.53) follows. �

Now let mk again denote two sequences of integers (without requiring
them to be non-negative)

mk = (m1
1, . . . m

1
k;m2

1, . . . ,m
2
k), mi

j ∈ Z.

We attach to this sequence 2k shift operators τ1,m k

12 , τ2,m k

12 , . . . τ1,m k

2k−1,2k,
τ2,m k

2k−1,2k, so that

τ1,m k

2j−1,2j

(
ıy2j−1

ıy2j

)
=

(
ıy2j−1 − m1

jω1

ıy2j + m1
jω1

)
,

τ2,m k

2j−1,2j

(
ıy2j−1

ıy2j

)
=

(
ıy2j−1 − m2

jω2

ıy2j + m2
jω2

)
.

Set

ε1 = ı(y1 − y2) − (m1
1ω1 + m2

1ω2), . . .

εk = ı(y2k−1 − y2k) − (m1
kω1 + m2

kω2),

and denote by Fk(yn,z2n) the sum of 4k summands

Fk(yn,z2n) =

⎛

⎝
k∏

j=1

(
1 + τ1,m k

2j−1,2j

)(
1 + τ2,m k

2j−1,2j

)
⎞

⎠ F (yn,z2n) (3.55)

The following statement is a direct consequence of Lemma 3.

Lemma 4. The function Fk(yn,z2n) has zero of order 2k on the intersection
of hyperplanes

ε1 = . . . = εk = 0. (3.56)
Moreover, its Taylor expansion in a generic point of the plane (3.56) starts
from ε21 · · · ε2k

Fk(yn,z2n) = ε21 · · · ε2k · Hk(yn,z2n), (3.57)
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where Hk(yn,z2n) is regular at generic point of (3.56).

Proof. Using Lemma 3 for generic values of all the variables and parameters,
we have

(
1 + τ1,m k

2j−1,2j

)(
1 + τ2,m k

2j−1,2j

)
F (yn,z2n) = ε2j · Hj(yn,z2n)

for any j = 1, . . . , k, where Hj(yn,z2n) is analytic function on the hyperplane

ı(y2j−1 − y2j) = m1
jω1 + m2

jω2

and in particular on the plane (3.56). Since all operators τ1,m k

2j−1,2j in the product
(3.55) commute, the same is true for the total expression Fk. So, Fk is analytic
with respect to εj and has zero of the second order at εj = 0 for all j. Then
its Taylor expansion in εj starts with the ε21 · · · ε2k term. �

3.2.2. Induction Step: Fusion of Chain Integrals. We are ready now to prove
the induction step of Proposition 1. We regard the result Gm(ym+1, . . . , yn,z2n)
of the first m integrations as an analytical function of parameters ym+1, . . . , yn,
z2n. Thus, during the integration over the variable ym+1 we can assume that
all the parameters ym+2, . . . , yn,z2n are generic so that there are no singu-
larities between different factors in each summand of Gm(ym+1, . . . , yn,z2n).
It means that the induction step reduces to the consideration of the fusions
of chain integrals (3.38) and (3.39). Namely, we now consider one-dimensional
integrals

Resıyi0=ıyj0+c Ik (yi0 |ik,mk) × Il (yj0 |jl, m̃l) , (3.58)

Resıyi0=ızj+c Ik (yi0 |ik,mk) × J1(za|b, m̃1, m̃2), (3.59)

Resıyi0=ızj+c Ik (yi0 |ik,mk) . (3.60)

Below we prove that all such residues cancel each other, except ones that form
new chain integrals Ik+l+1 and J1. Having in mind that in the original integral
(3.4) all the parameters were real, we assume that in the first integral the
variable yj0 is real and in the second and third integrals the parameter za is
also real.

Consider the residue (3.58) first. For better convenience denote the vari-
ables yia

taking part in the integral Ik (yi0 |ik,mk) by letters xia
. The residue

(3.58) could be nonzero only if the integration variable xi0 meets the point
corresponding to the pole of the measure function either

S(ı(yjb
− xia

) + g∗) or S(ı(xia
− yjb

) + g∗). (3.61)

This happens when the variables ı(yjb
− xia

) or ı(xia
− yjb

) in the arguments
of the functions in (3.61) equal to g + m1ω1 + m2ω2 for some non-negative
integers m1 and m2, see (A.11). Moreover, a number of such singularities can
appear together giving a multiple pole. A typical example is shown in Fig. 6.
The pairs of numbers on each edge indicate corresponding integers m1 and
m2. When one of them is negative, the corresponding edge is dashed, which
means the missing of the corresponding singularity. In the case of the multiple
singularity instead of single fusion integral, we consider the fusion of several
summands of the function Gm(ym+1, . . . , yn,z2n) which fit using of Lemma 4.
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Figure 6. Fusions of chains with different edge parameters.
Solid lines correspond to singularities

Figure 7. The pole (3.62) with a = 0, b = 2

We then justify that such sum either vanishes or it is given by a simple residue
of the first order which we analyze further.

Consider each type of singularity (3.61) separately. In the first singularity
imposed by the pole of S(ı(yjb

− xia
) + g∗), we have the relation

ıyjb
= ıxia

+ g + p1ω1 + p2ω2, p1, p2 ≥ 0. (3.62)

In the second

ıxia
= ıyjb

+ g + q1ω1 + q2ω2, q1, q2 ≥ 0. (3.63)

Consider the first case (3.62), example is shown in Fig. 7.
If a < k, then in the chain Ik there is a variable xia+1 such that

ıxia+1 = ıxia
+ g + m1

a+1ω1 + m2
a+1ω2, m1

a+1,m
2
a+1 ≥ 0, (3.64)
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and at the residue point we have the relation

ıyjb
= ıxia+1 + n1ω1 + n2ω2, ni = pi − mi

a+1. (3.65)

This relation coincides with the hyperplane from Lemma 3, which we apply
as follows. By definition (3.43) shift operators τ i,ni

jb,ia+1
act on the variables yjb

,
yia+1 ≡ xia+1 as

τ1,n1

jb,ia+1

(
ıyjb

ıxia+1

)
=

(
ıyjb

− n1ω1

ıxia+1 + n1ω1

)
, τ2,n2

jb,ia+1

(
ıyjb

ıxia+1

)
=

(
ıyjb

− n2ω2

ıxia+1 + n2ω2

)
.

(3.66)
In our case yjb

, xia+1 are integration variables inside the residue integral (3.58).
By action of shift operators on the residue integral we assume action on its
residue points, for instance

τ1,n1

jb,ia+1
Resıxia+1=ıxia+g+m1

a+1ω1+m2
a+1ω2

= Resıxia+1=ıxia+g+(m1
a+1−n1)ω1+m2

a+1ω2
.

(3.67)

Then, instead of the single residue integral (3.58) consider the sum of four
integrals

Resıxi0=ıyj0+c

(
1 + τ1,n1

jb,ia+1

)(
1 + τ2,n2

jb,ia+1

)
Ik (xi0 |ik,mk) × Il (yj0 |jl, m̃l) .

(3.68)

Here

c = (b − a − 1)g + (m̃1
1 + . . . + m̃1

b − m1
1 − . . . − m1

a − p1)ω1

+ (m̃2
1 + . . . + m̃2

b − m2
1 − . . . − m2

a − p2)ω2,
(3.69)

where p1 and p2 are given by (3.62). The four residue integrals (3.68) differ by
parameters on the edges. At the same time by induction assumption the func-
tion Gm (3.35) equals the sum of all possible chain integrals. In particular, it
contains direct products Ik ×Il with all possible non-negative edge parameters

∑

mi
j ,m̃i

j≥0

Ik (xi0 |ik,mk) × Il (yj0 |jl, m̃l) . (3.70)

Parameters on the edges in the shifted integrals from the sum (3.68) could be
negative, depending on the integers mk, m̃l, pi. However, the chain integral
with at least one negative edge parameter equals zero, since, as we noted
earlier, the residues in it can be taken in any order and

Resıyi=ıyj+g+h1ω1+h2ω2 F (yn,z2n) = 0, (3.71)

unless both hi ≥ 0. Thus, all of the four residue integrals in (3.68) either are
contained in the sum (3.70) or equal to zero.

