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Qúımica y Tecnoloǵıa, Facultad de Ciencias Qúımicas,
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In this study, we analyze the dielectric function of high-Tc cuprates as a function of doping level,
taking into account the full energy band dispersion within the CuO2 monolayer. In addition to
the conventional two-dimensional (2D) gapless plasmon mode, our findings reveal the existence of
three anomalous branches within the plasmon spectrum. Two of these branches are overdamped
modes, designated as hyperplasmons, and the third is an almost one-dimensional plasmon mode
(1DP). We derive an analytic expression for dynamic part of the response function. Furthermore,
we investigated the effect of the doping on these modes. Our analysis demonstrates that in the
doping level range close to the optimal doping level, the properties of all three modes undergo a
significant transformation.

I. INTRODUCTION

Electronic charge excitations that can occur in a metal-
lic system are well understood within the framework of
a free-electron gas (FEG) model. In a three-dimensional
(3D) electron system within this model, the low-energy
excitations are incoherent electron-hole (e-h) pairs that
form a structureless continuum.1,2 In addition to the
structureless continuum, charge collective excitations
known as plasmons emerge at energies of the order of
the conduction electron bandwidth due to the Coulomb
interaction.3,4 The resulting plasmon bands are narrow
compared to the electronic bands and can be easily de-
tected in optical experiments. But, due to the high en-
ergy of their creation, they are not directly relevant to
most of the phenomena of condensed matter physics oc-
curring at low energy scales, such as electrical conduc-
tivity, heat transfer, and many others. Therefore it is
widely accepted that only incoherent e-h excitations play
any role in these phenomena.

In two-dimensionsional (2D) systems, the continuum of
incoherent e-h excitations exhibits a similar behavior to
that observed in the 3D case. However, the charge collec-
tive excitations in 2D differ from that in 3D in long-wave-
length limit. The plasmon energy ω2D vanishes at small
in-plane momenta q as ω2D ∼ √

q.5 Such steep disper-
sion ensures a minimal spectral weight of this collective
excitation at low energies resulting in a small effect on
the low-energy properties of materials.

Much more relevant for the low-energy phenomena
might be a mode, called acoustic plasmon (AP) with
characteristic sound-like dispersion (ωAP∼q), predicted
to exist in a two-component electron system.6 This mode
consists of out-of-phase collective movement7 of carriers

in different energy bands which cross the Fermi level with
different Fermi velocities. The relevance of this mode
as ”a boson” for the superconductivity was discussed
from the 60’s.8–12 After discovery of superconductivity
in cuprates, a role of the AP as a possible candidate
for mediation of the attractive interaction for the for-
mation of Cooper pairs in high-Tc superconductors was
discussed.13–18

Existence of the AP in 3D bulk materials was predicted
by a number of first principle response calculations.19–25

However, it has never been observed in 3D bulk metals
until recently. Perhaps a signature of this mode was ob-
served in intercalated graphite.26 But its measured en-
ergy dispersion was very different from the theoretical
prediction27 and therefore this issue still remains unclear.
In a recent publication28 a claim on its experimental de-
tection in a bulk sample of Sr2RuO4 was reported. How-
ever, its measured dispersion presents qualitatively differ-
ent behaviour from the predicted sound-like one. There-
fore, to our opinion, this issue is still far from being set-
tled.

On the other hand, a cousin of the AP - an
acoustic surface plasmon - which can be realized at
metal surfaces supporting 2D-like electronic surface
states29 was detected on some surfaces like Be(0001),30,31

noble32–35 and transition36 metal (111) surfaces, sup-
ported graphene,37–41 and topological insulators.42–47

Moreover, plasmons with a sound-like dispersion can be
realized in MXenes48 and in the atomically thin films
where the quantum-well states can exist.49,50

Usually, it is implicitly assumed that a multi-
component electronic system can be realized when sev-
eral energy bands cross the Fermi level. An example is
a 2D dilute electron gas.51 Nevertheless recently it was
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FIG. 1: Electron dispersion in the optimally doped Bi-2212
as parameterized in the model of Ref. 72. The energy values
are in eV. The Fermi level is set to zero. In the upper-right
corner some contour levels are highlighted by solid and dashed
lines.

demonstrated52 that an acoustic mode can exist, in ad-
dition to the conventional 2D plasmon, in a 2D system
having a single energy band with a dispersion strongly
deviating from the FEG isotropic case. Thus, the effect
of the energy dispersion anisotropy may not be limited
to the changing only of the conventional 2D plasmon
dispersion,53 but can lead to the appearance at lower
energies of additional modes in certain symmetry direc-
tions.

