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Abstract

Using Zhelobenko—Stern formulas for the action of the generators of orthogonal
Lie algebra in corresponding Gelfand—Tsetlin basis, we derive Mellin—Barnes pre-
sentations for the wave functions of B, Toda lattice. They are in accordance with
Torgov—Shadura formulas.
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1 Introduction

In the paper [4], Gerasimov, Kharchev and Lebedev applied the famous formulas [2]
for the action of generators of general Lie algebra gl/(n) in Gelfand-Tsetlin basis
of irreducible finite-dimensional representations of general linear group GL (n, C) to
obtain Mellin—Barnes presentation of the wave functions of open A,, Toda chain. Using
Gelfand-Tsetlin formulas, they constructed an infinite-dimensional representation of
Lie algebra gl(n, C) in the space of meromorphic functions on n(n — 1)/2 variables,
found there two dual Whittaker vectors and realized, according to Kostant theory
[11], the Toda wave function as certain matrix element in this representation. The
same formulas were earlier established by Kharchev and Lebedeyv in the technique of
Yang—Baxter formalism [10].

Besides, Toda wave functions admit another presentation, known by the name
Gauss—Givental by means of integrals over spatial variables. It was found first in
[5]. Gauss—Givental presentation was then derived in [3] for wave functions of Toda
systems related to B, Cy,, D, root systems.
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Mellin transform of these formulas was computed in [9]. However, the formulas
presented in [9] differ from that of [4] and are not satisfactory by several reasons. In
particular, one cannot find in this presentation Sklyanin measure and thus the results
of [9] cannot be used to establish the completeness and orthogonality of the wave
function and develop the corresponding integral transform.

The goal of this paper is to try to fill this gap at least partially for B, Toda system
using representation theoretical tools similar to that of [4]. The only known result in
this direction is the paper [7] of Iorgov and Shadura, where they constructed B,, wave
function by its decomposition over related A, Toda wave function. As well as in [10],
this work was done in a framework of the Yang—Baxter formalism.

Our starting point is an analog of Gelfand-Tsetlin formulas for orthogonal groups
published without a proof by Zhelobenko and Stern [12]. These formulas look much
more complicated compared to [2] and we did not find numerous applications of them
in the literature. However, after their check we constructed ‘Gelfand-Tsetlin’ infinite-
dimensional representation of the orthogonal Lie algebra and found there two dual
Whittaker vectors. With their help we constructed the integrals, presenting B, wave
functions in which we see all expected ingredients of Sklyanin measure. The resulting
formula can be presented as an iterative procedure in two ways.

Firstly, it is an iterative procedure over the rank of orthogonal group and this is prob-
ably the most interesting result of this paper. Each step can be interpreted as an action
of the raising integral operator, where kernel is itself an integral over intermediate
variables. In such type of structure, we also observe in Gauss—Givental representa-
tion [3, (1.74)]. Second, we can consider two successive iterative integrals combining
them in other parity. Then, intermediate step becomes precisely a degeneration of By,
Gustafson integral and can be explicitly evaluated. In this way, we arrive at Iorgov—
Shadura formula.

Note the two subtle points of our construction. First, Zhelobenko—Stern formulas
are written for the generators of orthogonal Lie algebras in their orthogonal realization,
while Whittakker vectors refer to simple root generators. An existence of Whittaker
vectors in a factorized form was not evident from the beginning. By the same reasons,
action of the Cartan subalgebra in corresponding infinite-dimensional representation
cannot be written, contrary to g/(n), in terms of multiplications by linear functions.
Fortunately, it is so for the action on Whittaker vectors.

Despite the fact that Zhelobenko—Stern formulas are written uniformly for all
orthogonal Lie algebras, we succeeded to find Whittaker vectors in ‘only for Lie
algebras so(2n — 1).” More precisely, the main ingredient in the construction of Whit-
taker vector in ‘Gelfand—Tsetlin representation’ is the solution of difference equations
(A.1)—~(A.2). These equations describe *degenerate’ Whittaker vectors for so(2n), for
which one of the simple generators acts by zero, so that they are essentially Whittaker
vectors for embedded gl(n) Lie algebra. Restricting these vectors to so(2n — 1), we
get ‘nondegenerate’ Whittaker vectors for this Lie algebra which we further use for
the construction of the wave function for B, Toda system.
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2 Gelfand-Tsetlin type representation
2.1 Zhelobenko-Stern formulas

Itis well known that each irreducible representation of the orthogonal groups SO (2n+
1) and S O (2n) is parametrized by its signature, given by ordered sequences of integers
or half-integers , respectively,

e Ppm1=pn >0, (SOQn+1))

>
B 2.1

pL=p2=-pa-1 = Ipal,  (SO(2n))

and the restriction of irreducible representation of SO (2n + 1) to SO (2n) has simple

spectrum described by all signatures q1, . . . gn, satisfying interleaving inequalities

P1=Z491 =2 P22 qn-1 = Pn = 4qn = —PDn- (2.2)

Analogously, the restriction of irreducible representation of SO (2n) to SO(2n — 1)
has simple spectrum described by all signatures g1, ...qn, satisfying interleaving
inequalities

PlL=q1=Pp2= " qn-1 = Dn. (2.3)

This enables one to construct an orthogonal basis of irreducible representation of the
orthogonal group SO (n) parametrized by Gelfand—Tsetlin tableaux

Pn—1,1 Pn—12 ... Pnfl,[%] Prn-1

p= P31 D32 | p 24
D21 p2
P11 P1

The upper row p,_1 indicates the signature of the irreducible representation of SO (n)
and is fixed for all tableaux parametrizing its basic vectors, the second row indicates
the signature of the restriction to SO (n — 1), etc., and the integer p;; indicates the
irreducible of SO (2). All the numbers p;; are either integers of half-integers simulta-
neously and should satisfy the row-by-row interleaving inequalities (2.1)—(2.2), that
is

Pi+1,j+1 < Pi,j < Di+1,j p2i—1,i < |p2iil, |P2i—1,il < P2i—2,i—1

It is natural to shift the signatures by the corresponding half sum of positive roots of
the related root system, that is, we set

1
P = paj + k= )+ =,
mag,j = pak,j + (k — j) > 2.5)

mag—1,j = p2k—1,j + k= j)
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Zhelobenko and Stern [12, Chapter II, Sect. 5.8] presented without a proof a pre-
cise expression for the matrix elements of generators of the Lie algebra so(n) in the
corresponding orthogonal basis.

