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Abstract
Using Zhelobenko–Stern formulas for the action of the generators of orthogonal
Lie algebra in corresponding Gelfand–Tsetlin basis, we derive Mellin–Barnes pre-
sentations for the wave functions of Bn Toda lattice. They are in accordance with
Iorgov–Shadura formulas.
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1 Introduction

In the paper [4], Gerasimov, Kharchev and Lebedev applied the famous formulas [2]
for the action of generators of general Lie algebra gl(n) in Gelfand–Tsetlin basis
of irreducible finite-dimensional representations of general linear group GL(n,C) to
obtainMellin–Barnes presentation of thewave functions of open An Toda chain. Using
Gelfand–Tsetlin formulas, they constructed an infinite-dimensional representation of
Lie algebra gl(n,C) in the space of meromorphic functions on n(n − 1)/2 variables,
found there two dual Whittaker vectors and realized, according to Kostant theory
[11], the Toda wave function as certain matrix element in this representation. The
same formulas were earlier established by Kharchev and Lebedev in the technique of
Yang–Baxter formalism [10].

Besides, Toda wave functions admit another presentation, known by the name
Gauss–Givental by means of integrals over spatial variables. It was found first in
[5]. Gauss–Givental presentation was then derived in [3] for wave functions of Toda
systems related to Bn , Cn , Dn root systems.
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Mellin transform of these formulas was computed in [9]. However, the formulas
presented in [9] differ from that of [4] and are not satisfactory by several reasons. In
particular, one cannot find in this presentation Sklyanin measure and thus the results
of [9] cannot be used to establish the completeness and orthogonality of the wave
function and develop the corresponding integral transform.

The goal of this paper is to try to fill this gap at least partially for Bn Toda system
using representation theoretical tools similar to that of [4]. The only known result in
this direction is the paper [7] of Iorgov and Shadura, where they constructed Bn wave
function by its decomposition over related An Toda wave function. As well as in [10],
this work was done in a framework of the Yang–Baxter formalism.

Our starting point is an analog of Gelfand–Tsetlin formulas for orthogonal groups
published without a proof by Zhelobenko and Stern [12]. These formulas look much
more complicated compared to [2] and we did not find numerous applications of them
in the literature. However, after their check we constructed ‘Gelfand–Tsetlin’ infinite-
dimensional representation of the orthogonal Lie algebra and found there two dual
Whittaker vectors. With their help we constructed the integrals, presenting Bn wave
functions in which we see all expected ingredients of Sklyanin measure. The resulting
formula can be presented as an iterative procedure in two ways.

Firstly, it is an iterative procedure over the rank of orthogonal group and this is prob-
ably the most interesting result of this paper. Each step can be interpreted as an action
of the raising integral operator, where kernel is itself an integral over intermediate
variables. In such type of structure, we also observe in Gauss–Givental representa-
tion [3, (1.74)]. Second, we can consider two successive iterative integrals combining
them in other parity. Then, intermediate step becomes precisely a degeneration of Bn

Gustafson integral and can be explicitly evaluated. In this way, we arrive at Iorgov–
Shadura formula.

Note the two subtle points of our construction. First, Zhelobenko–Stern formulas
arewritten for the generators of orthogonal Lie algebras in their orthogonal realization,
while Whittakker vectors refer to simple root generators. An existence of Whittaker
vectors in a factorized form was not evident from the beginning. By the same reasons,
action of the Cartan subalgebra in corresponding infinite-dimensional representation
cannot be written, contrary to gl(n), in terms of multiplications by linear functions.
Fortunately, it is so for the action on Whittaker vectors.

Despite the fact that Zhelobenko–Stern formulas are written uniformly for all
orthogonal Lie algebras, we succeeded to find Whittaker vectors in ‘only for Lie
algebras so(2n−1).’ More precisely, the main ingredient in the construction of Whit-
taker vector in ‘Gelfand–Tsetlin representation’ is the solution of difference equations
(A.1)–(A.2). These equations describe ’degenerate’ Whittaker vectors for so(2n), for
which one of the simple generators acts by zero, so that they are essentially Whittaker
vectors for embedded gl(n) Lie algebra. Restricting these vectors to so(2n − 1), we
get ‘nondegenerate’ Whittaker vectors for this Lie algebra which we further use for
the construction of the wave function for Bn Toda system.
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2 Gelfand–Tsetlin type representation

2.1 Zhelobenko–Stern formulas

It is well known that each irreducible representation of the orthogonal groups SO(2n+
1) and SO(2n) is parametrized by its signature, given by ordered sequences of integers
or half-integers , respectively,

p1 ≥ p2 ≥ · · · pn−1 ≥ pn ≥ 0, (SO(2n + 1))

p1 ≥ p2 ≥ · · · pn−1 ≥ |pn|, (SO(2n))
(2.1)

and the restriction of irreducible representation of SO(2n + 1) to SO(2n) has simple
spectrum described by all signatures q1, . . . qn , satisfying interleaving inequalities

p1 ≥ q1 ≥ p2 ≥ · · · qn−1 ≥ pn ≥ qn ≥ −pn . (2.2)

Analogously, the restriction of irreducible representation of SO(2n) to SO(2n − 1)
has simple spectrum described by all signatures q1, . . . qn , satisfying interleaving
inequalities

p1 ≥ q1 ≥ p2 ≥ · · · qn−1 ≥ pn . (2.3)

This enables one to construct an orthogonal basis of irreducible representation of the
orthogonal group SO(n) parametrized by Gelfand–Tsetlin tableaux

p =

⎛
⎜⎜⎜⎜⎜⎝

pn−1,1 pn−1,2 . . . pn−1,
[ n
2

]
. . .

. . .
...

p3,1 p3,2
p2,1
p1,1

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

pn−1
...

p3
p2
p1

⎞
⎟⎟⎟⎟⎟⎠

(2.4)

The upper row pn−1 indicates the signature of the irreducible representation of SO(n)

and is fixed for all tableaux parametrizing its basic vectors, the second row indicates
the signature of the restriction to SO(n − 1), etc., and the integer p11 indicates the
irreducible of SO(2). All the numbers pi j are either integers of half-integers simulta-
neously and should satisfy the row-by-row interleaving inequalities (2.1)–(2.2), that
is

pi+1, j+1 ≤ pi, j ≤ pi+1, j , p2i−1,i ≤ |p2i,i |, |p2i−1,i | ≤ p2i−2,i−1

It is natural to shift the signatures by the corresponding half sum of positive roots of
the related root system, that is, we set

m2k, j = p2k, j + (k − j) + 1

2
,

m2k−1, j = p2k−1, j + (k − j)
(2.5)
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Zhelobenko and Stern [12, Chapter II, Sect. 5.8] presented without a proof a pre-
cise expression for the matrix elements of generators of the Lie algebra so(n) in the
corresponding orthogonal basis.