To apply Lemma 3 to the sum (3.68), we shift the integration variables
in each integral in order to remove the dependence on edge parameters from
residue points. For the chain integral Ik(xi0 |ik,mk) in (3.68), we define new
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integration variables x̃is
by the following shifts

ıxi0 = ıx̃i0 + c,

ıxi1 = ıx̃i1 + g + m1
1ω1 + m2

1ω2 + c,

ıxi2 = ıx̃i2 + 2g + (m1
1 + m1

2)ω1 + (m2
1 + m2

2)ω2 + c,

...

ıxik
= ıx̃ik

+ kg + (m1
1 + . . . + m1

k)ω1 + (m2
1 + . . . + m2

k)ω2 + c

(3.72)

and similarly for all other chain integrals in the sum (3.68). Now only the
integrands depend on edge parameters. Denote two tuples

xk+1 = (xi0 , . . . , xik
), yl+1 = (yj0 , . . . , yjl

) (3.73)

with components given by the formulas (3.72) and analogous ones with yjd
.

Then, we rewrite (3.68) as one single residue integral

Resıx̃i0=ıỹj0

k∏

s=1

Resıx̃is=ıx̃is−1

l∏

s=1

Resıỹjs=ıỹjs−1

(
1 + τ1,n1

jb,ia+1

)(
1 + τ2,n2

jb,ia+1

)
F (xk+1,yl+1, . . . ).

(3.74)

Here by dots we mean all other variables of the integrand. Lemma 3 says
that the integrand in the last formula has additional zero of the order two
at the hyperplane (3.65). This double zero compensates two possible simple
singularities along the hyperplanes

ıyjb
= ıxia

+ g + p1ω1 + p2ω2, and ıyjb−1 = ıxia+1 + g + r1ω1 + r2ω2.
(3.75)

The same statement holds for the singularity (3.63) once b < k.
Note also that due to inequalities pi ≥ 0, mi

ia+1
≥ 0, Re g ≥ 0 Re ωi ≥ 0,

all the new points the shifted variables ıyjb
and ıxia+1 have positive real part

once the variable ıxia
does have.

Suppose there are no singularities in the residue integral (3.58) except
(3.75). Then we cancel this integral applying Lemma 3 in the described way.
Next assume there are other singularities besides (3.75). Among all pairs with
singularities let yjb

, xia
be the one with the smallest index a (upper diago-

nal line). The corresponding singularity is of the type either (3.62) or (3.63).
Consider the first case (3.62). Denote

r = min(k − a − 1, l − b), (3.76)

see example in Fig. 8.
Then, there are r+1 pairs of variables yjb+α

, xia+1+α
with α ∈ {0, . . . , r},

for which we have relations

ıyjb = ıxia+1 + n1
a,bω1 + n2

a,bω2, . . . ıyjb+r = ıxia+1+r + n1
a+r,b+rω1 + n2

a+r,b+rω2.

(3.77)
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Figure 8. Third order pole with a = 0, b = 1 and r = 1

Now we apply Lemma 4 for the intersection of hyperplanes (3.77) repeat-
ing the procedure described above for Lemma 3. Let us consider the sum of
4r+1 integrals

Resıxi0=ıyj0+c Tkl Ik (xi0 |ik,mk) Il (yj0 |jl, m̃l) (3.78)

where Tkl denotes the sum of shift operators

Tkl =
r∏

α=0

(
1 + τ

1,n1
a+α,b+α

jb+α,ia+1+α

)(
1 + τ

2,n2
a+α,b+α

jb+α,ia+1+α

)
. (3.79)

This operator shifts the parameters on the edges of chain integrals Ik, Il. The
arguments above show that all such integrals are either contained in the sum
(3.70) or equal to zero. Therefore, we can consider the sum (3.78) instead of
the single residue (3.58).

Making linear changes of variables analogous to (3.72), we may regard
this sum of integrals as a residue integral

Resıx̃i0=ıỹj0

k∏

s=1

Resıx̃is=ıx̃is−1

l∏

s=1

Resıỹjs=ıỹjs−1
Tkl F (xk+1,yl+1, . . . ),

(3.80)
where xk+1 components are given by (3.72) and similarly for yl+1. By Lemma 4
the number of poles in this one-dimensional integral could exceed the number
of zeros of integrand by one only in two cases.

I. We have the singularity

ıyjd
= ıxik

+ g + p1ω1 + p2ω2, p1, p2 ≥ 0. (3.81)

II. We have the singularity

ıxid
= ıyjl

+ g + q1ω1 + q2ω2, q1, q2 ≥ 0. (3.82)

Otherwise the sum (3.78) vanishes. Similarly, for the residue between pair of
variables xia

, yjb
of the second type (3.63) we have vanishing sum, unless the

same two cases.
Consider the case I. Note that d > 0 since otherwise Im xi0 > 0. Define

two new chain integrals Ik+l−d+1

(
xi0 |i′

k+l−d+1,m
′
k+l−d+1

)
and Id−1

(
yj0 |j′

d−1,
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Figure 9. Singularity of the type (3.81) with d = 2 and the
corresponding pair of new chains from the right

m̃′
d−1

)
as follows

s ≤ k : i′s = is, m′i
s = mi

s,

s = k + 1: i′k+1 = jd, m′i
k+1 = pi,

s > k + 1: i′s = jd−1+s−k, m′i
s = m̃i

d−1+s−k,
s < d : j′

s = js, m̃′i
s = m̃i

s.

(3.83)

This definition is rather simple in terms of pictures, see example in Fig. 9.
The following lemma describes cancellation mechanism for such integrals.
Lemma 5.

Resıxi0=ıyj0+c Tkl Ik (xi0 |ik, m k) Il (yj0 |j l, m̃ l) +

Resıxi0=ıyj0+c Tkl Ik+l−d+1

(
xi0 |i′

k+l−d+1, m
′
k+l−d+1

)
Id−1

(
yj0 |j ′

d−1, m̃
′
d−1

)
= 0,

(3.84)
where the operator Tkl is defined in (3.79).

Proof. Indeed, by the arguments above both integrals are simple residue in-
tegrals with the same integrand and singularities. In the shifted variables x̃is

and ỹjs
, all the singularities are at the diagonals

x̃is = x̃is+1 , s = 0, . . . , k − 1, ỹjs = ỹjs+1 , s = 0, . . . , l − 1,

x̃is = ỹjs+d−k , s = a, . . . , k, x̃is+1 = ỹjs+d−k−1 , s = a, . . . , k − 1,

(3.85)
where ỹj0 = yj0 . Lemma 4 says that we may present the integrand in the form

(
x̃ia+1 − ỹja+d−k

)2 · · · (x̃ik
− ỹjd−1

)2

k−1∏
s=0

(
x̃is

− x̃is+1

) l−1∏
s=0

(
ỹjs

− ỹjs+1

) k∏
s=a

(
x̃is

− ỹjs+d−k

) k−1∏
s=a

(
x̃is+1 − ỹjs+d−k−1

)

H
(
x̃k+1, ỹl+1

)

where H
(
x̃k+1, ỹl+1

)
does not have singularities on integration contour. Re-

placing each factor
(
x̃is+1 − ỹjs+d−k

)2 of the nominator by
(
(x̃is

− x̃is−1) + (x̃is−1 − ỹjs+d−k
)
)(

(x̃is
− ỹjs+d−k−1) + (ỹjs+d−k−1 − ỹjs+d−k

)
)
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Figure 10. Two chain integrals give a new one

we obtain the sum of simple fractions such that the number of factors in
denominator of each of them equals the number of integration. One can then
also note that only one fraction

1
(
x̃ik

− ỹjd

) k−1∏
s=0

(
x̃is

− x̃is+1

) l−1∏
s=0

(
ỹjs

− ỹjs+1

)H
(
x̃k+1, ỹl+1

)
(3.86)

gives non-trivial contribution to the both integrals (3.84). The corresponding
integrals can be computed. The first one equals

H
(
x̃k+1, ỹl+1

)∣∣
x̃is=ỹj0 , s=0,...,k; ỹjs=ỹj0 , s=1,...,l

,

the second to

−H
(
x̃k+1, ỹl+1

)∣∣
x̃is=ỹj0 , s=0,...,k; ỹjs=ỹj0 , s=1,...,l

,

so that their sum equals zero. �

The same arguments hold for fusions of type II unless d �= 0. For d = 0
the corresponding fusion of chain integrals is by definition the chain integral

1
−2πı

Ik+l+1

(
yi0 |i′

k+l+1,m
′
k+l+1

)
(3.87)

where
s ≤ l : i′s = js, m′i

s = m̃i
s,

s = l + 1: i′l+1 = i0, m′i
l+1 = qi,

s > l + 1: i′s = is−l−1, m′i
s = mi

s−l−1.