The Lie algebra so(n) is generated, as a vector space, by elements

Iyj = exj — eji, k>j

As a Lie algebra, it is generated by elements

1k, k=1,...,n—1
with defining relations
[Tk [Tes2drts Tevrn]] = Ieroggr k=1,...,n—2
[Ter2. 41, [Te 1k Tkazi1]] = vk k=1,...,n =2 (2.6)

[let1ds Ljg1, ] =0 Jk—jl>1

After a renormalization, eliminating square roots in the coefficients and correcting
misprints, their formulas look like

ko rk—1 L1k o 1, .
btk =—Y i omak—a.r +mak—1.j + ) M=y M2k—1.j = Mokr + 3) oy,
’ o 2HIegjOmak-rj = mak—1,) o1, j + mog—1, +1)
k k=1 ) 1\ 1Tk Ly
B Z [1,2 0nok—1,j —mog—2,r — 3) [ 1= Omog,r +mop_1,j 2)676,,,2,(71,1.
= 201 (mak—1,j — mok—1,0) mak—1,j + mog—1,, — 1)
2.7
k k1 12 2
It _ Z Hr:l((mZk»j + E) - m2k+1,r) e3m2kj
U221 = Qo D[l 2,  —m2 )
j=1 "] J T2 r#Ej N2k, 2k,r
k k 12 _ 2
_((mog;j —5)"—m
ey Oy =D mh)  , oy)
j=1 2mox, j(mak,j — 3) Hr;éj(mzk,j - mzk,r)

k k+1
[T mo—1 TT,5) mors.r
k 1 1
[Tr=i marr + 3)(mar,r — 5)

+1i

Here, the operators e*" are operators of shifts of the entries of Gelfand—Tsetlin
tableau: the operator e 9"/ changes my ; by m;£1 (and, respectively, py; by pij£1).
We can extend the RHS of relations (2.7) and (2.8) to arbitrary complex parameters
m;; and regard them as operators acting in the space of rational functions on m;;.
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2.2 Representation in meromorphic functions

Following [4], we renormalize the variables

Mmyj = vﬁ (2.9)
ic

in order to have an additional scaling variable in the representation. Then, we have

! ic\ Tk
Dot ok = 1 Z Z1 k2 Fvau—1,j + 5) [Trm (Vak—1.j — vorr + 2) i
. 2
2112 ak—1,j — vak—1,)) (V2k—1,j + Vak—1,r +iC)

ko k-1 ' k i
1 Z [T k-1 — vak—2.r — 5) [ Trmy Vakr + V241, — %)e—icav,,&”
ic

21125 ak—1,j = vak—1,) (V2k—1,j + Vak—1,r — iC)

j=1

(2.10)
k k+1
) 1 H ((v2k j 2) v2k+l r) i€y
iDg42,2k41 = — e 7
1 2vak,j (Vak,j + £ nr;éj(vZk,j - Vzk,r)
k k
1 [T (o = 5% =3y ) i€
ic .
¢ = 2vak ok = ) Ty O3 ;= V3k,)
k k+1
1 —1 V2k—1 V2k+1
4 Thoivx rH_1 ket Lr @.11)

Tk
e Tl ok + Sk — %)

Proposition 1 The operators (2.7) and (2.8) satisfy the defining relations (2.6) of the
generators of orthogonal Lie algebras so(n), n > 2

Surely, this statement follows from its validity in finite-dimensional representations,
since the relations are then satisfied on sufficiently many integer points. However,
since the proof of the formulas is missing in [12], we checked the defining relation
(2.6) directly.

For a fixed n, the relations (2.10)—(2.11) can be interpreted as an infinite-
dimensional representation M, of Lie algebra so(n + 1) in the space of meromorphic
functions over v j, k < n — 1 with poles at

. ic
V2k41,j — Voktlr>  Voktl,j + Vakgl,r £ic, o, v E 5 Vakj + vok,r
The variables v, = {vy,1,..., = ]} are not touched by the Lie algebra generators

and can be regarded as parameters of submodules M, of M,

Proposition 2 The center of SO (2n + 1) acts by multiplication on symmetric polyno-
mials in v22n7 v The center of SO (2n) acts by multiplication of polynomials on v%n_ Lk
symmetric with respect to the permutations of the variables, and by powers of the
monomial V2, _1,1V2n—2 - Van—1,n-
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This follows from Harish—Chandra isomorphism, see, e.g., [1, Sect. 7.4].
Define the following automorphism of the space of meromorphic functions on vy
and c:

T(V2k+1,j) = Vok+1,j, Tk, j) = —var,j,  T(0) = —c (2.12)

Lemma 1 We have the relations

Tl j+1 = Ik k+1T (2.13)

3 Whittaker vectors
3.1 Two chains of groups

Zhelobenko—Stern construction of the Gelfand—Tsetlin basis for orthogonal groups
uses the chain of embeddings

p : SON) = SO(N +1) 3.1

where the compact group SO (N) is embedded into the compact group SO(N + 1) as
the stabilizer of the vector e so that the generators /i, k, j < N of the Lie algebra
so(N) are identified with the corresponding generators of the Lie algebra so(N + 1).

However, for the construction of Whittaker vectors in the related infinite-
dimensional representations of so(/N) in meromorphic functions we pass to another,
noncompact real form SO (N, J) of the group SO (N, C) and use the chain of the
corresponding Lie algebras compatible with the natural chain of Lie group SO (N).
Here,

0 0 .. 0 1
0 0 1 0
J =
1 .. 00
10 ..0 O
The Lie algebra so(NV) is generated by elements I;;, with the relation I = —I;, so
that the elements [;; with kK > j are chosen as a linear basis of Lie algebra so(N).
The Lie algebra so(N, J), acting in the space with the basis fi, ..., fn, is generated

by the elements

Fij = fy— f  where  fi;(f) =8;fc and k=N+1—k
with the relation FJA 4 = —Fk,j so that the elements Fj; withk+ j < N can be chosen
as a linear basis of the Lie algebra so(N, J). The elements Fy; for k < j form a

positive nilpotent subalgebra, and the elements Fy; form a Cartan subalgebra.
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The chain of embedding
Jj,:SON,J)— SOWN +1,J) (3.2)

is different. The group SO (2n, J) is the stabilizer of the vector f,+; in the group
SO(2n+1, J), while the group SO (2n — 1, J) is the stabilizer of the element f,,_1 +
(=1 fnin SO(2n, J). Let us describe the maps

sy :s0(N) — so(N, J) 3.3)

of complex Lie algebras, which intertwine the embeddings (3.1) and (3.2). On the
level of bases of the vector space C", the map s;,, corresponds to the transformation
of initial orthogonal basis ey, . . ., €2, of C*" to the defining basis fi, ..., f>, of the
form J,