The Lie algebra so(n) is generated, as a vector space, by elements

Ik j = ek j − e jk, k > j

As a Lie algebra, it is generated by elements

Ik+1,k, k = 1, . . . , n − 1

with defining relations

[
Ik+1,k,

[
Ik+2,k+1, Ik+1,k

]] = Ik+2,k+1 k = 1, . . . , n − 2[
Ik+2,k+1,

[
Ik+1,k, Ik+2,k+1

]] = Ik+1,k k = 1, . . . , n − 2[
Ik+1,k, I j+1, j

] = 0 |k − j | > 1

(2.6)

After a renormalization, eliminating square roots in the coefficients and correcting
misprints, their formulas look like

I2k+1,2k = −
k∑
j=1

∏k−1
r=1(m2k−2,r + m2k−1, j + 1

2 )
∏k

r=1(m2k−1, j − m2k,r + 1
2 )

2
∏

r �= j (m2k−1, j − m2k−1,r )(m2k−1, j + m2k−1,r + 1)
e
∂m2k−1, j

−
k∑
j=1

∏k−1
r=1(m2k−1, j − m2k−2,r − 1

2 )
∏k

r=1(m2k,r + m2k−1, j − 1
2 )

2
∏

r �= j (m2k−1, j − m2k−1,r )(m2k−1, j + m2k−1,r − 1)
e
−∂m2k−1, j

(2.7)

I2k+2,2k+1 =
k∑
j=1

∏k+1
r=1((m2k, j + 1

2 )
2 − m2

2k+1,r )

2m2k, j (m2k, j + 1
2 )

∏
r �= j (m

2
2k, j − m2

2k,r )
e∂m2k, j

+
k∑
j=1

∏k
r=1((m2k, j − 1

2 )
2 − m2

2k−1,r )

2m2k, j (m2k, j − 1
2 )

∏
r �= j (m

2
2k, j − m2

2k,r )
e−∂m2k, j

+ i

∏k
r=1 m2k−1,r

∏k+1
r=1 m2k+1,r∏k

r=1(m2k,r + 1
2 )(m2k,r − 1

2 )

(2.8)

Here, the operators e±∂mkj are operators of shifts of the entries of Gelfand–Tsetlin
tableau: the operator e±∂mkj changesmkj bymkj±1 (and, respectively, pkj by pkj±1).
We can extend the RHS of relations (2.7) and (2.8) to arbitrary complex parameters
mi j and regard them as operators acting in the space of rational functions on mi j .
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2.2 Representation inmeromorphic functions

Following [4], we renormalize the variables

mkj = νk j

ic
(2.9)

in order to have an additional scaling variable in the representation. Then, we have

I2k+1,2k = − 1

ic

k∑
j=1

∏k−1
r=1(ν2k−2,r + ν2k−1, j + ic

2 )
∏k

r=1(ν2k−1, j − ν2k,r + ic
2 )

2
∏

r �= j (ν2k−1, j − ν2k−1,r )(ν2k−1, j + ν2k−1,r + ic)
eic∂ν2k−1, j

− 1

ic

k∑
j=1

∏k−1
r=1(ν2k−1, j − ν2k−2,r − ic

2 )
∏k

r=1(ν2k,r + ν2k−1, j − ic
2 )

2
∏

r �= j (ν2k−1, j − ν2k−1,r )(ν2k−1, j + ν2k−1,r − ic)
e−ic∂ν2k−1, j

(2.10)

i I2k+2,2k+1 = 1

c

k∑
j=1

∏k+1
r=1((ν2k, j + ic

2 )2 − ν22k+1,r )

2ν2k, j (ν2k, j + ic
2 )

∏
r �= j (ν

2
2k, j − ν22k,r )

eic∂ν2k, j

+ 1

c

k∑
j=1

∏k
r=1((ν2k, j − ic

2 )2 − ν22k−1,r )

2ν2k, j (ν2k, j − ic
2 )

∏
r �= j (ν

2
2k, j − ν22k,r )

e−ic∂ν2k, j

− 1

ic

∏k
r=1 ν2k−1,r

∏k+1
r=1 ν2k+1,r∏k

r=1(ν2k,r + ic
2 )(ν2k,r − ic

2 )
(2.11)

Proposition 1 The operators (2.7) and (2.8) satisfy the defining relations (2.6) of the
generators of orthogonal Lie algebras so(n), n ≥ 2

Surely, this statement follows from its validity in finite-dimensional representations,
since the relations are then satisfied on sufficiently many integer points. However,
since the proof of the formulas is missing in [12], we checked the defining relation
(2.6) directly.

For a fixed n, the relations (2.10)–(2.11) can be interpreted as an infinite-
dimensional representation Mn of Lie algebra so(n + 1) in the space of meromorphic
functions over νk, j , k ≤ n − 1 with poles at

ν2k+1, j − ν2k+1,r , ν2k+1, j + ν2k+1,r ± ic, ν2k, j , ν2k, j ± ic

2
, ν2k, j ± ν2k,r

The variables νn = {νn,1, . . . νn,[ n−1
2 ]} are not touched by the Lie algebra generators

and can be regarded as parameters of submodules Mνn of Mn

Proposition 2 The center of SO(2n + 1) acts by multiplication on symmetric polyno-
mials in ν22n,k . The center of SO(2n) acts by multiplication of polynomials on ν22n−1,k ,
symmetric with respect to the permutations of the variables, and by powers of the
monomial ν2n−1,1ν2n−,2 · · · ν2n−1,n.
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This follows from Harish–Chandra isomorphism, see, e.g., [1, Sect. 7.4].
Define the following automorphism of the space of meromorphic functions on νkl

and c:

τ(ν2k+1, j ) = ν2k+1, j , τ (ν2k, j ) = −ν2k, j , τ (c) = −c (2.12)

Lemma 1 We have the relations

τ Ik,k+1 = −Ik,k+1τ (2.13)

3 Whittaker vectors

3.1 Two chains of groups

Zhelobenko–Stern construction of the Gelfand–Tsetlin basis for orthogonal groups
uses the chain of embeddings

in : SO(N ) ↪→ SO(N + 1) (3.1)

where the compact group SO(N ) is embedded into the compact group SO(N + 1) as
the stabilizer of the vector eN+1 so that the generators Ik j , k, j ≤ N of the Lie algebra
so(N ) are identified with the corresponding generators of the Lie algebra so(N + 1).

However, for the construction of Whittaker vectors in the related infinite-
dimensional representations of so(N ) in meromorphic functions we pass to another,
noncompact real form SO(N , J ) of the group SO(N ,C) and use the chain of the
corresponding Lie algebras compatible with the natural chain of Lie group SO(N ).
Here,

J =

⎛
⎜⎜⎜⎜⎝

0 0 ... 0 1
0 0 ... 1 0

...

0 1 ... 0 0
1 0 ... 0 0

⎞
⎟⎟⎟⎟⎠

The Lie algebra so(N ) is generated by elements Ik j , with the relation I jk = −Ik j , so
that the elements Ik j with k > j are chosen as a linear basis of Lie algebra so(N ).
The Lie algebra so(N , J ), acting in the space with the basis f1, . . . , fN , is generated
by the elements

Fkj = fk j − f ĵ k̂, where fk j ( fl) = δ jl fk and k̂ = N + 1 − k

with the relation Fĵ,k̂ = −Fk, j so that the elements Fkj with k+ j ≤ N can be chosen
as a linear basis of the Lie algebra so(N , J ). The elements Fkj for k < j form a
positive nilpotent subalgebra, and the elements Fkk form a Cartan subalgebra.
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The chain of embedding

jn : SO(N , J ) ↪→ SO(N + 1, J ) (3.2)

is different. The group SO(2n, J ) is the stabilizer of the vector fn+1 in the group
SO(2n+1, J ), while the group SO(2n−1, J ) is the stabilizer of the element fn−1 +
(−1)n−1 fn in SO(2n, J ). Let us describe the maps

sN : so(N ) → so(N , J ) (3.3)

of complex Lie algebras, which intertwine the embeddings (3.1) and (3.2). On the
level of bases of the vector space C2n , the map s2n corresponds to the transformation
of initial orthogonal basis e1, . . . , e2n of C2n to the defining basis f1, . . . , f2n of the
form J ,