Here, the integers qi are given by the relation (3.82). See example in
Fig. 10.

This ends the consideration of fusions of chains integrals (3.58). All of
them cancel, except new chains (3.87).

Consider now the fusion (3.59)

Resıxi0=ızj+c Ik (yi0 |ik,mk) J1(zj |b, m̃1, m̃2). (3.88)
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Figure 11. Singularities (3.89), (3.90), (3.91) are shown with
dashed lines (a = 2). Dotted line shows a possible zero (3.92)

Here we again change symbols y to x in the chain Ik. There could appear such
singularities, labeled by a fixed number a:

ıxia
= ızj +

g∗

2
+ p1ω1 + p2ω2, p1, p2 ≥ 0, (3.89)

ıxia+1 = ıyb + g + q1ω1 + q2ω2, q1, q2 ≥ 0, (3.90)

ıyb = ıxia−1 + g + r1ω1 + r2ω2, r1, r2 ≥ 0. (3.91)

See example in Fig. 11. Once there is a pole (3.90), there is a zero at the point

ıxia+1 = ızj − g∗

2
+ s1ω1 + s2ω2, si = m̃i + qi + 1 > 0 (3.92)

given by the function S−1(ıxia+1−ızj+g∗/2). Once we have a singularity (3.89)
or (3.91), we are in the position of Lemma 3 with respect to the variables yb

and xia
and consider instead of the residue (3.88) the corresponding sum of

four integrals with shift operators, for which we have additional zero of the
second order.

Analyzing the balance of poles and zeros, we conclude that the residue
(3.88) could be non-trivial only when a = k + 1, so that the variables xia

and
xia+1 are missing and the residue (3.88) is taken along the only singularity

ıyb = ıxik
+ g + r1ω1 + r2ω2, r1, r2 ≥ 0. (3.93)

Finally, consider the residue (3.60). In the calculation

Resıxi0=ızj+c Ik (yi0 |ik,mk)

we could meet only one pole of the form (3.89) together with zero (3.92) if
the variable xia+1 exists, see Fig. 12. Thus, the only non-trivial result could be
only when k = a and the residue is taken along the singularity

ıxik
= ızj +

g∗

2
+ p1ω1 + p2ω2, p1, p2 ≥ 0. (3.94)

One can note that the resulting integrals obtained in the calculations of the
fusion integrals (3.59) and (3.60) coincide up to a sign and cancel each other
except for the case k = 0 in (3.60), see Fig. 12.
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Figure 12. Cancellation of residues

But for k = 0 this gives precisely the new chain J1

(
zj |i0, p1, p2

)
. For their

direct products J1(za|b,m1,m2)×J1(zc|d, n1, n2) the indices a and c could not
coincide since otherwise we can apply Lemma 3 to the variables yb and yd and
cancel the sum of four corresponding terms.

This ends the proof of Proposition 1. �

3.3. Simple Poles Calculations

In the previous subsections, we proved that
1. Both integrals in (3.5) can be calculated by residues, moving the contours

of integration either to the lower or to the upper half planes depending
on the sign of Reλ;

2. In residue calculations only direct products of simple poles J1

(
za|b,m1,m2

)

(3.38) with distinct za contribute to the integrals, see Corollary 3 to
Proposition 1.
Now consider the integral Qn(z2n;λ) in the left hand side of (3.5). By

Corollary 3, it equals the sum of all possible direct products

J1

(
za1 |b1,m1

1,m
2
1

) × . . . × J1

(
zan

|bn,m1
n,m2

n

)
(3.95)

with distinct indices a1, . . . , an. These indices form a subset I ⊂ [2n] =
{1, . . . , 2n} of cardinality n. Collecting the direct products with a given choice
of the set I we arrive at the sum of

(
2n
n

)
series

Qn(z2n;λ) =
∑

I⊂[2n]
|I|=n

e
2πλ

(
ng∗
2 +ı

∑
i∈I

zi

)
LI(u, v) (3.96)

over
u = e2πλω1 and v = e2πλω2 . (3.97)

The series converges for sufficiently big negative Re λ. More precisely, denote
two sequences of non-negative integers

m1 = (m1
1, . . . ,m

1
n), m2 = (m2

1, . . . ,m
2
n) (3.98)

and the sum of their components in a standard way

|mi| = mi
1 + . . . + mi

n. (3.99)
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Then, the function LI(u, v) equals

LI(u, v) = n! (−2πı)n
∑

M,K≥0

LI
M,KuMvK (3.100)

where LI
M,K is the following sum of multiple residues

LI
M,K =

∑

m1
i ≥0: |m1|=M

m2
i ≥0: |m 2|=K

LI
m 1,m2

(3.101)

with

LI
m 1,m 2 = Resıy1=ızi1+

g∗
2 +m1

1ω1+m2
1ω2

· · ·

· · · Resıyn=ızin+ g∗
2 +m1

nω1+m2
nω2

μ(yn)
2n∏

a=1

n∏

j=1

K(yj − za). (3.102)

In the same way, we compute the integral in the right hand side of (3.5),
but moving the integration contours to the upper half plane. Again it is ex-
pressed via the sum of chain integrals with different sign due to the opposite
orientation of the contours. Collecting the terms where the indices aj of the
parameters zaj

belong to a given subset J ⊂ [2n] of cardinality n we get a sum
of

(
2n
n

)
series

Qn(z2n;−λ) =
∑

J⊂[2n]
|J|=n

e
−2πλ

(
− ng∗

2 +ı
∑

i∈J

zi

)
RJ(u, v) (3.103)

over the same variables u and v defined in (3.97). Here

RJ(u, v) = n! (2πı)n
∑

M,K≥0

RJ
M,KuMvK (3.104)

where RJ
M,K is the following sum of multiple residues

RJ
M,K =

∑

m1
i ≥0: |m1|=M

m2
i ≥0: |m 2|=K

RJ
m1,m 2

(3.105)

with

RJ
m1,m 2 = Resıy1=ızj1− g∗

2 −m1
1ω1−m2

1ω2
· · ·

· · · Resıyn=ızjn− g∗
2 −m1

nω1−m2
nω2

μ(yn)
2n∏

a=1

n∏

j=1

K(yj − za). (3.106)

For any subset I ⊂ [2n] of cardinality n denote by Ī the complement

Ī = [2n] \ I

of I in the set [2n].



Vol. 25 (2024) Baxter Operators in Ruijsenaars Hyperbolic System I 3241

Proposition 2. For any I ⊂ [2n], |I| = n, we have the equality of series

LI(u, v) = (−1)nRĪ(u, v) (3.107)

Equivalently,

LI
M,K = (−1)nRĪ

M,K for any M,K ≥ 0. (3.108)

Proposition 2 immediately implies the equality (3.5) due to (3.96) and
(3.103). Thus, it also implies the commutativity of Q-operators (3.1).