(f]?"'afna.fn+17"'vf2n)a (.fl’f]’c\)zfslk
by the relation

;olexj_1te; P —liepj_1tep;

fi=il- N f;= i/ 7 j=1,,..., n (3.4)
For the group SO (2n + 1), we transform the initial orthogonal basis ey, . . ., €2,+1
of C*'*! to the defining basis f1, ..., fon+1 of the form J,

(f17~"afnvﬁl+la"-7f2n+1)a (f‘lvf;)z(sl]
by the relation

;o dlepj_1tej _; —iexj_1+e;
fj:lj~7, fA':ll‘i

s j=1,...,n, 1 =enti

Correspondingly, the transformation formula from Lie algebra elements Ii; to Fy;
that are given by conjugation of the matrix (/) be means of the corresponding tran-
sition matrix. In particular, we have the following expressions for the generators of
Lie algebra so(2n, J):

i
Fj i1 = 5(12j+1,2j —Dhji22j-1) + 5(12j+2,2j +Dhjt12j-1),
i
Fiy,; = E(I2j+2,2j71 —Dhjt125) + 5(12j+2,2j +Dhjt12j-1,)
1 i
Fjon—j= (_1)I<§(_12j+1,2j —Djo0j-1)+ 5(12j+2,2j - Izj+1,2j—1)),

1 i
Fop—jj = (—1)’<§(12j+2,2j—1 + hjy12j) + 5(12j+2,2j - 12j+1,2j—1)),
(3.5)
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Fjj=—ilj2j-1 3.6)

Here, j = 1,...,n — 1. Besides, instead of the use of the last simple root generator
Fnzfﬂl of the Lie algebra so(2n — 1, J) it is convenient to use its image

1
janl(anil ) = _(FZn

—1 2
n—1,n \/E n—l,n_(_l)n F"

n—l,n—i—])

1
: 2n—1 2 —152
Jon1(F ) = E(Fn,rﬁfl — D" R L)
in the Lie algebra so(2n).
Note that for the Lie algebra so(n), the automorphism t represents the longest
element of the Weyl group,
TFj j+1 = Fjy1,5T. 3.7

3.2 Right and left Whittaker vectors

Recall the definition of Whittaker vectors. Let g be a reductive Lie algebra with
Chevalley generators [8] {e;, fj,h;|, j = 1,...n} of its semisimple part and M
be a g module. Here, ¢; generate the maximal nilpotent subalgebra n, f; generate
the opposite maximal nilpotent subalgebran_, and £ ; for a basis of Cartan subalgebra
h. Vector v € M is called left Whittaker vector, if ejv = ajv, j = 1,...n where
aj € C, a; # 0. Analogously, vector v’ € M is called right Whittaker vector, if
fjv=ij,j = 1,...nwherebj E(C,bj 750.
For further convenience, we denote by v,, the tuples of variables

vor = {Vor 1, .- V2 k), Yak—1 = {Vak—1,1, - .- V2k—1,k} (3.8)

and by b, the Gelfand-Tsetlin array

Vp
Vn—1
vV, = : (3.9)
V2
Vi

For any two sets
X=(x1,...,xn), Y=01,..-sYm)

set

sV =[] (o . T (x ty . l) (3.10)

ic 2
xeX, yeY
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With their help for any & > 0 define the meromorphic functions W,fE and VkjE by the
relation

+ S vk
Wo =et 2 V2 s (£ vg 1, vor) s (—Vak, £V2441),

. (3.11)
Vi = T L (e, vp).
Set
wp = e MWW, W) O
o (3.12)
/ ?El B2k-1 — S — T =
w, =e = T(wy) =e 22W W, --- W, V,
Here,

k
Sk = Z Vak,j»  S2k+1 = (=1) Z V2k+1,)-
J J

Theorem 1 The functions w, and w), are left and right S O (2n + 1) Whittaker vectors:

(_1)k+1 (_1)n+1

Frkr1wy = Twn, k <n, Foprrw, = an’ (3.13)
(_1)k+1 (_1)n+1

Fk_;,_l’kw;l = TU);L, k < n, Fn+1,nw,’1 = Ww;l (314)

Proof is given in Appendix A
Precise formulas for Whittaker vector and Whittaker function look better after the
following change of variables

Vok—1,j = (—1)k+IV2k—1,j, V2k,j = V2k,j- (3.15)

Then,
8k = Zykj, Ykj € Vi
J
, and the Whittaker vectors can be written as

n

Z(—l)kazk n n—1

_ang,
Wy = e 2% Mek=] [Ts@at- 720 []s=r20 =720
n k=1 k=1 | (3.16)
TN Lk, B n—
_mng, 2 2( D 8ok
wy, = e % e’ k=l s(=vau—1 20 [ [ =72 vars1)
k=1 k=1
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3.3 Action of Cartan subalgebra

In Gelfand—Tsetlin representation of g/, see [4], the Cartan subalgebra acts by mul-
tiplication by linear functions on the variables yy;. It is not so for Gelfand-Tsetlin
representations of so(n), which we study here. However, the Cartan subalgebra of
so(n) acts in a similar way on Whittaker vectors. The Cartan subalgebra of so(n) is
generated by the elements Fyy = —ilo 2k—1.