( f1, . . . , fn, fn+1, . . . , f2n), ( fi , fk̂) = δik

by the relation

f j = i j · ie2 j−1 + e2 j√
2

, f ĵ = i− j · −ie2 j−1 + e2 j√
2

, j = 1, , . . . , n (3.4)

For the group SO(2n + 1), we transform the initial orthogonal basis e1, . . . , e2n+1
of C2n+1 to the defining basis f1, . . . , f2n+1 of the form J ,

( f1, . . . , fn, fn+1, . . . , f2n+1), ( fi , f ĵ ) = δi j

by the relation

f j = i j · ie2 j−1 + e2 j√
2

, f ĵ = i− j · −ie2 j−1 + e2 j√
2

, j = 1, . . . , n, fn+1 = en+1

Correspondingly, the transformation formula from Lie algebra elements Ik j to Fkj
that are given by conjugation of the matrix (Ik j ) be means of the corresponding tran-
sition matrix. In particular, we have the following expressions for the generators of
Lie algebra so(2n, J ):

Fj, j+1 = 1

2
(I2 j+1,2 j − I2 j+2,2 j−1) + i

2
(I2 j+2,2 j + I2 j+1,2 j−1),

Fj+1, j = 1

2
(I2 j+2,2 j−1 − I2 j+1,2 j ) + i

2
(I2 j+2,2 j + I2 j+1,2 j−1, )

Fj,2n− j = (−1) j
(1
2
(−I2 j+1,2 j − I2 j+2,2 j−1) + i

2
(I2 j+2,2 j − I2 j+1,2 j−1)

)
,

F2n− j, j = (−1) j
(1
2
(I2 j+2,2 j−1 + I2 j+1,2 j ) + i

2
(I2 j+2,2 j − I2 j+1,2 j−1)

)
,

(3.5)
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Fj, j = −i I2 j,2 j−1 (3.6)

Here, j = 1, . . . , n − 1. Besides, instead of the use of the last simple root generator
F2n−1
n−1,n of the Lie algebra so(2n − 1, J ) it is convenient to use its image

j2n−1(F
2n−1
n−1,n) = 1√

2

(
F2n
n−1,n − (−1)n−1F2n

n−1,n+1

)

j2n−1(F
2n−1
n,n−1) = 1√

2

(
F2n
n,n−1 − (−1)n−1F2n

n+1,n−1

)

in the Lie algebra so(2n).
Note that for the Lie algebra so(n), the automorphism τ represents the longest

element of the Weyl group,
τ Fj, j+1 = Fj+1, jτ. (3.7)

3.2 Right and leftWhittaker vectors

Recall the definition of Whittaker vectors. Let g be a reductive Lie algebra with
Chevalley generators [8] {e j , f j , h j |, j = 1, . . . n} of its semisimple part and M
be a g module. Here, e j generate the maximal nilpotent subalgebra n+, f j generate
the opposite maximal nilpotent subalgebra n−, and h j for a basis of Cartan subalgebra
h. Vector v ∈ M is called left Whittaker vector, if e jv = a jv, j = 1, . . . n where
a j ∈ C, a j �= 0. Analogously, vector v′ ∈ M is called right Whittaker vector, if
f jv = b jv, j = 1, . . . n where b j ∈ C, b j �= 0.
For further convenience, we denote by νn the tuples of variables

ν2k = {ν2k,1, . . . ν2k,k}, ν2k−1 = {ν2k−1,1, . . . ν2k−1,k} (3.8)

and by ν̂n the Gelfand–Tsetlin array

ν̂n =

⎛
⎜⎜⎜⎜⎜⎝

νn
νn−1

...

ν2
ν1

⎞
⎟⎟⎟⎟⎟⎠

(3.9)

For any two sets
X = (x1, . . . , xn), Y = (y1, . . . , ym)

set

s(X;Y) =
∏

x∈X, y∈Y
(ic)

x+y
ic · �

(
x + y

ic
+ 1

2

)
(3.10)
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With their help for any k > 0 define the meromorphic functions W±
k and V±

k by the
relation

W±
k = e∓ π

2c

∑
j ν2k, j s(±ν2k−1, ν2k)s(−ν2k,±ν2k+1),

V±
k = e∓ π

2c

∑
j ν2k, j s(±ν2k−1, ν2k).

(3.11)

Set

wn = e− πn
2c δ2nW+

1 W−
2 · · ·W (−)n

n−1 V (−)n+1

n ,

w′
n = e

π
c

n∑
k=1

δ2k−1
τ(wn) = e− πn

2c δ2nW−
1 W+

2 · · ·W (−)n−1

n−1 V (−)n

n

(3.12)

Here,
δ2k =

∑
j

ν2k, j , δ2k+1 = (−1)k
∑
j

ν2k+1, j .

Theorem 1 The functionswn andw′
n are left and right SO(2n+1)Whittaker vectors:

Fk,k+1wn = (−1)k+1

ic
wn, k < n, Fn,n+1wn = (−1)n+1

√
2ic

wn, (3.13)

Fk+1,kw
′
n = (−1)k+1

ic
w′
n, k < n, Fn+1,nw

′
n = (−1)n+1

√
2ic

w′
n . (3.14)

Proof is given in Appendix A
Precise formulas for Whittaker vector and Whittaker function look better after the

following change of variables

γ2k−1, j = (−1)k+1ν2k−1, j , γ2k, j = ν2k, j . (3.15)

Then,
δk =

∑
j

γk j , γk j ∈ γ k

, and the Whittaker vectors can be written as

wn = e− πn
2c δ2n e

n∑
k=1

(−1)kδ2k
n∏

k=1

s(γ 2k−1, γ 2k)

n−1∏
k=1

s(−γ 2k,−γ 2k+1)

w′
n = e− πn

2c δ2n e
π
2c

n∑
k=1

(−1)k+1δ2k
n∏

k=1

s(−γ 2k−1, γ 2k)

n−1∏
k=1

s(−γ 2k, γ 2k+1)

(3.16)
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3.3 Action of Cartan subalgebra

In Gelfand–Tsetlin representation of gln see [4], the Cartan subalgebra acts by mul-
tiplication by linear functions on the variables γk j . It is not so for Gelfand–Tsetlin
representations of so(n), which we study here. However, the Cartan subalgebra of
so(n) acts in a similar way on Whittaker vectors. The Cartan subalgebra of so(n) is
generated by the elements Fkk = −i I2k,2k−1.

Proposition 3

Fkkwn = (−1)k−1

ic

⎛
⎝

k∑
j=1

ν2k−1, j +
k−1∑
j=1

ν2k−3, j + (−1)k(k − 1)ic

⎞
⎠ wn (3.17)

Fkkw
′
n = (−1)k−1

ic

⎛
⎝

k∑
j=1

ν2k−1, j +
k−1∑
j=1

ν2k−3, j − (−1)ki(k − 1)c

⎞
⎠ w′

n (3.18)

In the variables γk j , the relations (3.17) look as follows:

Fkkwn = 1

ic

⎛
⎝

k∑
j=1

γ2k−1, j −
k−1∑
j=1

γ2k−3, j − (k − 1)ic

⎞
⎠ wn (3.19)

Fkkw
′
n = 1

ic

⎛
⎝

k∑
j=1

γ2k−1, j −
k−1∑
j=1

γ2k−3, j + (k − 1)ic

⎞
⎠ w′

n (3.20)

Proof is given in Appendix B

4 Whittaker wave function

Assume that a representation V of a reductive Lie algebra contains a left Whittaker
vector V , a representation V ′ contains a right Whittaker vector v′, and there is an
invariant pairing (, ) between V and V ′. Then, it is well known [11] that the matrix
coefficient

F(h) = (v′, ehv)

regarded as a function on the Cartan subalgebra h satisfies a system of differential
equations known as eigenfunction equations for Toda system, related to the root system
corresponding to g. In this section, we study the matrix coefficient (4.4) between
Whittaker vectors (3.16) and show that it is an eigenfunction of Bn quadratic Toda
Hamiltonian.