Proof of Proposition 2. It is clear by symmetry arguments, that it is sufficient
to prove the equalities (3.108) for the set I0 = {1, . . . , n}. For the sake of
convenience below we change the notation for variables za in the following
way

ıza → za, a = 1, . . . , n, ızn+i → xi, i = 1, . . . , n. (3.109)

Using (A.14), we get the precise value of the multiple residue (3.102),

LI0
m 1,m2 =

(ω1ω2)n/2

(−2πı)n

n∏

a=1

(−1)m1
am2

a+m1
a+m2

a S−1
2 (g∗ + m1

aω1 + m2
aω2)

∏m1
a

j=1 2 sin πjω1
ω2

∏m2
a

l=1 2 sin πlω2
ω1

×
n∏

a,b=1
a�=b

[
S2(za − zb + (m1

a − m1
b)ω1 + (m2

a − m2
b)ω2)

S2(za − zb + g∗ + (m1
a − m1

b)ω1 + (m2
a − m2

b)ω2)

S−1
2 (za − zb + g∗ + m1

aω1 + m2
aω2)S−1

2 (za − zb − m1
bω1 − m2

bω2)
]

×
n∏

i,a=1

S−1
2 (za − xi + g∗ + m1

aω1 + m2
aω2)

S−1
2 (xi − za − m1

aω1 − m2
aω2).

(3.110)
For a variable x and integer m, k denote by [x|ω]m,k the hyperbolic analog of
the Pochhammer symbol:

[x|ω]m,k = (−1)mk S2(x)
S2(x + mω1 + kω2)

. (3.111)

For non-negative m and k

[x|ω]m,k =
m−1∏

s=0

2 sin π
x + sω1

ω2

k−1∏

l=0

2 sin π
x + lω2

ω1
. (3.112)

In these notations, the expression (3.110) can be rewritten as follows

LI0
m 1,m 2 =

(ω1ω2)n/2

(−2πıS2(g∗))n

n∏

i,a=1

S−1
2 (za − xi + g∗)S−1

2 (xi − za)

×
n∏

a=1

[g∗|ω]m1
a,m2

a

[ω1 + ω2|ω]m1
a,m2

a
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×
∏

a�=b

[za − zb + g∗ + (m1
a − m1

b)ω1 + (m2
a − m2

b)ω2|ω]m1
b ,m2

b

[za − zb − m1
bω1 − m2

bω2|ω]m1
a,m2

a

×
n∏

i,a=1

[za − xi + g∗|ω]m1
a,m2

a

[xi − za − m1
aω1 − m2

aω2|ω]m1
a,m2

a

. (3.113)

The inversion formula (A.6) implies the following symmetry of the hyperbolic
Pochhammer symbol:

[x − mω1 − kω2|ω]m,k = [ω1 + ω2 − x|ω]m,k. (3.114)

With its use we simplify the relation (3.113) as follows

LI0
m 1,m2 =

(ω1ω2)n/2

(−2πıS2(g∗))n

n∏

i,a=1

S−1
2 (za − xi + g∗)S−1

2 (xi − za)

×
n∏

a=1

[g∗|ω]m1
a,m2

a

[ω1 + ω2|ω]m1
a,m2

a

∏

a�=b

[za − zb + g − m1
bω1 − m2

bω2|ω]m1
a,m2

a

[za − zb − m1
bω1 − m2

bω2|ω]m1
a,m2

a

×
n∏

i,a=1

[za − xi + g∗|ω]m1
a,m2

a

[za − xi + ω1 + ω2|ω]m1
a,m2

a

. (3.115)

Analogous calculations for the multiple residue (3.106) for J = Ī0 give

RĪ0
m 1,m2 =

(ω1ω2)n/2

(2πı)n

n∏

i=1

(−1)m1
i m2

i+m1
i+m2

i S−1
2 (g∗ + m1

i ω1 + m2
i ω2)

∏m1
i

j=1 2 sin πjω1
ω2

∏m2
i

l=1 2 sin πlω2
ω1

×
n∏

i,j=1
i�=j

[
S2(xi − xj + (m1

j − m1
i )ω1 + (m2

j − m2
i )ω2)

S2(xi − xj + g∗ + (m1
j − m1

i )ω1 + (m2
j − m2

i )ω2)

S−1
2 (xi − xj + g∗ + m1

jω1 + m2
jω2)S−1

2 (xi − xj − m1
i ω1 − m2

i ω2)
]

×
n∏

i,a=1

S−1
2 (za − xi + g∗ + m1

i ω1 + m2
i ω2)

S−1
2 (xi − za − m1

i ω1 − m2
i ω2),

(3.116)
so that

RĪ0
m 1,m2 =

(ω1ω2)n/2

(2πıS(g∗))n

n∏

i,a=1

S−1(za − xi + g∗)S−1(xi − za)

×
n∏

i=1

[g∗|ω]m1
i ,m2

i

[ω1 + ω2|ω]m1
i ,m2

i

∏

i�=j

[xi − xj + g − m1
i ω1 − m2

i ω2|ω]m1
j ,m2

j

[xi − xj − m1
i ω1 − m2

i ω2|ω]m1
j ,m2

j

×
n∏

i,a=1

[za − xi + g∗|ω]m1
i ,m2

i

[za − xi + ω1 + ω2|ω]m1
i ,m2

i

.

(3.117)
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Comparing (3.115) and (3.117), we see that the equality (3.108) is equivalent
to the relation

∑

|m 1|=M

|m 2|=K

n∏

a=1

[g∗|ω]m1
a,m2

a

[ω1 + ω2|ω]m1
a,m2

a

∏

a�=b

[za − zb + g − m1
bω1 − m2

bω2|ω]m1
a,m2

a

[za − zb − m1
bω1 − m2

bω2|ω]m1
a,m2

a

×
n∏

i,a=1

[za − xi + g∗|ω]m1
a,m2

a

[za − xi + ω1 + ω2|ω]m1
a,m2

a

=
∑

|m 1|=M

|m 2|=K

n∏

i=1

[g∗|ω]m1
i ,m2

i

[ω1 + ω2|ω]m1
i ,m2

i

∏

i�=j

[xi − xj + g − m1
i ω1 − m2

i ω2|ω]m1
j ,m2

j

[xi − xj − m1
i ω1 − m2

i ω2|ω]m1
j ,m2

j

×
n∏

i,a=1

[za − xi + g∗|ω]m1
i ,m2

i

[za − xi + ω1 + ω2|ω]m1
i ,m2

i

.

(3.118)
Here, the sums in both sides of the relation are taken over two sequences
m1 and m2 (3.98) of non-negative integers with their fixed sums equal to M
and K,

mj
i ≥ 0, |m1| =

n∑

i=1

m1
i = M, |m2| =

n∑

i=1

m2
i = K. (3.119)

Make the change of variables

xi �→ xi + ω1 + ω2. (3.120)

Then, the relation (3.118) looks as

∑

|m 1|=M

|m 2|=K

n∏

a=1

[ω1 + ω2 − g|ω]m1
a,m2

a

[ω1 + ω2|ω]m1
a,m2

a

n∏

a,b=1
a�=b

[za − zb + g − m1
bω1 − m2

bω2|ω]m1
a,m2

a

[za − zb − m1
bω1 − m2

bω2|ω]m1
a,m2

a

×
n∏

i,a=1

[za − xi − g|ω]m1
a,m2

a

[za − xi|ω]m1
a,m2

a

=
∑

|m 1|=M

|m 2|=K

n∏

i=1

[ω1 + ω2 − g|ω]m1
i ,m2

i

[ω1 + ω2|ω]m1
i ,m2

i

n∏

i,j=1
i�=j

[xi − xj + g − m1
i ω1 − m2

i ω2|ω]m1
j ,m2

j

[xi − xj − m1
i ω1 − m2

i ω2|ω]m1
j ,m2

j
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×
n∏

i,a=1

[za − xi − g|ω]m1
i ,m2

i

[za − xi|ω]m1
i ,m2

i

. (3.121)