Proposition 3

_ k—1
(D!
Fiwp = ———— _ '
ek W - ZVZk Lt Y vaesg+ (=D k= Dic Jw,  3.17)
j=1 j=1
(=" S
Fkkw;,zT Z"% 1,+Zu2k 5. — (=DFitk— e Jw,  (3.18)

Jj=1 Jj=1

In the variables yy;, the relations (3.17) look as follows:

k
1 .
Fuawn = — | D vake1j = Y vaw-s,j — (k= Dic [ w, (3.19)
j=1 '
1 k k—1
Friw), = — Y a1 = Y vak-sj + (k — Dic | w (3.20)
Jj=1 j=1

Proof is given in Appendix B

4 Whittaker wave function

Assume that a representation V of a reductive Lie algebra contains a left Whittaker
vector V, a representation V' contains a right Whittaker vector v’, and there is an
invariant pairing (, ) between V and V. Then, it is well known [11] that the matrix
coefficient

F(h) = (v, M)

regarded as a function on the Cartan subalgebra h satisfies a system of differential
equations known as eigenfunction equations for Toda system, related to the root system
corresponding to g. In this section, we study the matrix coefficient (4.4) between
Whittaker vectors (3.16) and show that it is an eigenfunction of B, quadratic Toda
Hamiltonian.

4.1 Invariant pairing

The invariant pairing looks the same in both v and y variables.
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Define the functions [i(y,;) and ji(y ;) by the relations

x , 2 —2V2k.r
ﬂ(yzk>=e?zf”k~fﬂr‘l( Ao (=)

1c ic
Vok,r — Vok.s Vak,r + Vak,s\ w1 ( —V2k,r — V2k,s
T (P2 e (P2 ) (27),
1_[ ] 1_[ ic ic
r;&s r<s
- _1{ V2k+1,r — V2k+1,
Ayas) =[]T 1( — s)
r#s e
l—[ ! (1 4 kL + V2k+l,s)1_,_1(1 _ Vktir t )/2k+1,s>
ic ic ’

r<s

4.1)
that is

H

r

fi(yy) = e H

r<s

F(VZk,r = Vaks ) ‘_2 ‘F(VZk,r + Vzk,S)
c c

F(—z”?’” ) ‘_2 ,
ic

-2 -2
- V2k+1,r — Y2k+1,s Vok+1,r T Y2U+1,s
1Y oxt1) = l_[ F( B Y) ‘F<l+¥>‘
i ic ic
4.2)
and define a scalar product on functions in M as
(f 8o = /R s F@on-18@on- A2y 1)dV 2 (4.3)
where
n
i@, =[]awo
k=1
Then,

Lemma 2 The operators Iri41,2k and i Iri42 2k+1 are skew symmetric with respect to
the pairing (4.3). In particular, operators Fy; are skew symmetric with respect to the
pairing (4.3).

4.2 Integral formula

Due to (3.16), the product u_)’n w,, looks as

n—1

whw, = e [ ] s@axts ¥203 (=¥ ak1s Y205 (=¥ 20 =V 2465 (=P 210 V2i41)
k=1

X S(Von—15VY2)S(=V2—15 VY 2u)
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or, in terms of Gamma functions

n—1 n—1
_ —IY o = (kz 2k(82k—l—52k+l)+2"52n—1>
wy-w,=e k=1 ¢ =

n—1
Yo+ V-1 1 tYor — Vorgr | 1
p(=Xxmra-n ) p (2P T V2%, 2
X (H ( ic 3 ic 3

k=1
T (i}’zn + Yoot l)
ic 2

Thus, the Whittaker function

Wy, = (w),, e” k=t %)y, (4.4)
is given by the integral
2n—1 5 .
Wy, = [ T] wrody, - Ties et Shartumsbu e bion
R™ =1
n—1 k k+l
Eyour +vu-1,; 1 Tvokr — Vok+10 1
x LA St LF AR I Y (e LA o el LA W
l_[ . 1_[ ( ic 2 ic + 2
k=1r,j=11=1
n
+ 1. 1
y r ( Van,r + Y2n—1,j + _) 4.5)
; ic 2
r,j=1
Here,
1L(Po) = e Xy
-2 - -2
— 2
_ l—[ F<V2k,r. VZk,s) ‘F<V2k,rji-yzk,s) 1—[ F( V.Zk,r) ’
i1c ic ic
r<s r
P ous1) = (¥ oxs1)
) -2
_ l—[ F(V2k+l,r . V2k+1,s>‘ ‘F(l L P2kt + V2k+1,s)‘
ic 1c
r<s
(4.6)

The measure functions 4(y ;) do not contain exponential factors.
The convergence of the integral (4.5) can be proved by the arguments given in [7,

Appendix A]. Namely, let us complete the sequence
yi={ruhrva={abvs = reh. ... v ={vm, - vounl,
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to the sequence
Yi=W v o= 1 v2.0: Vath s - Yo = Von—ns - Vonnhs
where
Vr;,k = Yn,k> J/y:,_k = —Vnk for k>0, and VZ/m,O =0

as is customary in the representation theory of orthogonal groups. Then, the inequality
[7, 34] applied to this sequence is transformed to the bound

2n 2n—1
DY Ity - Vzkiljl—ZZIinr—Vk]|—2ZZIV2k/|
k=1 r,j k=1 r#j k=1 j

e 4.7

> C(yon) + = Z Z|yk,|

where the constant C(y,,,) depends on the values of y», ;. Due to the asymptotics of
the Gamma function
[(ix) ~ e "HI/2

in imaginary direction, we observe that the integrand of (4.5) can be bounded by (4.7)
as
C'(yy)e o Y'Y v (4.8)

for any small positive & > 0 and a proper positive constant C’(y,,), which implies
absolute convergence of the integral (4.5)

4.3 Toda equation

Denote by H5 the Toda Hamiltonian

n n—1

92 9 2 1
Hp, = Z( P, 2 +Qn—2k+ 1)—k> + Z e TR g C—zeXn (4.9)

k=1

Theorem 2 The Whittaker function (4.5) is a wave function for By, Toda Hamiltonian:

1« nn — DR+ 1)
_ZZVan

Hp, Wy, (X)) = 2

Wy, (%) (4.10)

Proof is a standard game with the matrix element G (x,) in representation My,
G(xn) = (W), Lony1e” 26 My, )0, 4.11)
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where
2n+1 2n+1