4.1 Invariant pairing

The invariant pairing looks the same in both ν and γ variables.
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Define the functions μ̃(γ 2k) and μ̃(γ 2k+1) by the relations

μ̃(γ 2k) = e
π
c

∑
j γ2k, j

∏
r

�−1
(2γ2k,r

ic

)
�−1

(−2γ2k,r
ic

)

×
∏
r �=s

�−1
(γ2k,r − γ2k,s

ic

) ∏
r<s

�−1
(γ2k,r + γ2k,s

ic

)
�−1

(−γ2k,r − γ2k,s

ic

)
,

μ̃(γ 2k+1) =
∏
r �=s

�−1
(γ2k+1,r − γ2k+1,s

ic

)

∏
r<s

�−1
(
1 + γ2k+1,r + γ2k+1,s

ic

)
�−1

(
1 − γ2k+1,r + γ2k+1,s

ic

)
,

(4.1)

that is

μ̃(γ 2k) = e
π
c δ2k

∏
r<s

∣∣∣∣�
(γ2k,r − γ2k,s

ic

)∣∣∣∣
−2 ∣∣∣∣�

(γ2k,r + γ2k,s

ic

)∣∣∣∣
−2 ∏

r

∣∣∣∣�
(2γ2k,r

ic

)∣∣∣∣
−2

,

μ̃(γ 2k+1) =
∏
r<s

∣∣∣∣�
(γ2k+1,r − γ2k+1,s

ic

)∣∣∣∣
−2 ∣∣∣∣�

(
1 + γ2k+1,r + γ2k+1,s

ic

)∣∣∣∣
−2

(4.2)

and define a scalar product on functions in M as

( f , g)2n =
∫
Rn2

f̄ (γ̂ 2n−1)g(γ̂ 2n−1)μ̃(γ̂ 2n−1)dγ̂ 2n−1 (4.3)

where

μ̃(γ̂ n) =
n∏

k=1

μ̃(γ k)

Then,

Lemma 2 The operators I2k+1,2k and i I2k+2,2k+1 are skew symmetric with respect to
the pairing (4.3). In particular, operators Fkl are skew symmetric with respect to the
pairing (4.3).

4.2 Integral formula

Due to (3.16), the product w̄′
nwn looks as

w̄′
nwn = e− πn

c δ2n

n−1∏
k=1

s(γ 2k−1, γ 2k)s̄(−γ 2k−1, γ 2k)s(−γ 2k,−γ 2k+1)s̄(−γ 2k, γ 2k+1)

× s(γ 2n−1, γ 2n)s̄(−γ 2n−1, γ 2n)

123
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or, in terms of Gamma functions

wn · w′
n = e

− π
c

n−1∑
k=1

δ2k
c

1
ic

(
n−1∑
k=1

2k(δ2k−1−δ2k+1)+2nδ2n−1

)

×
(
n−1∏
k=1

�

(±γ 2k + γ 2k−1

ic
+ 1

2

)
�

(±γ 2k − γ 2k+1

ic
+ 1

2

))

· �

(±γ 2n + γ 2n−1

ic
+ 1

2

)

Thus, the Whittaker function


γ 2n
= (w′

n, e
−∑n

k=1 xk Fkkwn)2n (4.4)

is given by the integral


γ 2n
(xn) =

∫
Rn2

2n−1∏
k=1

μ(γ k)dγ k · c 2
ic

∑n
k=1 δ2k−1e

1
ic

∑n
k=1(δ2k−3−δ2k−1+(k−1)ic)xk

×
n−1∏
k=1

k∏
r , j=1

k+1∏
l=1

�

(±γ2k,r + γ2k−1, j

ic
+ 1

2

)
�

(±γ2k,r − γ2k+1,l

ic
+ 1

2

)

×
n∏

r , j=1

�

(±γ2n,r + γ2n−1, j

ic
+ 1

2

)
(4.5)

Here,

μ(γ 2k) = e− π
c δ2k μ̃(γ 2k)

=
∏
r<s

∣∣∣∣�
(γ2k,r − γ2k,s

ic

)∣∣∣∣
−2 ∣∣∣∣�

(γ2k,r + γ2k,s

ic

)∣∣∣∣
−2 ∏

r

∣∣∣∣�
(2γ2k,r

ic

)∣∣∣∣
−2

,

μ(γ 2k+1) = μ̃(γ 2k+1)

=
∏
r<s

∣∣∣∣�
(γ2k+1,r − γ2k+1,s

ic

)∣∣∣∣
−2 ∣∣∣∣�

(
1 + γ2k+1,r + γ2k+1,s

ic

)∣∣∣∣
−2

(4.6)

The measure functions μ(γ j ) do not contain exponential factors.
The convergence of the integral (4.5) can be proved by the arguments given in [7,

Appendix A]. Namely, let us complete the sequence

γ 1 = {γ11}, γ 2 = {γ21}, γ 3 = {γ31, γ32}, . . . γ 2n = {γ2n,1, . . . γ2n,n},
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to the sequence

γ ′
1 = {γ ′

1,−1, γ
′
11}, γ ′

2 = {γ ′
2,−1, γ

′
2,0, γ

′
21}, , . . . γ ′

2n = {γ2n,−n, . . . γ2n,n},

where

γ ′
n,k = γn,k, γ ′

n,−k = −γn,k for k > 0, and γ ′
2m,0 = 0

as is customary in the representation theory of orthogonal groups. Then, the inequality
[7, 34] applied to this sequence is transformed to the bound

2n∑
k=1

∑
r , j

| ± γ2k,r − γ2k±1, j | −
2n−1∑
k=1

∑
r �= j

| ± γk,r − γk, j | − 2
n−1∑
k=1

∑
j

|γ2k, j |

≥ C(γ 2n) + 2

n

2n−1∑
k=1

∑
j

|γk, j |,
(4.7)

where the constant C(γ 2n) depends on the values of γ2n,i . Due to the asymptotics of
the Gamma function

�(i x) ∼ e−π |x |/2

in imaginary direction, we observe that the integrand of (4.5) can be bounded by (4.7)
as

C ′(γ 2n)e
− π−ε

cn

∑2n−1
k=1

∑
j |γk, j | (4.8)

for any small positive ε > 0 and a proper positive constant C ′(γ 2n), which implies
absolute convergence of the integral (4.5)

4.3 Toda equation

Denote by HB
n the Toda Hamiltonian

HBn =
n∑

k=1

(
− ∂2

∂x2k
+ (2n − 2k + 1)

∂

∂xk

)
+

n−1∑
k=1

2

c2
exk−xk+1 + 1

c2
exn (4.9)

Theorem 2 The Whittaker function (4.5) is a wave function for Bn Toda Hamiltonian:

HBn
γ 2n
(xn) =

⎛
⎝ 1

c2

n∑
j=1

γ 2
2n, j + n(2n − 1)(2n + 1)