The factorization formula (A.10) is equivalent to the factorization of the hy-
perbolic Pochhammer symbol:

[x|ω]m,k = [x|ω1]m · [x|ω2]k. (3.122)

Here

[x|ω1]m =
S2(x)

S2(x + mω1)
, [x|ω2]k =

S2(x)
S2(x + kω2)

. (3.123)

For non-negative m and k

[x|ω1]m =
m−1∏

i=0

2 sin π
x + iω1

ω2
, [x|ω2]k =

k−1∏

j=0

2 sin π
x + jω2

ω1
. (3.124)

By using (3.122) and canceling the appearing sings, we can factorize each ratio
in (3.121) into the product over periods:

[ω1 + ω2 − g|ω]m1
a,m2

a

[ω1 + ω2|ω]m1
a,m2

a

=
[ω1 − g|ω1]m1

a

[ω1|ω1]m1
a

× [ω2 − g|ω2]m1
a

[ω2|ω1]m2
a

,

[za − zb + g − m1
bω1 − m2

bω2|ω]m1
a,m2

a

[za − zb − m1
bω1 − m2

bω2|ω]m1
a,m2

a

=
[za − zb + g − m1

bω1|ω1]m1
a

[za − zb − m1
bω1|ω1]m1

a

× [za − zb + g − m2
bω2|ω2]m2

a

[za − zb − m2
bω2|ω2]m2

a

,

[za − xi − g|ω]m1
a,m2

a

[za − xi|ω]m1
a,m2

a

=
[za − xi − g|ω1]m1

a

[za − xi|ω1]m1
a

× [za − xi − g|ω2]m2
a

[za − xi|ω2]m2
a

.

Thus, the relation (3.121) decouples into two independent identities

∑

|m 1|=M

n∏

a=1

[ω1 − g|ω1]m1
a

[ω1|ω1]m1
a

n∏

a,b=1
a�=b

[za − zb + g − m1
bω1|ω1]m1

a

[za − zb − m1
bω1|ω1]m1

a

n∏

i,a=1

[za − xi − g|ω1]m1
a

[za − xi|ω1]m1
a

=
∑

|m1|=M

n∏

i=1

[ω1 − g|ω1]m1
i

[ω1|ω1]m1
i

n∏

i,j=1
i�=j

[xi − xj + g − m1
i ω1|ω1]m1

j

[xi − xj − m1
i ω1|ω1]m1

j

n∏

i,a=1

[za − xi − g|ω1]m1
i

[za − xi|ω1]m1
i

(3.125)

and
∑

|m 2|=K

n∏

a=1

[ω2 − g|ω2]m2
a

[ω2|ω2]m2
a

n∏

a,b=1
a�=b

[za − zb + g − m2
bω2|ω2]m2

a

[za − zb − m2
bω2|ω2]m2

a
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n∏

i,a=1

[za − xi − g|ω2]m2
a

[za − xi|ω2]m2
a

=
∑

|m 2|=K

n∏

i=1

[ω2 − g|ω2]m2
i

[ω2|ω2]m2
i

n∏

i,j=1
i�=j

[xi − xj + g − m2
i ω2|ω2]m2

j

[xi − xj − m2
i ω2|ω2]m2

j

n∏

i,a=1

[za − xi − g|ω2]m2
i

[za − xi|ω2]m2
i

. (3.126)

These are precisely hypergeometric identities (1.32) written in additive form.
Their proof is given in the next section. Using it we complete the proof
of Proposition 2 and of the main statement of commutativity of Baxter Q-
operators. �

4. Proof of Hypergeometric Identities

The relations (3.125) and (3.126) are equivalent modulo the interchange of the
periods. We choose (3.126). Rewrite it in the common multiplicative notations
of basic hypergeometry. Set

q = e
2πıω2

ω1 , t = e
−2πıg

ω1 , ui = e
2πızi

ω1 , va = e
2πıxa

ω1 . (4.1)

Denote by (z; q)k and [z; q]k non-symmetric and symmetric q-analogs of
Pochhammer symbols,

(z; q)k = (1 − z)(1 − qz) · · · (1 − qk−1z),

[z; q]k = (z1/2 − z−1/2)(q1/2z1/2 − q−1/2z−1/2)

· · · (q(k−1)/2z1/2 − q(−k+1)/2z−1/2).

(4.2)

Then, (3.126) becomes

∑

|k|=K

n∏

i=1

[qt; q]ki

[q; q]ki

×
n∏

i,j=1
i�=j

[t−1q−kj ui/uj ; q]ki

[q−kj ui/uj ; q]ki

×
n∏

a,j=1

[tuj/va; q]kj

[uj/va; q]kj

=
∑

|k|=K

n∏

a=1

[qt; q]ka

[q; q]ka

×
n∏

a,b=1
a�=b

[t−1q−kava/vb; q]kb

[q−kava/vb; q]kb

×
n∏

a,j=1

[tuj/va; q]ka

[uj/va; q]ka

(4.3)

in terms of symmetric q-Pochhammers. Here, the sum in both sides of the
equality is taken over n-tuples of non-negative integers with total sum equal
to K

k = (k1, . . . , kn), ki ≥ 0, k1 + . . . + kn = K.
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It has the same form in terms of traditional non-symmetric q-Pochhammer
symbols:

∑

|kn|=K

n∏

i=1

(qt; q)ki

(q; q)ki

×
n∏

i,j=1
i�=j

(t−1q−kj ui/uj ; q)ki

(q−kj ui/uj ; q)ki

×
n∏

a,j=1

(tuj/va; q)kj

(uj/va; q)kj

=
∑

|kn|=K

n∏

a=1

(qt; q)ka

(q; q)ka

×
n∏

a,b=1
a�=b

(t−1q−kava/vb; q)kb

(q−kava/vb; q)kb

×
n∏

a,j=1

(tuj/va; q)ka

(uj/va; q)ka

.

(4.4)
However, it is more convenient for us to prove the symmetric version of identity
(4.3).

The proof follows the standard line of complex analysis: in a rather tricky
way we check that the difference of the left and right hand sides has zero
residues at all possible simple poles. Thus, both sides are the Laurent poly-
nomials symmetric over the variables ui and over the variables vj . Then, the
asymptotic analysis of these polynomials shows that their difference is actually
equal to zero.

The crucial step—calculation of the residues of both sides of the equality—
divides into two parts. First we show that each side is regular at the diagonals
ui = qpuj and va = qsvb between the variables of the same group, see Lemma 6.
In this calculation, we actually observe the canceling of terms grouped in cor-
responding pairs. Then, we show that residues at mixed diagonals ui = qpva

vanish. This is done by induction, using the non-trivial relation between such
residues stated in Lemma 7. Below we give a brief proof of both lemmas; all
technical details are presented in our paper [4].

It is not difficult to verify that all the poles in (4.3) are simple. Consider
the left hand side of (4.3) as the function of u1 and calculate the residue of
this function at the point

u1 = u2q
p, p ∈ Z. (4.5)

For each k,
∑n

j=1 kj = K denote by Uk = Uk(u;v) the corresponding sum-
mand of the left hand side of (4.3), and by Vk = Vk(u;v) the corresponding
summand of the right hand side of (4.3),

Uk =
n∏

i=1

[qt; q]ki

[q; q]ki

×
n∏

i,j=1
i�=j

[t−1q−kj ui/uj ; q]ki

[q−kj ui/uj ; q]ki

×
n∏

a,j=1

[tuj/va; q]kj

[uj/va; q]kj

,

Vk =
n∏

a=1

[qt; q]ka

[q; q]ka

×
n∏

a,b=1
a�=b

[t−1q−kava/vb; q]kb

[q−kava/vb; q]kb

×
n∏

a,j=1

[tuj/va; q]ka

[uj/va; q]ka

.