1 , 1
Lopt1 = 3 Z Ii; = 3 Z FijFji
ij=1 ij=1

is Laplace operator of SO(2n + 1). For this one should also know the eigenvalue
of L in the representation My, . But it is known from the theory of highest weight
representations of so(2n + 1). It gives us the eigenvalue

n
> ms, ;= (0, p)
=

B 11
p=1|n AR

is a half sum of positive roots for so(2n + 1). Thus, G(x,) (once we act by L to the
left) is equal to

where

1« n2n —1HQ2n + 1)
-3 > Vi — > (4.12)
j=1

On the other hand, we can rewrite L as

n n
L= Fa+2 Y  FyFu—-Y (n—2k+1)Fqy
k=1 1<k<I<2n k=1

so that

Ny 3
Gx) =) [—5-@n-2k+1)—
=1 8xk Xy

(4.13)
20 ) W) FipFpem 2 )y,

1<r<I<2n

Due to the skew symmetry, we can act by Fj, on w;, and, by (3.14) the last sum in
(4.13) can be rewritten as

w1

ic

(-1
«/Eic

i — F; / — F
(wna Fl,l—i—]y e 2k Hewn)on + (wn» Fn,n-i—l’ e Lk e wn)an

=1

n—1 1 1
- _ (Z c_zexk—)Ck+l + 2_czex,,> \IlyZn (x,)

k=1

Combining this with (4.13) and (4.12), we arrive to (4.10) U
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Remark 1 Note that the function

- o) - Y kthu
Wy, (Xp) = e P20, (X)) = e 4= Yy, (Xn)

is the solution of more familiar spectral problem

n 32 n—1 2 1 1 n 5
(L B o) a3 (k| o

oo o =1

4.4 Iterative procedures

1. The integral (4.5) can be formulated as an iterative integral presentation of the
Whittaker wave function,

\1172»1 (X1, Xn) = /]RZ . M(yZn—l)dyZn—l :u(yZn—Z)dyZn—Z

n—1 n n
Lyon- 2/_V2n 1 Yonr + Von-1,j | 1
r| =& tren=g -
1_[1_[ ( +2 1_[ ic +2

j=1Il=1 r.j=1
2 52n n
x ¢ fe0mm1 o= HEHH (=D 3R 0 Wy, (X1 = Xny ey Xno1 — Xn)
(4.14)
or
“I’yzn (x1, -+ x0) = Ap(xp) (‘Ilyzn,z (X1 = Xy ooy X1 — xn)) (4.15)

where A (x,) is an integral operator

A (X)) HP2) = / 1 KYons Von-2lX) f W on—2)it(¥on_2)d¥ oy (4.16)

Rn—

with the kernel

nn—1) S2n—1

2 _
Kyons Vonalx) =e 7 X/R 1Y 20 )dY g, i le™ e

X

n—1 n

l—[ r <:|:V2n—2,j' — V-1, n l)
ic 2

=1/=1

n
+ 1
1—[ ( y2nr+7/2n 1,j +§) (417)

~.

2. Another recurrent procedure uses the observation that the above construction of
the Whittaker vectors and Whittaker functions, restricted to S O (2n), produced actually
G L, Whittaker vectors and functions. It can be seen from the relation (A.1), (A.2). In
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this way, we arrive by using Gustafson integrals [6] to Iorgov—Shadura formula [7],
which expresses the B, Toda wave function via A, Toda wave function and contains
in total twice less integrals.

The restriction Wy, | (x,) of the wave function (4.5) to SO(2n) is given by the
integral

2n—2
n—1 .
Wyo,_i (Xn) :/ , I rrodry - ¢fe TiZ1 821 g e Tt Got3 =21 k= Do)
R’l —n
k=1

n—1 k k+l
+ + Vok—1,;j 1 + - 1
<11 I F( Voo T V21 7)1"( Vakr ZV2ktLL 7)

k=l r =1 =1 ic 2 ic 2
(4.18)
and the functions Wy, (x,) and W,,,  (X,) are related as follows:
2 z +Yonr 4+ Von-1,j 1
Wy, (Xp) = /Rn w2 dyo_ycie® = ] T (% + 5) ¥y ()
r.j=1
(4.19)

For each k, the integral over y,;, in (4.18) can be explicitly calculated by means of the
degenerate B, Gustafson integral

Q1Y ) i jen PG+ 2T G — 2P T [P Qi

R
=n2" [] T@+a).
1<i<j<2n+1

(4.20)

where all a; are assumed to have a positive real part. The integral (4.20) is a limiting
case
a2 =€ +1iL, L — oo, e — 40

of a general B, Gustafson integral [6]

1 / Py Tla + iz))T (@ — iz))) dx
Q)" ) Tlicrejen TG + 2T G 2 - D T r@izp)

. n!2" H1§l<j§2n+2 F(dl + aj)

2n+2
F( lil “l)
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Using
_ V-1 ] _ Voak—1k 1 Va1 1
ic +2 V=T +2’ Gkt = ic +2"”
Vol h+1 1
ic 2
we get

k k Eyok.itv2k—1 k+1 £Yok,i —V2k+1,
LTS G e L
Y2k.r —V2k, yzkr+)/2/< 2Y2k.r 2
(e[ (2 [, [r ()|

ic
:Ck(zn)kzk.k!.l—[F()’zk Lr ¥ Y2k Ls +1>.1—[F<7/2k Li V2K +1>

dyak,1---dyok k

RK l_[r <s

ic L ic
r<s ij
<Ir (_M N 1)
r<s 1c
4.21)
and
2 —1r +vou—
W, (%) =dy - ¢l [T T (1 - M) by, (%)
ic
1<r<s<n
(4.22)
where
L3 (o 3= 1+ = Do
(Dyzn’l(xn) = / e =t d Y1 -d7/2n—3
Rn(n—l)/Z
1_[1 ll—[k-H MF (Vzk—l,l;cV2k+l,j + 1)
) (4.23)
2;11 Hr<s r (VZk—l,ri—c)/Zk—l.s)’
and
n—1
dn = [t @m2" -k (4.24)
k=1

Both functions Wy, (y2,—1) and ®y,, _, (x;) are solutions of G L(n) Toda equations. In
order to compare the final results with Iorgov—Shadura formula [7], we perform the
change of integration variables

Iy .
V2k—1,j = V2k—1,j — (n —k+ 5) ic
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Then,

> (i—k+1)x £ Gok—3—8a—1)xk
Dy, (Xp) = ek=l /6 k=1 dyr...dym-3

Cn

n—1 1k k1l T2RoLITV2AL) Y2%U—11—V2kt1.j
k=1 l_[l:l Hj:lc te M =—7

2 (4.25)
i Lo |T (w)‘
and
Yon—11tVon,j Vo=V
1_[7=1 I—[l}zl r ( - I) r ( - j)
‘ij2n (Xn) = dn f . ‘ 2
& I T (%) M., IT <%>
n+l
X ¢ ic 82n*1q)y2n71(xn)dy2n_1 (426

Here, the contour C, in (4.25) is a deformation of R*”~1/2 such that the
integration over the variable y»r_1 is performed in such a way that the singu-

larity of T’ (%) is under the line of integration and the singularity of

r V2k73,l._)/2k71.j

= ) is above the line of integration over y2x—;. The contour C), in

(4.26) is a deformation of R” where the singularities of the nominators are under the
contours of integrations over all variables.