12

⎞
⎠ 
γ 2n

(xn) (4.10)

Proof is a standard game with the matrix element G(xn) in representation Mγ 2n

G(xn) = (w′
n, L2n+1 e

−∑
k xk Fkkwn)2n (4.11)
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where

L2n+1 = 1

2

2n+1∑
i, j=1

I 2i j = 1

2

2n+1∑
i, j=1

Fi j Fji

is Laplace operator of SO(2n + 1). For this one should also know the eigenvalue
of L in the representation Mγ 2n

. But it is known from the theory of highest weight
representations of so(2n + 1). It gives us the eigenvalue

n∑
j=1

m2
2n, j − (ρ, ρ)

where

ρ =
(
n − 1

2
, . . . ,

1

2

)

is a half sum of positive roots for so(2n + 1). Thus, G(xn) (once we act by L to the
left) is equal to

− 1

c2

n∑
j=1

γ 2
2n, j − n(2n − 1)(2n + 1)

12
(4.12)

On the other hand, we can rewrite L as

L =
n∑

k=1

F2
kk + 2

∑
1≤k<l≤2n

Flk Fkl −
n∑

k=1

(2n − 2k + 1)Fkk

so that

G(xn) =
n∑

k=1

(
∂2

∂x2k
− (2n − 2k + 1)

∂

∂xk

)

+ 2
∑

1≤r<l≤2n

(w′
n, Flr Frl e

−∑
k xk Fkkwn)2n

(4.13)

Due to the skew symmetry, we can act by Flr on w′
n and, by (3.14) the last sum in

(4.13) can be rewritten as

n−1∑
l=1

(−1)l

ic
(w′

n, Fl,l+1, e
−∑

k xk Fkkwn)2n + (−1)n√
2ic

(w′
n, Fn,n+1, e

−∑
k xk Fkkwn)2n

= −
(
n−1∑
k=1

1

c2
exk−xk+1 + 1

2c2
exn

)

γ 2n

(xn)

Combining this with (4.13) and (4.12), we arrive to (4.10) �
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Remark 1 Note that the function


̃γ 2n
(xn) = e−(ρ,xn)
γ 2n

(xn) = e
−

n∑
k=1

(n−k+ 1
2 )xk


γ 2n
(xn)

is the solution of more familiar spectral problem

(
−

n∑
k=1

∂2

∂x2k
+

n−1∑
k=1

2

c2
exk−xk+1 + 1

c2
exn

)

̃γ 2n

(xn) = 1

c2

⎛
⎝

n∑
j=1

γ 2
2n, j

⎞
⎠ 
̃γ 2n

(xn)

4.4 Iterative procedures

1. The integral (4.5) can be formulated as an iterative integral presentation of the
Whittaker wave function,


γ 2n
(x1, . . . , xn) =

∫
R2n−1

μ(γ 2n−1)dγ 2n−1 μ(γ 2n−2)dγ 2n−2

n−1∏
j=1

n∏
l=1

�

(±γ2n−2, j − γ2n−1,l

ic
+ 1

2

) n∏
r , j=1

�

(±γ2n,r + γ2n−1, j

ic
+ 1

2

)

× c
2
ic δ2n−1e− δ2n−1

ic xn+((n−1)+∑n−2
k=1 k)xn
γ 2n−2

(x1 − xn, . . . , xn−1 − xn)
(4.14)

or

γ 2n

(x1, . . . , xn) = n(xn)
(

γ 2n−2

(x1 − xn, . . . , xn−1 − xn)
)

(4.15)

where (xn) is an integral operator

(n(x) f )(γ 2n) =
∫
Rn−1

K (γ 2n; γ 2n−2|x) f (γ 2n−2)μ(γ 2n−2)dγ 2n−2 (4.16)

with the kernel

K (γ 2n; γ 2n−2|x) = e
n(n−1)

2 x
∫
Rn

μ(γ 2n−1)dγ 2n−1c
2
ic δ2n−1e− δ2n−1

ic x

n−1∏
j=1

n∏
l=1

�

(±γ2n−2, j − γ2n−1,l

ic
+ 1

2

)

n∏
r , j=1

�

(±γ2n,r + γ2n−1, j

ic
+ 1

2

)
(4.17)

2. Another recurrent procedure uses the observation that the above construction of
theWhittaker vectors andWhittaker functions, restricted to SO(2n), produced actually
GLn Whittaker vectors and functions. It can be seen from the relation (A.1), (A.2). In
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this way, we arrive by using Gustafson integrals [6] to Iorgov–Shadura formula [7],
which expresses the Bn Toda wave function via An Toda wave function and contains
in total twice less integrals.

The restriction 
γ 2n−1
(xn) of the wave function (4.5) to SO(2n) is given by the

integral


γ 2n−1(xn) =
∫
Rn2−n

2n−2∏
k=1

μ(γ k)dγ k · c 2
ic

∑n−1
k=1 δ2k−1e

1
ic

∑n
k=1(δ2k−3−δ2k−1+(k−1)ic)xk

×
n−1∏
k=1

k∏
r , j=1

k+1∏
l=1

�

(±γ2k,r + γ2k−1, j

ic
+ 1

2

)
�

(±γ2k,r − γ2k+1,l

ic
+ 1

2

)

(4.18)

and the functions 
γ 2n
(xn) and 
γ 2n−1

(xn) are related as follows:


γ 2n (xn) =
∫
Rn

μ(γ 2n−1)dγ 2n−1c
2
ic δ2n−1

n∏
r , j=1

�

(±γ2n,r + γ2n−1, j

ic
+ 1

2

)

γ 2n−1 (xn)

(4.19)

For each k, the integral over γ 2k in (4.18) can be explicitly calculated by means of the
degenerate Bn Gustafson integral

1

(2π)n

∫

Rn

∏2n+1
i=1

∏n
j=1 �(ai + i z j ))�(ai − i z j ))

∏
1≤i< j≤n

∣∣�(i(zi + z j ))�(i(zi − z j ))
∣∣2 ∏n

j=1

∣∣�(2i z j )
∣∣2 dxn

= n!2n
∏

1≤i< j≤2n+1

�(ai + a j ) ,

(4.20)

where all ai are assumed to have a positive real part. The integral (4.20) is a limiting
case

a2n+2 = ε + i L, L → ∞, ε → +0

of a general Bn Gustafson integral [6]

1

(2π)n

∫

Rn

∏2n+2
l=1

∏n
j=1 �(al + i z j ))�(al − i z j ))

∏
1≤l< j≤n

∣∣�(i(zl + z j ))�(i(zl − z j ))
∣∣2 ∏n

j=1

∣∣�(2i z j )
∣∣2 dxn

= n!2n ∏
1≤l< j≤2n+2 �(al + a j )

�
(∑2n+2

l=1 al
) .
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Using

a1 = γ2k−1,1

ic
+ 1

2
, . . . , ak = γ2k−1,k

ic
+ 1

2
, ak+1 = −γ2k+1,1

ic
+ 1

2
, . . .

a2k+1 = −γ2k+1,k+1

ic
+ 1

2
,

we get

∫

Rk

∏k
i=1

(∏k
j=1 �

(±γ2k,i+γ2k−1, j
ic + 1

2

) ∏k+1
j=1 �

(±γ2k,i−γ2k+1, j
ic + 1

2

))