The summands Uk , which contribute to the residue at the point (4.5), are
divided into two groups. The denominators of the terms Uk from the first
group k ∈ Ip contain Pochhammer symbol

[q−k2u1/u2; q]k1
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which vanishes at the point (4.5). It happens when

k2 − k1 + 1 ≤ p ≤ k2,

so that
Ip = {k, |k| = K : k1 ≥ k2 + 1 − p, k2 ≥ p}.

The denominators of the terms Ul in the second group l ∈ IIp contain Pochham-
mer

[q−l1u2/u1; q]l2
which vanishes at the point (4.5). It happens when

−l1 ≤ p ≤ l2 − l1 − 1,

so that
IIp = {l, |l| = K : l1 ≥ −p, l2 ≥ l1 + 1 + p}.

Define the maps of sets ϕp : Ip → IIp and ψp : IIp → Ip by the same formulas

φp : Ip → IIp φp(k1, k2,k′) = (k2 − p, k1 + p,k′),

ψp : IIp → Ip ψp(k1, k2,k′) = (k2 − p, k1 + p,k′)

where k′ = (k3, . . . , kn).

Lemma 6. 1. Maps φp and ψp establish bijections between the sets Ip and
IIp;

2. For any k ∈ Ip

Resu1=u2qp Uk(u;v) + Resu1=u2qp Uφp(k)(u;v) = 0, (4.6)

Resv2=v1qp Vk(u;v) + Resv2=v1qp Vφp(k)(u;v) = 0. (4.7)

Proof of Lemma 6. The first part is purely combinatorial and can be checked
directly. Let us prove the second part.

Note first that each summand Uk(u;v) of the left hand side of (4.3) has
the following structure

Uk(u;v) =
Uk(u;v; t)
Uk(u;v; 1)

(4.8)

where

Uk(u;v; t) =
n∏

i=1

[qt; q]ki
×

n∏

i,j=1
i�=j

[t−1q−kj ui/uj ; q]ki
×

n∏

a,j=1

[tuj/va; q]kj
. (4.9)

The following identity

Uk1,k2,k′(u;v; t)|u1=qpu2 = Uk2−p,k1+p,k′(u;v; t)|u1=qpu2 ,

k = (k1, k2,k′) ∈ Ip (4.10)

valid for any k = (k1, k2,k′) ∈ Ip is established with a help of an explicit bi-
jection between linear factors of the products in both sides of equality (4.10).
Then, this equality implies the statement (4.6) about zero sum of the residues.
Indeed, the relation (4.10) establishes a bijection between all nonzero fac-
tors of the denominators Uk1,k2,k′(u;v; 1)|u1=qpu2 and Uk2−p,k1+p,k′(u;v; 1)
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and the equality of their products. Factors in denominators of Uk1,k2,k′(u;v)
and Uk2−p,k1+p,k′(u;v) which tend to zero when u1 tends to qpu2 are

q−p/2u1/u2 − qp/2u2/u1 and qp/2u2/u1 − q−p/2u1/u2. (4.11)

They give inputs into residues, which just differ by sign. Thus, we arrive at
(4.6). For the proof of (4.7), we note that the involution

τ : ui �→ v−1
i , vi �→ u−1

i (4.12)

exchanges each Uk with Vk , as well as the left and right hand sides of (4.3).
�

Corollary 4. Both sides of (4.3) have no poles of the form ui = qpuj and
va = qpvb.

For any non-negative integer p denote by ϕp(u;v) the following rational
function of u = (u1, . . . , un) and v = (v1, . . . , vn):

ϕp(u;v) = (−1)p [tq; q]2p

[q; q]p[q; q]p−1

n∏

j=2

[tuj/v1; q]p
[u1/uj ; q]p

n∏

b=2

[tu1/vb; q]p
[vb/v1; q]p

(4.13)

Lemma 7. For any 1 ≤ p ≤ k1 and k′ ∈ Z
n−1
≥0

Resv1=qp−1u1

1
v1

Vk1,k′(u;v) = ϕp(u;v) × Vk1−p,k′(qv1,u′; q−1u1,v
′),

(4.14)

Resv1=qp−1u1

1
v1

Uk1,k′(u;v) = ϕp(u;v) × Uk1−p,k′(qv1,u′; q−1u1,v
′).

(4.15)

Proof of Lemma 7. It is a direct computation which uses the following prop-
erties of q-Pochhammer symbols:

[qpu; q]m × [u]n = [qpu; q]n−p × [u; q]m+p, (4.16)

[qu; q]m × [q−(m+p)u−1; q]n = (−1)p[qu; q]m+p × [q−mu−1; q]n−p (4.17)

which are valid for any u and integer m,n, p. Here we assume that

[z; q]−n = (q1/2z1/2 − q−1/2z−1/2)−1 · · · (qn/2z1/2 − q−n/2z−1/2)−1, n > 0.
(4.18)

For more technical details, see [4]. �

Proof of Theorem 3. We are ready now to prove the equality (4.3) and thus
Theorem 3 by induction over K. Denote the difference of the left and right
hand sides of (4.3) by WK(u;v). Assume that WK(u,v) = 0 for all K < N
and any m-tuples of variables u = (u1, . . . , um), v = (v1, . . . , vm) for arbitrary
m. Summing up the difference of (4.14) and (4.15) over all k with |k| = K, we
get the relation

Resv1=qp−1u1

1
v1

WK(u;v) = ϕp(u;v) × WK−p(u∗,v∗), (4.19)
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where

u∗ = (qv1,u′), v∗ = (q−1u1,v
′). (4.20)

By the induction assumption the right hand side of (4.19) equals zero. Taking
in mind the symmetricity of WK(u;v) with respect to permutation of ui and
of vj we conclude that it has no poles at all. Since WK(u;v) is a homogeneous
rational function of the variables ui and vj of total degree zero, it is equal
to a constant, which could depend on q and t. To compute this constant, we
consider the behavior of this function in asymptotic zone

u1 � u2 � . . . � un � vn � vn−1 � . . . � v1. (4.21)

Here both sides of (4.3) tend to

∑

|kn|=K

n∏

i=1

[qt; q]ki

[q; q]ki

× t
1
2

(
(n−1)k1+(n−3)k2+...+(3−n)kn−1+(1−n)kn

)
× t−

nK
2 .

(4.22)

Therefore, WK(u;v) tends to zero in this asymptotic zone and so equals zero
identically. This completes the induction step, the proof of the identity (4.3)
and of Theorem 3. �
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Appendix

A. Double Gamma and Sine Functions

The Barnes double Gamma function Γ2(z|ω) [1] is defined by the relation

Γ2(z|ω) = exp
(

∂

∂s
ζ2(s, z|ω)

)∣∣∣
s=0

,

where ζ2(s, z|ω) is the analytical continuation of the series

ζ2(s, z|ω) =
∑

n1,n2≥0

(z + n1ω1 + n2ω2)−s, Re s > 2

which under assumptions (1.14) and Re z > 0 can be presented by the integral

ζ2(s, z|ω) = Γ(1 − s)
∫

C

e−zt(−t)s

(1 − e−ω1t) (1 − e−ω2t)
dt

2πıt

over the Hankel contour C enclosing the ray {t ≥ 0} counterclockwise. Under
the same assumptions analogous integral presentation of ln Γ2(z|ω) looks as
follows

ln Γ2(z|ω) =
γ

2
B2,2(z|ω) +

∫

C

e−zt ln(−t)
(1 − e−ω1t) (1 − e−ω2t)

dt

2πıt
. (A.1)

Here

B2,2(z|ω) =
z2

ω1ω2
− ω1 + ω2

ω1ω2
z +

ω2
1 + 3ω1ω2 + ω2

2

6ω1ω2
(A.2)

is a particular multiple Bernoulli polynomial, γ is the Euler constant.
The double sine function S2(z) := S2(z|ω), see [15] and references therein,

is then defined as

S2(z|ω) = Γ2(ω1 + ω2 − z|ω)Γ−1
2 (z|ω). (A.3)