The relations (4.25)—(4.26) are in accordance with Iorgov—Shadura formula [7,
(26),(27)]. More precisely, in Iorgov—Shadura description the boundary wall corre-
sponds to the first coordinate x|, while we work with the boundary wall related to
the last coordinate. One can observe the coincidence of formulas after the change of
variables

Xk —> —Xn+1—k

and the following symmetry of the A, Toda wave function:

CDVI ,,,,, Y (X1, ... %) = Cb—y] ..... —y,l(_xna ce, —X1).

5 Examples

n = 1. For one particle, the system and the wave function coincide with that of s/(2)
Toda system:

+ 1
Wy (1) = / dyycie? e VI (M + —)
R

ic 2
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n = 2. The wave function for B, Toda system is given by fourfold integral, which
can be reduced to threefold by using Gustafson integral,

dyn dysidysn
Wyt va (X1, X2) 2[ dy1 ) 3 B 3
% - ;
‘F( izl)‘ ‘F(Vﬂic}@z)r(l + VSlicV%Z)‘

x cg V11+y31 +V32)eﬁ (=yuxi+yn—yi—yutiox)

+ 1 +y5 — 1
«T J/21'+ Y11 +\r )/21' V31 4o
ic 2 ic 2
2
Ty —yn 1 +yai+ys; 1
r{—/———= 4= r{=—/——=L4_
< ic + 2 H ic + 2

that is

Wyt yan (X1, X2)
— / dy2 dys31dys c%()’31+)/32)ei]7((—731 —yn+ic)x2)
R3

2 2
2y Y31—V3 7311y
F( igl)‘ ’F( 31ic ’52>F<1 + ’SIiC 32)

+ — 1 + — 1
F( 3’21. 7/31+5>F< 721 )/32+_>

ic ic 2
U

*yai +V3 1
( ! ’+z W, (X1 — x2)

i,j=1

or

Wy, (X1, X2)

+y4i+v3
Hi /=1 g ( i j) 2 mit+ra)
= cic N q>y31,y32(xlax2)d7/31dy32
R2+e r

2
(7/31+V22> F<V31 Vsz)’
ic

where @, .., (x1, x2) is the wave function of G L(2) Toda system

v+
Dy (X1, X2) = € S / dylle%(*}’l|X1+(V|1*V3l*V32)X2)C$(2V1|*V31*V32)
. R+e

r <711 - V31> r <)/11 - V32>
1c 1c

A Calculations of Whittaker vector

In this section, we prove Theorem 1. First we note that the relation (3.14) follows from
(3.13) by using the automorphism 7. Proof of the equality (3.13) reduces to check of
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the following equalities, where k = 1, ...n — 1 in the relations (A.2) and (A.3)

‘ (_1)k+1
(Fij+1 — (=D Fx on—k)wn = (Dog1,2k + i Dok 1,2k—1) Wn = o W
(A.1)
‘ (_1)k+1
(Fij1 + (=D Fr on—k)wn = (—Dok42,0k—1 + i 12k42 20) Wp = o W
(A.2)
1 . (_l)n—i-l
Fn,n+1wn = %(12114-1,2/1 + 112n+1,2n—1)wn = an (A.3)

Besides, the relation (A.3) is a particular case of (A.1). So we have to prove the
relations (A.1) and (A.2).

The proof of (A.1)—(A.2) requires certain calculations. For their visualization, we
introduce some intermediate notations. First rewrite the operators (2.10) and (2.11) as

k k k
Diyiok= Y > Pf Drsooki =) O+ Y R+ Tk (A4)
j=1 j=1

e=%1 j=1
where
k—1 ic k ic
pe 1 [T wak—1,j + e(ak—a,r + 7)) [T k-1, — ek, — 5))
k=" -
J ic 2112 Wak—1,j — var—1,1) V2k—1,j + V2k—1,r + €ic€)
esica"zk—l,j ’

k+1 ic\2 2

—1((2k,j +5)"—v i
Qk,j — 1 Hr—l(( 2k, j 2) 2k+l,r) elcavZij

;2v2k,j(v2k,j + ) Hr;éj(v%k,j - v%k,r)
Rej = l le(:l((‘)%j - %)2 - U%k—l,r) o€y
ic 2vo ;o j — 5 [T WV — V3t )
1]_[1,(:1 vkt [15E] vaks s
¢ leczl(‘)%k,r + §)

Ty =

Set also for g, § = *1

k . k

J/f,a,j = Z fe Ok,s + Z sic -

V2k4s,j — E(Waks + 5) o vakts,j T EWas — 5)

s=1
Elc

Rics + . (A5)

V2k+5, j
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In these notation, we can present the following expressions for other generators of
Lie algebra so(n) needed in the equations on Whittaker vectors. They can be checked
by straightforward calculations.

Lemma 3 We have the following relations

k
Dit1,2k-1 = Z ZP,fjJ,f_l’l’j k=1,...,n

e=%1 j=I
k
— & g€ —
12k+2,2k——ZZij]k’_l,j k=1,...,n—1 A6
e=+1 j=1 (A.6)
k
— g j& e _
Dig22k—1 = — Z Zij‘]k,—l,j‘lk—l,l,j k=1,...,n—1
e=+1 j=1

For more brevity in further formulas, we denote
O = (=D, O = (=D

The following statement is one of the important steps in the proof of Theorem 1.