∏
r<s

∣∣∣�
(

γ2k,r−γ2k,s
ic

)∣∣∣2
∣∣∣�

(
γ2k,r+γ2k,s

ic

)∣∣∣2 ∏
r

∣∣∣�
(
2γ2k,r
ic

)∣∣∣2
dγ2k,1 . . . dγ2k,k

= ck(2π)k2k · k! ·
∏
r<s

�

(
γ2k−1,r + γ2k−1,s

ic
+ 1

)
·
∏
i, j

�

(
γ2k−1,i − γ2k+1, j

ic
+ 1

)

×
∏
r<s

�

(
−γ2k+1,r + γ2k+1,s

ic
+ 1

)

(4.21)

and


γ 2n−1
(xn) = dn · c n+1

ic δ2n−1
∏

1≤r<s≤n

�

(
1 − γ2n−1,r + γ2n−1,s

ic

)
�γ 2n−1

(xn)

(4.22)
where

�γ 2n−1
(xn) =

∫

Rn(n−1)/2

e
1
ic

n∑
k=1

(δ2k−3−δ2k−1+(k−1)ic)xk
dγ1 . . . dγ2n−3

×
∏n−1

k=1
∏k

l=1
∏k+1

j=1 c
γ2k−1,l−γ2k+1, j

ic �
(

γ2k−1,l−γ2k+1, j
ic + 1

)

∏n−1
k=1

∏
r<s

∣∣∣�
(

γ2k−1,r−γ2k−1,s
ic

)∣∣∣2
(4.23)

and

dn =
n−1∏
k=1

ck(2π)k2k · k! (4.24)

Both functions
xn (γ2n−1) and�γ 2n−1
(xn) are solutions of GL(n) Toda equations. In

order to compare the final results with Iorgov–Shadura formula [7], we perform the
change of integration variables

γ2k−1, j → γ2k−1, j −
(
n − k + 1

2

)
ic.
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Then,

�γ 2n−1
(xn) = e

n∑
k=1

(n−k+ 1
2 )xk

∫

Cn

e
1
ic

n∑
k=1

(δ2k−3−δ2k−1)xk
dγ1 . . . dγ2n−3

×
∏n−1

k=1
∏k

l=1
∏k+1

j=1 c
γ2k−1,l−γ2k+1, j

ic �
(

γ2k−1,l−γ2k+1, j
ic

)

∏n−1
k=1

∏
r<s

∣∣∣�
(

γ2k−1,r−γ2k−1,s
ic

)∣∣∣2
(4.25)

and


γ 2n
(xn) = dn

∫

C ′
n

∏n
l=1

∏n
j=1 �

(
γ2n−1,l+γ2n, j

ic

)
�

(
γ2n−1,l−γ2n, j

ic

)

∏
r<s �

(
γ2n−1,r+γ2n−1,s

ic

) ∏
r<s

∣∣∣�
(

γ2n−1,r−γ2n−1,s
ic

)∣∣∣2

× c
n+1
ic δ2n−1�γ 2n−1

(xn)dγ2n−1 (4.26)

Here, the contour Cn in (4.25) is a deformation of R
n(n−1)/2, such that the

integration over the variable γ2k−1 is performed in such a way that the singu-

larity of �
(

γ2k−1,l−γ2k+1, j
ic

)
is under the line of integration and the singularity of

�
(

γ2k−3,l−γ2k−1, j
ic

)
is above the line of integration over γ2k−1. The contour C ′

n in

(4.26) is a deformation of Rn where the singularities of the nominators are under the
contours of integrations over all variables.

The relations (4.25)–(4.26) are in accordance with Iorgov–Shadura formula [7,
(26),(27)]. More precisely, in Iorgov–Shadura description the boundary wall corre-
sponds to the first coordinate x1, while we work with the boundary wall related to
the last coordinate. One can observe the coincidence of formulas after the change of
variables

xk → −xn+1−k

and the following symmetry of the An Toda wave function:

�γ1,...,γn (x1, . . . xn) = �−γ1,...,−γn (−xn, . . . ,−x1).

5 Examples

n = 1. For one particle, the system and the wave function coincide with that of sl(2)
Toda system:


γ21(x1) =
∫
R

dγ11c
2
ic γ11e− 1

ic γ11x1�

(±γ21 + γ11

ic
+ 1

2

)
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n = 2. The wave function for B2 Toda system is given by fourfold integral, which
can be reduced to threefold by using Gustafson integral,


γ41,γ42(x1, x2) =
∫
R4

dγ11
dγ21∣∣∣�
(
2γ21
ic

)∣∣∣2
dγ31dγ32∣∣∣�

(
γ31−γ32

ic

)
�

(
1 + γ31+γ32

ic

)∣∣∣2

× c
2
ic (γ11+γ31+γ32)e

1
ic (−γ11x1+(γ11−γ31−γ32+ic)x2)

× �

(±γ21 + γ11

ic
+ 1

2

)
�

(±γ21 − γ31

ic
+ 1

2

)

�

(±γ21 − γ32

ic
+ 1

2

) 2∏
i, j=1

�

(±γ4i + γ3 j

ic
+ 1

2

)

that is


γ41,γ42(x1, x2)

=
∫
R3

dγ21∣∣∣�
(
2γ21
ic

)∣∣∣2
dγ31dγ32∣∣∣�

(
γ31−γ32

ic

)
�

(
1 + γ31+γ32

ic

)∣∣∣2
c

2
ic (γ31+γ32)e

1
ic ((−γ31−γ32+ic)x2)

�

(±γ21 − γ31

ic
+ 1

2

)
�

(±γ21 − γ32

ic
+ 1

2

)

2∏
i, j=1

�

(±γ4i + γ3 j

ic
+ 1

2

)

γ21(x1 − x2)

or


γ41,γ42(x1, x2)

=
∫
R2+ε

∏2
i, j=1 �

(±γ4i+γ3 j
ic

)

�
(

γ31+γ32
ic

) ∣∣∣�
(

γ31−γ32
ic

)∣∣∣2
c

3
ic (γ31+γ32)�γ31,γ32(x1, x2)dγ31dγ32

where �γ31,γ32(x1, x2) is the wave function of GL(2) Toda system

�γ31,γ32(x1, x2) = e
3x1+x2

2

∫
R+ε

dγ11e
1
ic (−γ11x1+(γ11−γ31−γ32)x2)c

1
ic (2γ11−γ31−γ32)

�

(
γ11 − γ31

ic

)
�

(
γ11 − γ32

ic

)

A Calculations of Whittaker vector

In this section, we prove Theorem 1. First we note that the relation (3.14) follows from
(3.13) by using the automorphism τ . Proof of the equality (3.13) reduces to check of
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the following equalities, where k = 1, . . . n − 1 in the relations (A.2) and (A.3)

(Fk,k+1 − (−1)k Fk,2n−k)wn = (I2k+1,2k + i I2k+1,2k−1)wn = (−1)k+1

ic
wn

(A.1)

(Fk,k+1 + (−1)k Fk,2n−k)wn = (−I2k+2,2k−1 + i I2k+2,2k)wn = (−1)k+1

ic
wn

(A.2)

Fn,n+1wn = 1√
2
(I2n+1,2n + i I2n+1,2n−1)wn = (−1)n+1

ic
√
2

wn (A.3)

Besides, the relation (A.3) is a particular case of (A.1). So we have to prove the
relations (A.1) and (A.2).