It satisfies functional relations

S2(z)
S2(z + ω1)

= 2 sin
πz

ω2
,

S2(z)
S2(z + ω2)

= 2 sin
πz

ω1
(A.4)

and inversion relation

S2(z)S2(−z) = −4 sin
πz

ω1
sin

πz

ω2
, (A.5)

or equivalently
S2(z)S2(ω1 + ω2 − z) = 1. (A.6)

The double sine function is a homogeneous function of all its arguments

S2(γz|γω1, γω2) = S2(z|ω1, ω2), γ ∈ (0,∞) (A.7)

and is invariant under permutation of periods

S2(z|ω1, ω2) = S2(z|ω2, ω1). (A.8)
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The relation (A.4) has a useful corollary

S2(z)
S2(z + mω1 + kω2)

= (−1)mk
m−1∏

j=0

2 sin
π

ω2
(z + jω1)

k−1∏

j=0

2 sin
π

ω1
(z + jω2),

S2(z − mω1 − kω2)
S2(z)

= (−1)mk
m∏

j=1

2 sin
π

ω2
(z − jω1)

k∏

j=1

2 sin
π

ω1
(z − jω2)

(A.9)
that holds for m, k ≥ 0. The latter relations also imply the following factor-
ization formula

S2(z)S2(z + mω1 + kω2) = (−1)mkS2(z + mω1)S2(z + kω2) (A.10)

for m, k ∈ Z. The function S2(z) is a meromorphic function of z with poles at

zm,k = mω1 + kω2, m, k ≥ 1 (A.11)

and zeros at
z−m,−k = −mω1 − kω2, m, k ≥ 0. (A.12)

For ω1/ω2 �∈ Q all poles and zeros are simple. The residues of S2(z) and S−1
2 (z)

at these points are

Res
z=zm,k

S2(z) =
√

ω1ω2

2π

(−1)mk

m−1∏
s=1

2 sin
πsω1

ω2

k−1∏
l=1

2 sin
πlω2

ω1

, (A.13)

Res
z=z−m,−k

S−1
2 (z) =

√
ω1ω2

2π

(−1)mk+m+k

m∏
s=1

2 sin
πsω1

ω2

k∏
l=1

2 sin
πlω2

ω1

. (A.14)

The integral representation for the logarithm of double sine function

ln S2(z) =
∫ ∞

0

dt

2t

(
sh [(2z − ω1 − ω2)t]

sh(ω1t)sh(ω2t)
− 2z − ω1 − ω2

ω1ω2t

)
(A.15)

holds true for Re z ∈ (0,Re (ω1 + ω2)).
The double dine function also can be written in terms of Ruijsenaars

hyperbolic Gamma function G(z|ω) [21]

G(z|ω) = S2

(
ız +

ω1 + ω2

2

∣∣∣ ω
)

(A.16)

or Faddeev quantum dilogarithm γ(z|ω) [5]

γ(z|ω) = S2

(
−ız +

ω1 + ω2

2

∣∣∣ ω
)

exp
( ıπ

2ω1ω2

[
z2 +

ω2
1 + ω2

2

12

])
. (A.17)

Both functions G(z|ω) and γ(z|ω) were investigated independently.
In what follows, we use the same notations as in Sect. 3.1. Denote by σi

the arguments of the periods ωi, |σi| < π/2. Since the double sine function is
invariant under permutation of ω1, ω2, suppose for definiteness that σ1 ≥ σ2.
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Let D+ and D− be the cones of poles and zeros of the double sine function
S2(z|ω):

D+ = {z : σ2 < arg z < σ1}, D− = {z : π + σ2 < arg z < π + σ1},

D = D+ ∪ D−.

Denote by d(z,D+) and d(z,D−) the distances between a point z and the
cones D±. Then, the Barnes’ Stirling formula for the logarithm of the double
Gamma function, see [1, §§85–86], with error term suggested by E. Rains [19,
Theorem 2.6] looks as

ln Γ2(z|ω) = −1
2
B2,2(z|ω) ln z +

3
4ω1ω2

z2 − ω1 + ω2

2ω1ω2
z + O

(
d−1(z,D−)

)
.

(A.18)
Here z ∈ C \ D−. Moreover, the estimates for the error term given in [2, §57]
are uniform on compact subsets of parameters ω separated from zero. Then,
for z ∈ C\(D+ ∪ D−)

ln S2(z|ω) = ln Γ2(ω1 + ω2 − z|ω1, ω2) − ln Γ2(z|ω1, ω2)

= ±πı

2
B2,2(z|ω) + O

(
d−1(z,D)

)
.

(A.19)

where the sign + is taken for z in the upper half plane and the sign − for z in
the lower half plane (and not in D). Finally, in the same notations,

ln
S2(z|ω)

S2(z + g|ω)
= ∓πı

g

ω1ω2

(
z − g∗

2

)
+ O

(
d−1(z,D)

)
. (A.20)

Equivalently, for z ∈ C \ D

S2(z|ω)
S2(z + g|ω)

= e
∓πı g

ω1ω2

(
z− g∗

2

)(
1 + O

(
d−1(z,D)

))
. (A.21)

Using the asymptotics (A.21), we can derive the following bounds which we
use for the study of integrals convergence throughout the paper.

Let K ⊂ C be a closed subset of a complex plane satisfying the following
conditions:

1. K is inside the domain of analyticity of S2(z|ω)S−1
2 (z + g|ω);

2. There exists R > 0 and ρ > |g| such that K ∩{|z| > R} does not intersect
with D and

d(K ∩ {|z| > R},D) ≥ ρ. (A.22)

Proposition 3. Under the conditions 1 and 2 above, we have a bound
∣∣S2(z|ω)S−1

2 (z + g|ω)
∣∣ < Ce∓Re πıgz

ω1ω2 , z ∈ K. (A.23)

The constant C can be stated uniform as the parameters g, ω1, ω2 range
in a compact domain separated from zero values of periods.

Proof. Due to (A.21) and condition 2, there exist R1 > R and C1 such that
∣∣S2(z|ω)S−1

2 (z + g|ω)
∣∣ < C1e

∓Re πıgz
ω1ω2 , z ∈ K, |z| > R1. (A.24)

On the other hand, the set

K ∩ {|z| ≤ R1} (A.25)



Vol. 25 (2024) Baxter Operators in Ruijsenaars Hyperbolic System I 3253

is compact and belongs to the region of analyticity of the function S2(z|ω)
S−1
2 (z + g|ω). Thus, this function is bounded on the set (A.25),

∣∣S2(z|ω)S−1
2 (z + g|ω)

∣∣ < C2, z ∈ K, |z| < R1. (A.26)

At the same time both real functions e∓Re πıgz
ω1ω2 are analytic and positive on

the compact set (A.25). Thus, they are bounded from below on this set

e∓Re πıgz
ω1ω2 > C3 > 0. (A.27)

Combining (A.26) and (A.27), we conclude that there exists a positive constant
C4 such that

∣∣S2(z|ω)S−1
2 (z + g|ω)

∣∣ < C4e
∓Re πıgz

ω1ω2 , z ∈ K, |z| ≤ R1. (A.28)

Combining (A.24) and (A.28) we arrive at the proof of Proposition 3. �

There are two straightforward corollaries of Proposition 3. First, since
|Re z| < |z|, (A.23) implies that the function S2(z|ω)S−1

2 (z + g|ω) grows at
most exponentially

∣∣S2(z|ω)S−1
2 (z + g|ω)

∣∣ < Cea|z|, z ∈ K. (A.29)

Second, assume that K is contained in a strip |Re z| < b for some b > 0. Then,
(A.23) implies the bound

∣∣S2(z|ω)S−1
2 (z + g|ω)

∣∣ < C̃eRe πg
ω1ω2

|y|, z = x + iy ∈ K. (A.30)