Lemma4 Foranyk =0,...,n—1(6 = 1 when k = 0), we have the relations
T jun = iwy (A7)

k1 k

01 , [Tr21 G2kts.j + vakenr) [Trg (Vakgsj + vak—1.r)

Jkajwn:’ 1—- X kicy\2 2 wn o 0=l
vakts,j [lrm (Waess,j + (= DF5)? = w3y )

(A.8)

Proof Note that the operator J,ﬁ"a’ j contains only shifts of variables vy s, and thus
only the factor Wke **1 can change. Let us check the equality (A.7). We then have

k k

6, Oic Oic Oic
5 o= (2 0t ) R+ T
=1 V2k+8,j — O (2ks + %) D1 Vak+s.j T2k s — ) V2k+8, j
. k+1 ic 2
k Oric 1 l_[r:1 ((v2k,s + %)2 - V2k+1,,)

= N . N . N 2 2
(521 V2uts,j — Ok Woks +55) 1€ 2upp s(Vok s + ) I;[ s = Vop,)
r#s

k ic k .
v % r=102ks = Ocva—1.r + 5) N Okic 1
T+ i -
[E (vaks = Okvarrnr — 5) (5 vakss,j + 0k aks — 5) i€
k+1 icy2 2 k+1 :
ITr=1 ©2ks = 37 = vegr,r) P [T (ot — Opvarsrr + 5)
2vak,s (Vak,s — %) nr#s(vgk,s - l)%k,f) l_[rzl(VQk,s — Okvor—1,r — %)

k1
T8y (~6kvak—1. ) T L] (—Bkvarsr ) >w —iw
n T n — n
(—Ov2ks, D TTEL (=5 — v ) (=5 +vo )
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The last line is obtained by the use of the following well-known identity:

= HT;f(xi —yj)
—_ =] (A9)
izl Hr#‘ (xi — xr)
where for indeterminates x; we choose 2k + 2 variables {£v g, — %, Ok vog+s — %},
and for indeterminates y; we choose {Oxvor—1 — %, Ok Vok+1 — %}
Let us check the equality (A.8). We have

k .
Ot Okr1ic
Jk 5,jWn = o Ok,s
=1 V2k+s,j — k1 (Vars +5)
k . .
Ort1ic Oratic
+ Z . ic Rk,s + - Tk w
=1 V2k+s,j FOkr1(Vars — 5) V2k+3, j
k . k+1 ic\2 2
_ < Okt1ic 1 [1Z ((vak,s + 5)7 — Vkt1.r)
= . : . .
o vakasj — Okt aks + 5 1€ 2uak s (Vaks + ) [y (W3 o — 3 )

15 vaks — Gevak—rr + Xy
TTEE (—vaes — Oevaessr — )

k Oky1ic 1 1—[k+l ((vak,s — %)2 - v%k-i—l -

o Vaks,j Tt Ok (Vars — Ly dc 2uy (s — %) ]_[r#(\/z;( P v2k -

Hfi}(—V2k,s — Okvokt1,r + E)
15 vk — Bkvak—rr — )

Ty (=610 [T (=6kvassr.r) )w
(—Ok+1v2k+8) Hf=1(—% - V2k,r)(—’§ + V2k,r) "
_ i(l _ 155 vaks.j + v TTE 1(V2k+8j + V2k1,r)>wn

vaers,j [1ho (vakgs,j + 0k '5)* — v%,{ )

NE LY

x O+

+1i

The last line of the equality is obtained after simplifications of the ratios by
use of the‘relation (A9), _where for indeterminates x; we subst_itute X Variab_les
{£vk,s. =5, Ok 1v2k45 — 5 ), and for y; we substitute {Gvor—1 — 5, Okvoks1 — 5 ).

Proofof (A.1) According to Lemmas 3 and 4, for any k = 1, ..., n we have:
k
(Dkprok + il Dwa = Y Y PEA+ITE D,
e=+1 j=1

Z Pek re1 V21, Fvak—1,r) T2 vt i+ vu_3,)

- we  (A.10)
= Voot T2 (aker,j + Gr15)? — V3 _o,)
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1 Xk: T2 okt + Ok w22, + ) i (a1, — (Vo — )
ic 211,25 Wak—1,j — var—1,1) W2k—1,j + Vak—1,r + Okic)

iy

k k=1
21—1,#(\1%—1,,‘ +vak—1,0) [[;21 (ak—1,j + vak—3,0)
k=1 7
[T 21 (k1 + 6152 = v3 5 )

Wn

Z TT°C ] vako1j + vak—3. + Gric)
ic [Tz Vak—1,j — var—1,r)

k )
= (vak—1,j + Ok1van,r + 6k'5)
1 N
[T5=1 (vak—1,j + Okr1vae—2,r + Ok'5)

eekica"Zk—l.j Wy

In the product, presenting the function w,, only the factors Wkef , and W,E) 1 depend
on the variables vo; 1, ;. Thus, using (3.11), functional relations on the Euler Gamma
function and (A.9), we get

9k 1 | (k-1 + Va3, + ki) Ot1

(Daki 12k + i Dy 1.2k )Wy = —— Z .-, - - Wy = ——w,
[T ak—1,j — vak—1,r) ic

(A1)

O
Proofof (A.2) Again, according to Lemmas 3 and 4, forany k = 1, ..., n we have:
k

(—his22k1 + ilug220we = Y Y PGIE (U — Dw,
e=t1 j=1

ne

_ Pekjek 1 1(V2k—1 jva— lr)l_[ 1(v2k—1 J - 3r)w
Z - /
Voo, TTEZ] (ke + G156)? — Ve_2r)

(A.12)
Since the operator Jk contams shifts only of the variables vy ¢, we can rewrite
the result as
o 9 H]:_1(V2k71 j o+ vak—1,r) l_[lr(:ll(UZkfl j+v2k-3)
—ZZPk'f = : : = ’ > J,H]wn (A.13)

k—1 ic
vkt T2 (Vak—1j + 6 15)2 = v )

Now Lemma 4 says that
VA
f—1,jWn = iWp.
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Thus, (—Iok2.2k—1 + i ok +2.26) Wy equals to

k a6 k=1
_ ng v k=1 Fvok—1,) [ 2 (Var—1,j + var— 3r)w _ Bkt
_E k. -

3 n Wy
vt [IEC  (varet,j + i 152 =3 2.7) ic
(A.14)
The latter equality was proved during the derivation of (A.11) from (A.10).
O
This ends the proof of Theorem 1. g

Remark 2 Analyzing the proof of Theorem 1, we see that the derivations over variables
V2k—1,; enter the game only in the last stage of calculations. Moreover, we can freely
add to Whittaker vectors factors of the form

% i+1
e T2l where 81 = ZVZj—l,i =(—D/F ZVZj—l,i
i i

where « is arbitrary real number. This does not affect to the convergence of integrals
and does not change the action of Cartan subalgebra. In Toda equation, we earn
thus arbitrary positive constants ¢; = e%/ at exponentials e*/~!™*/ which can be
equivalently obtained by successive shifts of the variables x ;.