The proof of (A.1)–(A.2) requires certain calculations. For their visualization, we
introduce some intermediate notations. First rewrite the operators (2.10) and (2.11) as

I2k+1,2k =
∑

ε=±1

k∑
j=1

Pε
k j , I2k+2,2k+1 =

k∑
j=1

Qkj +
k∑
j=1

Rkj + Tk (A.4)

where

Pε
k, j = − 1

ic

∏k−1
r=1(ν2k−1, j + ε(ν2k−2,r + ic

2 ))
∏k

r=1(ν2k−1, j − ε(ν2k,r − ic
2 ))

2
∏

r �= j (ν2k−1, j − ν2k−1,r )(ν2k−1, j + ν2k−1,r + εic)

eεic∂ν2k−1, j ,

Qk, j = 1

ic

∏k+1
r=1((ν2k, j + ic

2 )2 − ν22k+1,r )

2ν2k, j (ν2k, j + ic
2 )

∏
r �= j (ν

2
2k, j − ν22k,r )

eic∂ν2k, j

Rk, j = 1

ic

∏k
r=1((ν2k, j − ic

2 )2 − ν22k−1,r )

2ν2k, j (ν2k, j − ic
2 )

∏
r �= j (ν

2
2k, j − ν22k,r )

e−ic∂ν2k, j

Tk = 1

c

∏k
r=1 ν2k−1,r

∏k+1
r=1 ν2k+1,r∏k

r=1(ν
2
2k,r + c2

4 )

Set also for ε, δ = ±1

J ε
k,δ, j =

k∑
s=1

εic

ν2k+δ, j − ε(ν2k,s + ic
2 )

Qk,s +
k∑

s=1

εic

ν2k+δ, j + ε(ν2k,s − ic
2 )

Rk,s + εic

ν2k+δ, j
Tk . (A.5)
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In these notation, we can present the following expressions for other generators of
Lie algebra so(n) needed in the equations on Whittaker vectors. They can be checked
by straightforward calculations.

Lemma 3 We have the following relations

I2k+1,2k−1 =
∑

ε=±1

k∑
j=1

Pε
k j J

ε
k−1,1, j k = 1, . . . , n

I2k+2,2k = −
∑

ε=±1

k∑
j=1

Pε
k j J

ε
k,−1, j k = 1, . . . , n − 1

I2k+2,2k−1 = −
∑

ε=±1

k∑
j=1

Pε
k j J

ε
k,−1, j J

ε
k−1,1, j k = 1, . . . , n − 1

(A.6)

For more brevity in further formulas, we denote

θk = (−1)k, θk+1 = (−1)k+1.

The following statement is one of the important steps in the proof of Theorem 1.

Lemma 4 For any k = 0, . . . , n − 1 (δ = 1 when k = 0), we have the relations
J θk
k,δ, jwn = iwn (A.7)

J θk+1
k,δ, jwn = i

(
1 −

∏k+1
r=1(ν2k+δ, j + ν2k+1,r )

∏k
r=1(ν2k+δ, j + ν2k−1,r )

ν2k+δ, j
∏k

r=1((ν2k+δ, j + (−1)k ic2 )2 − ν22k,r )

)
wn δ = ±1

(A.8)

Proof Note that the operator J θk
k,δ, j contains only shifts of variables ν2k,s , and thus

only the factor W θk+1
k can change. Let us check the equality (A.7). We then have

J
θk
k,δ, jwn =

( k∑
s=1

θk ic

ν2k+δ, j − θk (ν2k,s + ic
2 )

Qk,s +
k∑

s=1

θk ic

ν2k+δ, j + θk (ν2k,s − ic
2 )

Rk,s + θk ic

ν2k+δ, j
Tk

)
wn

=
( k∑
s=1

θk ic

ν2k+δ, j − θk (ν2k,s + ic
2 )

· 1

ic
·

∏k+1
r=1((ν2k,s + ic

2 )2 − ν22k+1,r )

2ν2k,s (ν2k,s + ic
2 )

∏
r �=s

(ν22k,s − ν22k,r )

× iθk ×
∏k

r=1(ν2k,s − θkν2k−1,r + ic
2 )

∏k+1
r=1(−ν2k,s − θkν2k+1,r − ic

2 )
+

k∑
s=1

θk ic

ν2k+δ, j + θk (ν2k,s − ic
2 )

· 1

ic

×
∏k+1

r=1((ν2k,s − ic
2 )2 − ν22k+1,r )

2ν2k,s (ν2k,s − ic
2 )

∏
r �=s (ν

2
2k,s − ν22k,r )

· i−θk ×
∏k+1

r=1(−ν2k,s − θkν2k+1,r + ic
2 )

∏k
r=1(ν2k,s − θkν2k−1,r − ic

2 )

+ i

∏k
r=1(−θkν2k−1,r )

∏k+1
r=1(−θkν2k+1,r )

(−θkν2k+δ, j )
∏k

r=1(− ic
2 − ν2k,r )(− ic

2 + ν2k,r )

)
wn = iwn

123



77 Page 22 of 26 A. Galiullin et al.

The last line is obtained by the use of the following well-known identity:

m∑
i=1

∏m−1
j=1 (xi − y j )∏
r �=i (xi − xr )

= 1 (A.9)

where for indeterminates xi we choose 2k + 2 variables {±ν2k,s,− ic
2 , θkν2k+δ − ic

2 },
and for indeterminates yi we choose {θkν2k−1 − ic

2 , θkν2k+1 − ic
2 }.

Let us check the equality (A.8). We have

J θk+1
k,δ, jwn =

( k∑
s=1

θk+1ic

ν2k+δ, j − θk+1(ν2k,s + ic
2 )

Qk,s

+
k∑

s=1

θk+1ic

ν2k+δ, j + θk+1(ν2k,s − ic
2 )

Rk,s + θk+1ic

ν2k+δ, j
Tk

)
wn

=
( k∑

s=1

θk+1ic

ν2k+δ, j − θk+1(ν2k,s + ic
2 )

· 1

ic
·

∏k+1
r=1((ν2k,s + ic

2 )2 − ν22k+1,r )

2ν2k,s(ν2k,s + ic
2 )

∏
r �=s(ν

2
2k,s − ν22k,r )

× iθk+1 ×
∏k

r=1(ν2k,s − θkν2k−1,r + ic
2 )∏k+1

r=1(−ν2k,s − θkν2k+1,r − ic
2 )

−
k∑

s=1

θk+1ic

ν2k+δ, j + θk+1(ν2k,s − ic
2 )

· 1

ic
·

∏k+1
r=1((ν2k,s − ic

2 )2 − ν22k+1,r )

2ν2k,s(ν2k,s − ic
2 )

∏
r �=s(ν

2
2k,s − ν22k,r )

× i−θk+1 ·
∏k+1

r=1(−ν2k,s − θkν2k+1,r + ic
2 )∏k

r=1(ν2k,s − θkν2k−1,r − ic
2 )

+ i

∏k
r=1(−θkν2k−1,r )

∏k+1
r=1(−θkν2k+1,r )

(−θk+1ν2k+δ)
∏k

r=1(− ic
2 − ν2k,r )(− ic

2 + ν2k,r )

)
wn

= i

(
1 −

∏k+1
r=1(ν2k+δ, j + ν2k+1,r )

∏k
r=1(ν2k+δ, j + ν2k−1,r )

ν2k+δ, j
∏k

r=1((ν2k+δ, j + θk
ic
2 )2 − ν22k,r )

)
wn

The last line of the equality is obtained after simplifications of the ratios by
use of the relation (A.9), where for indeterminates xi we substitute x variables
{±ν2k,s,− ic

2 , θk+1ν2k+δ − ic
2 }, and for yi we substitute {θkν2k−1 − ic

2 , θkν2k+1 − ic
2 }.