The same statement holds for the inverse ratio. Namely, Let K ′ ⊂ C be
a closed subset of a complex plane satisfying the following conditions:

1′. K ′ is inside the domain of analyticity of S−1
2 (z|ω)S2(z + g|ω);

2′. There exists R′ > 0 and ρ′ > |g| such that K ′ ∩ {|z| > R′} does not
intersect with D and

d(K ′ ∩ {|z| > R′},D) ≥ ρ′. (A.31)

Proposition 4. Under the conditions 1′ and 2′ above, we have a bound
∣∣S−1

2 (z|ω)S2(z + g|ω)
∣∣ < C ′e±Re πıgz

ω1ω2 . (A.32)

In particular, the function S−1
2 (z|ω)S2(z + g|ω) grows at most exponen-

tially
∣∣S−1

2 (z|ω)S2(z + g|ω)
∣∣ < C ′ea|z|, z ∈ K. (A.33)

If K ′ is contained in a strip |Re z| < b′ for some b′ > 0, then
∣∣S−1

2 (z|ω)S2(z + g|ω)
∣∣ < C̃ ′e−Re πg

ω1ω2
|y|, z = x + iy ∈ K ′. (A.34)
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B. Bounds for Integrals

Both functions μ(z) and K(z) can be presented as the ratios of double sine
functions that appear in Propositions 3 and 4

μ(z) = S2(ız)S−1
2 (ız + g),

K(z) = S2

(
ız +

ω1 + ω2

2
+

g

2

)
S−1
2

(
ız +

ω1 + ω2

2
− g

2

)
.

(B.1)

The conditions (1.14) and (1.15) imply that both functions have a strip of
analyticity which include the real line of the parameter z. For brevity, we also
denote by νg the constant in the assumption (1.27)

νg = Re
g

ω1ω2
> 0. (B.2)

Then, by (A.30) and (A.34) we have

|K(y)| < Ce−πνg|y|,

|μ(y)| < Ceπνg|y|,
y ∈ R, (B.3)

where C is a positive constant uniform for a compact subset of parameters
ω1, ω2 and g preserving the conditions above. Assume also the condition

| Im λ| ≤ δ < νg (B.4)

with some positive δ.

Proposition 5. The integral (3.4) corresponding to the kernel of Q-operators
product

Qn(z2n;λ) =
∫

Rn

dyn

n∏

i,j=1
i�=j

μ(yi − yj)
2n∏

a=1

n∏

i=1

K(yi − za) e2πıλy
n (B.5)

converges uniformly with respect to the parameters λ, za, ω, g, while the pa-
rameters za, ω, g range over compact sets preserving the conditions (1.14),
(1.15) and (B.2) and the parameter λ varies satisfying the condition (B.4)

Proof. Denote integrand by F . Using (B.3), we arrive at the following bound

|F | ≤ C exp

(
πνg

n∑

i,j=1
i�=j

|yi − yj | − πνg

2n∑

a=1

n∑

i=1

|yi − za| + Re
(
2πıλ

n∑

i=1

yi

))
,

(B.6)
where constant C depends on g,ω. Using for the first two sums inequalities

|yi − yj | ≤ |yi| + |yj |, |yi − za| ≥ |yi| − |za| (B.7)

together with |za| ≤ M (since all za vary over compact set) and for the last
sum inequality ∣∣∣∣

n∑

i=1

yi

∣∣∣∣ ≤
n∑

i=1

|yi|
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we arrive at

|F | ≤ C exp

(
2πνgn

2M + 2π(| Im λ| − νg)
n∑

i=1

|yi|
)

. (B.8)

Since λ satisfies (B.4), the bound (B.8) implies the statement of the proposi-
tion. �

Remark. As it can be seen from the bound (B.6), the second inequality from
the line (B.7) and the bound on the measure function

|μ(zn)| ≤ C exp

(
πνg

n∑

i,j=1
i�=j

|zi − zj |
)

≤ C exp

(
2πνg(n − 1)

n∑

i=1

|zi|
)

(B.9)

the product of two Q-operators Qn(λ)Qn(ρ) is well defined on fast decreasing
functions f(zn) bounded as

|f(zn)| ≤ C exp

(
−πνg

[
3n − 2 +

2| Im ρ|
νg

+ ε

] n∑

i=1

|zi|
)

(B.10)

with any ε > 0. In the case Im ρ = 0, the bound does not depend on the
Q-operators parameters

|f(zn)| ≤ C exp

(
−πνg(3n − 2 + ε)

n∑

i=1

|zi|
)

. (B.11)

Besides the integral (3.4) over the real plane in Sect. 3.1 we consider the
iterated integral with the same kernel over big semicircles. The study of its
convergence and vanishing in the limit splits into three parts: the behavior near
real plane where the integrand should rapidly vanish; the total exponential
bound of the integrand

F̃ = μ(yn)
2n∏

a=1

n∏

i=1

K(yi − za) (B.12)

with the exponent e2πıλy
n in the regular domain C \ D; and the exponential

bound of the integrand (B.12) in the irregular domain D. The second part
is performed by using inequalities (B.7) and exponential bounds (A.29) and
(A.33). The third part follows from the same inequalities (B.7) and the results
of Sect. 3.1.

Finally, for the first part we need a bound similar to (B.8) but for the
arguments in a cone around a real line. This can be done for the parameter λ
with negative real part, so that

2πλ = −R + ıθ, R > 0, |θ| ≤ 2πδ < 2πνg, (B.13)

and the integration variables on the cone around a real line with negative
imaginary parts

yi = ȳi(1 ± ıtgϕi), ȳi ∈ R, ±ȳitgϕi < 0, 0 < ϕi < σ. (B.14)
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Here σ is the angle of the cone. The sign + (or −) corresponds to ȳi < 0 (or
ȳi > 0). Denote also

g

ω1ω2
= νg(1 + ıtgϕg), α = |tgϕgtgσ|. (B.15)

Suppose the following inequality is satisfied

2πνg(1 − (2n − 1)α) − |θ| > ε (B.16)

for some ε > 0. For the fixed parameters g, θ this inequality tells us, how small
should be σ, that is how narrow should be the cone around a real line, in order
to have the following bound.

Proposition 6. Under the conditions (B.13), (B.14), (B.16) we have the bound

|F | ≤ C exp

(
−ε

n∑

i=1

|ȳi|
)

. (B.17)

Proof. For the variables on the cone (B.14) use the bound (A.23) for measure
function together with (B.15)

|μ(yi − yj)| ≤ C exp
(∣∣∣Re

πg

ω1ω2
(yi − yj)

∣∣∣
)

≤ C exp
(

πνg(1 + α)(|ȳi| + |ȳj |)
)

.

(B.18)
In the same spirit we use the bound (A.32) for kernel function assuming big
enough values of |yi| (compared to za) and, as before, |za| ≤ M

|K(yi − za)| ≤ C′ exp

(
∓Re

πıg

ω1ω2

[
ı(yi − za) +

g∗

2

])
≤ C̃′ exp

(
−πνg(1 − α)|ȳi|

)
.

(B.19)

Therefore, for the whole integrand we have the bound

|F | ≤ C exp

(
πνg(1+α)

n∑

i,j=1
i�=j

(|ȳi|+ |ȳj |)−πνg(1−α)
2n∑

a=1

n∑

i=1

|ȳi|+ |θ|
∣∣∣∣

n∑

i=1

ȳi

∣∣∣∣

)
,

(B.20)
which implies

|F | ≤ C exp

(
[
2πνg((2n − 1)α − 1) + |θ|]

n∑

i=1

|ȳi|
)

. (B.21)

Then, the proposition follows from the condition (B.16). �
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[22] Ruijsenaars, S.N.M.: Zero-eigenvalue eigenfunctions for differences of elliptic rel-
ativistic Calogero–Moser Hamiltonians. Theor. Math. Phys. 146(1), 25–33 (2006)
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