B Action of Cartan subalgebra

It is sufficient to calculate Fj ;w;, and then use the automorphism <.

k—1 k [ 2
, 1 [Ty (ak—2j + 5> =3, )
—i g pk—1wp = — [ =

‘ i > 2
€3 k-2, j ok + D ;035 — Vi)

k—1 .
j0k—1 l_[rzl(VZk—z,j — Ok—1v2u—3,, + %)

- ‘
Hr_l(—VZk—z,j — Ok—1v2%—1.r — 5)

_ 1 i
Z 1A (o, — )% — V3_3r)

2 2
= 2vak—2,j(vk—2,j — z)Hraéj(VZk—z,j —Vy_p,)

1
c

l-—9k_1 Hr:l(_VZk—2,j — 9[{_11)2]{_1", + &)
k—1
l_[r:1 (Vak—2,j — Ok—1v2k—3,r — _)
1 k—1 k
Hr:l V2k—3,r 1_[,:1 V2k—1.r
B ; k=1, 2 2 Wn
[T= (v2k72,r +5)

B.1)
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k—1 11k ic k—1 i
__1! (Z [lr—10ok—2,j = Ok—1vak—1r + DT 2 Vok—2,j = Ok—1v2k-3.r + 5)
T ic ic 2 2
R 22, j2k-2,j + D) [ j V3 g j = Vo )

k=1 rrk—1 ey Tk '
iy [T, = (—vak—2,j — Ok—1vak—3,r + 5) [ 15y (—v2k—2,j — Ok—1v2k—1,r + '5)
ic 2 2
j=1 2vpk—2,j(V2k—2,j — 7) Hraéj("zk—z,j — Vo)

k-1 k

[T 2 (=6k—1v2x—3,r) l_[,zl(—Qk—lvzk—l,r)>w

=1, i ; n
[ (=% —vak—2.,) (=5 +vak—2,)

k k—1

Ok—1 .

= Z Vok—1,j + Z vor—3,j — Ok—1(k — Dic | . (B.2)
j=1 j=1

Here, we again use the identity (A.9), where for x; we substitute 2k — 1 variables
{£v2r—2.5, =5}, aand for y; we use {Ok—1v2k—1 — 5, k—1v2—3 — 5} O

Acknowledgements The authors thank N.Belousov, S.Derkachov and S.Kharchev for their interest in the
work and for fruitful discussions. They are also grateful to the referee for useful comments. The work of S.
Kh. is an output of a research project implemented as part of the Basic Research Program at the National
Research University Higher School of Economics (HSE University).

Data availability statement Data sharing is not applicable to this article as no datasets were generated or
analyzed during the current study.

Declarations

Conflict of interest The authors have no conflict of interest to declare that are relevant to the content of this
article.

References

. Dixmier, J.: Algebres enveloppantes, vol. 192. Gauthier-Villars, Paris (1974)
. Gelfand, I.M., Tsetlin, M.L.: Finite-dimensional representations of the group of unimodular matrices.
DAN SSSR 51, 825-828 (1950). ((in Russian))

3. Gerasimov, A.A., Lebedev, D.R., Oblezin, S.V.: New integral representations of Whittaker functions
for classical Lie groups. Russian Math. Surv. 67(1), 1 (2012)

4. Gerasimov, A., Kharchev, S., Lebedev, D.: Scattering method: the open Toda chain and the hyperbolic
Sutherland. Int. Math. Res. Not. 2004(17), 823-854 (2004)

5. Givental, A.: Stationary phase integrals, quantum Toda lattices, flag manifolds and the mirror con-
jecture. Topics in singularity theory, American Mathematical Society Transl. Ser. 2, 180, American
Mathematical Society, Providence, RI, 103—115 (1997)

6. Gustafson, R.A.: Some g-beta and Mellin—Barnes integrals on compact lie groups and lie algebras.
Trans. Am. Math. Soc. 341(1), 69—-119 (1994)

7. lorgov, N.Z., Shadura, V.N.: Wave functions of the Toda chain with boundary interaction. Theor. Math.
Phys. 142, 289-305 (2005)

8. Kac, V.G.: Infinite-dimensional Lie Algebras. Cambridge University Press, Cambridge (1990)

9. Kharchey, S., Khoroshkin, S.: Mellin—Barnes presentations for Whittaker wave functions. Adv. Math.
375, 107368 (2020)

10. Kharchey, S., Lebedev, D.: Eigenfunctions of GL(N, R) Toda chain: Mellin—-Barnes representation.
J. Exp. Theor. Phys. Lett. 71, 235-238 (2000)

11. Kostant, B.: Quantization and representation theory, In: Representation Theory of Lie Groups, Pro-

ceedings of Symposium, Oxford, 1977, pp. 287-317, London Math. Soc. Lecture Notes series, 34,

Cambridge (1979)

o -

@ Springer



77 Page 26 of 26 A. Galiullin et al.

12. Zhelobenko, D.P., Stern, A.L.: Representation of Lie groups (in Russian), Science (1983)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

@ Springer



	Zhelobenko–Stern formulas and Bn Toda wave functions
	Abstract
	1 Introduction
	2 Gelfand–Tsetlin type representation
	2.1 Zhelobenko–Stern formulas
	2.2 Representation in meromorphic functions 

	3 Whittaker vectors
	3.1 Two chains of groups
	3.2 Right and left Whittaker vectors
	3.3 Action of Cartan subalgebra

	4 Whittaker wave function
	4.1 Invariant pairing
	4.2 Integral formula
	4.3 Toda equation
	4.4 Iterative procedures

	5 Examples
	A Calculations of Whittaker vector
	B Action of Cartan subalgebra
	Acknowledgements
	References