Proof of (A.1) According to Lemmas 3 and 4, for any k = 1, . . . , n we have:

(I2k+1,2k + i I2k+1,2k−1)wn =
∑

ε=±1

k∑
j=1

Pε
k j (1 + i J ε

k−1,1, j )wn

=
k∑
j=1

Pθk
k j

∏k
r=1(ν2k−1, j + ν2k−1,r )

∏k−1
r=1(ν2k−1, j + ν2k−3,r )

ν2k−1, j
∏k−1

r=1((ν2k−1, j + θk−1
ic
2 )2 − ν22k−2,r )

wn (A.10)
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= − 1

ic

k∑
j=1

∏k−1
r=1(ν2k−1, j + θk(ν2k−2,r + ic

2 ))
∏k

r=1(ν2k−1, j − θk(ν2k,r − ic
2 ))

2
∏

r �= j (ν2k−1, j − ν2k−1,r )(ν2k−1, j + ν2k−1,r + θkic)

eθk ic∂ν2k−1, j

× 2

∏k
r �= j (ν2k−1, j + ν2k−1,r )

∏k−1
r=1(ν2k−1, j + ν2k−3,r )∏k−1

r=1((ν2k−1, j + θk−1
ic
2 )2 − ν22k−2,r )

wn

= − 1

ic

k∑
j=1

∏k−1
r=1(ν2k−1, j + ν2k−3,r + θkic)∏

r �= j (ν2k−1, j − ν2k−1,r )

·
∏k

r=1

(
ν2k−1, j + θk+1ν2k,r + θk

ic
2

)
∏k−1

r=1

(
ν2k−1, j + θk+1ν2k−2,r + θk

ic
2

)eθk ic∂ν2k−1, j wn

In the product, presenting the function wn , only the factors W θk
k−1 and W θk+1

k depend
on the variables ν2k−1, j . Thus, using (3.11), functional relations on the Euler Gamma
function and (A.9), we get

(I2k+1,2k + i I2k+1,2k−1)wn = θk+1

ic

k∑
j=1

∏k−1
r=1(ν2k−1, j + ν2k−3,r + θkic)∏

r �= j (ν2k−1, j − ν2k−1,r )
wn = θk+1

ic
wn

(A.11)

�

Proof of (A.2) Again, according to Lemmas 3 and 4, for any k = 1, . . . , n we have:

(−I2k+2,2k−1 + i I2k+2,2k)wn =
∑

ε=±1

k∑
j=1

Pε
k j J

ε
k,−1, j (J

ε
k−1,1, j − i)wn

= −i
k∑
j=1

Pθk
k j J

θk
k,−1, j

∏k
r=1(ν2k−1, j + ν2k−1,r )

∏k−1
r=1(ν2k−1, j + ν2k−3,r )

ν2k−1, j
∏k−1

r=1((ν2k−1, j + θk−1
ic
2 )2 − ν22k−2,r )

wn .

(A.12)

Since the operator J θk
k,−1, j contains shifts only of the variables ν2k,s , we can rewrite

the result as

− i
k∑
j=1

Pθk
k j

∏k
r=1(ν2k−1, j + ν2k−1,r )

∏k−1
r=1(ν2k−1, j + ν2k−3,r )

ν2k−1, j
∏k−1

r=1((ν2k−1, j + θk−1
ic
2 )2 − ν22k−2,r )

J θk
k,−1, jwn (A.13)

Now Lemma 4 says that
J θk
k,−1, jwn = iwn .
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Thus, (−I2k+2,2k−1 + i I2k+2,2k)wn equals to

=
k∑
j=1

Pθk
k j

∏k
r=1(ν2k−1, j + ν2k−1,r )

∏k−1
r=1(ν2k−1, j + ν2k−3,r )

ν2k−1, j
∏k−1

r=1((ν2k−1, j + θk−1
ic
2 )2 − ν22k−2,r )

wn = θk+1

ic
wn

(A.14)
The latter equality was proved during the derivation of (A.11) from (A.10).

�

This ends the proof of Theorem 1. �

Remark 2 Analyzing the proof of Theorem 1, we see that the derivations over variables
ν2k−1, j enter the game only in the last stage of calculations. Moreover, we can freely
add to Whittaker vectors factors of the form

ei
α j
c δ2 j−1 , where δ2 j−1 =

∑
i

ν2 j−1,i = (−1) j+1
∑
i

γ2 j−1,i

where α is arbitrary real number. This does not affect to the convergence of integrals
and does not change the action of Cartan subalgebra. In Toda equation, we earn
thus arbitrary positive constants c j = eα j at exponentials ex j−1−x j which can be
equivalently obtained by successive shifts of the variables x j .

B Action of Cartan subalgebra

It is sufficient to calculate Fk,kwn , and then use the automorphism τ .

−i I2k,2k−1wn = −
(
1

c

k−1∑
j=1

∏k
r=1((ν2k−2, j + ic

2 )2 − ν22k−1,r )

2ν2k−2, j (ν2k−2, j + ic
2 )

∏
r �= j (ν

2
2k−2, j − ν22k−2,r )

iθk−1

∏k−1
r=1(ν2k−2, j − θk−1ν2k−3,r + ic

2 )∏k
r=1(−ν2k−2, j − θk−1ν2k−1,r − ic

2 )

+ 1

c

k−1∑
j=1

∏k−1
r=1((ν2k−2, j − ic

2 )2 − ν22k−3,r )

2ν2k−2, j (ν2k−2, j − ic
2 )

∏
r �= j (ν

2
2k−2, j − ν22k−2,r )

i−θk−1

∏k
r=1(−ν2k−2, j − θk−1ν2k−1,r + ic

2 )∏k−1
r=1(ν2k−2, j − θk−1ν2k−3,r − ic

2 )

− 1

ic

∏k−1
r=1 ν2k−3,r

∏k
r=1 ν2k−1,r∏k−1

r=1(ν
2
2k−2,r + c2

4 )

)
wn (B. 1)
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= − 1

ic

( k−1∑
j=1

∏k
r=1(ν2k−2, j − θk−1ν2k−1,r + ic

2 )
∏k−1

r=1(ν2k−2, j − θk−1ν2k−3,r + ic
2 )

2ν2k−2, j (ν2k−2, j + ic
2 )

∏
r �= j (ν

2
2k−2, j − ν22k−2,r )

+
k−1∑
j=1

∏k−1
r=1(−ν2k−2, j − θk−1ν2k−3,r + ic

2 )
∏k

r=1(−ν2k−2, j − θk−1ν2k−1,r + ic
2 )

2ν2k−2, j (ν2k−2, j − ic
2 )

∏
r �= j (ν

2
2k−2, j − ν22k−2,r )

+
∏k−1

r=1(−θk−1ν2k−3,r )
∏k

r=1(−θk−1ν2k−1,r )∏k−1
r=1(− ic

2 − ν2k−2,r )(− ic
2 + ν2k−2,r )

)
wn

= θk−1

ic

⎛
⎝

k∑
j=1

ν2k−1, j +
k−1∑
j=1

ν2k−3, j − θk−1(k − 1)ic

⎞
⎠ . (B. 2)

Here, we again use the identity (A.9), where for xi we substitute 2k − 1 variables
{±ν2k−2,s,− ic

2 }, a and for yi we use {θk−1ν2k−1 − ic
2 , θk−1ν2k−3 − ic

2 }. �
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