Cuprates are among the most promising materials for
the observation of 2D plasmons, due to their quasi-2D
electron band structure. It has been put forward that
such plasmons can exist in these materials at energies be-
low 1 eV.54–58 Furthermore, it was suggested that mod-
ifications of the plasmonic structure may be caused by
a variation in the number of CuO2 atomic sheets in
the unit cell.59,60 Also, due to the layered structure of
these materials the inter-layer long-range Coulomb in-
teraction may transform the 2D plasmon mode into a
gapped plasmon band.15,17,61–64 Recently this mode was
detected in the resonant inelastic x-ray scattering (RIXS)
experiments.65–70

In a recent paper71 it was predicted that in optimally
doped cuprates characterized by a band dispersion sim-
ilar to that presented in Fig. 1, instead of substantial
part of incoherent intra-band electron-hole pairs, unusual
charge collective excitations can exist. Namely taking as
an example Bi-2212, it was demonstrated that the pe-
culiar shape of the conducting energy band gives rise to

new kinds of modes with unusually strong spectral weight
called hyperplasmons of types I and II. Additionally, an
uni-directional mode becoming soft along the q=(qx, 0)
and q=(0, qy) lines (with qx, qy varying from 0 to ≈ 0.4π)
in the q space was found. All these modes can be real-
ized in the energy interval from zero to several hundreds
of meV.

Let us stress that the properties of Bi-2212 are crucially
dependent on the doping level. Therefore, if the elec-
tronic modes discovered in Ref. 71 have any implication,
it would be interesting to reveal how the modes properties
change upon the doping level. Moreover, the dispersion
of these modes is very close to that of the paramagnon at
small momenta. Actually it falls into broad experimental
features assigned to paramagnon.73–86 We believe that
thorough doping dependent experimental study might
disentangle the paramagnon and the electronic modes of
interest here.

In this paper we analyze how variation in the electronic
structure at the Fermi level caused by doping variation
are reflected in the intra-band electronic excitations. In
particular, we show that the balance between the intra-
band e-h’s and the collective excitations is very sensitive
to the doping level. We relay this strong sensitivity to
the fast variations in the Fermi line shape and the Fermi
velocity distribution caused by doping.

II. CALCULATION DETAILS

In order to obtain the response function χo(q, ω) as a
function of momentum q and energy transfer ω for non-
interacting electrons we calculate the spectral function
So(q, ω) as

So(q, ω) = 2
A

BZ∑
k

(fk − fk+q)δ(εk − εk+q + ω). (1)

Here the factor 2 accounts for the spin, A is the unit cell
size, the Fermi distribution function fk is a step function,
and εk is the conducting one-particle band dispersion. As
in Ref. 71, in Eq. (1) a mesh of 2500 × 2500 k points
was employed in the summation over the two-dimensional
Brillouin zone (2DBZ). Then the imaginary part of the
density-density response function χo(q, ω) is evaluated
according to

Im[χo(q, ω)] = −sgn(ω)πSo(q, ω) (2)

and the real part of χo(q, ω) is evaluated via the
Kramers-Kronig relation. Finally, the dielectric function
ϵ(q, ω) is obtained as

ϵ(q, ω) ≡ ϵ1(q, ω) + iϵ2(q, ω) = ϵ∞ − V (q)χo(q, ω). (3)

Here ϵ1 and ϵ2 are the real and imaginary parts of the
dielectric function, respectively. The experimental value
for the background dielectric constant ϵ∞ is 4.5.87 Nev-
ertheless, we have checked that the exact ϵ∞ value does
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i ci (in eV) ηi(k)
0 0.1305 1
1 -0.5951 1

2 (cos kx + cos ky)
2 0.1636 cos kx cos ky

3 -0.0519 1
2 (cos 2kx + cos 2ky)

4 -0.1117 1
2 (cos 2kx cos ky + cos kx cos 2ky)

5 0.0510 cos 2kx cos 2ky

TABLE I: Parameters of the tight-binding model describing
the band structure in the normal state of Bi-2212 at the op-
timal doping, Eq. (4), as proposed in Ref. 72.

.

not change our results. Therefore, in the following we
use ϵ∞ = 1. Previously, similar random phase ap-
proximation (RPA) calculations were employed in the
study of plasmons in cuprates.15,17,18,60,68,88 For the in-
teracting potential we employ a 2D Coulomb potential,
V (q) = 2π/q. Actually, the shape of the interacting po-
tential should not influence notably the properties of the
plasmon modes studied here. These modes correspond to
the out-of-phase charge oscillations at different parts of
the Fermi surface,71 whereas in the conventional 2D plas-
mon all the electronic system oscillates in phase. There-
fore the interlayer Coulomb interaction is more efficient
in the latter case.89

FIG. 2: Density of states around the Fermi level in the metal-
lic energy band in Bi-2122 as parameterized in Ref. 72. The
Fermi level is set to zero in the optimally doped case. In the
insert the relation between certain Fermi level positions and
the doping level is reported.

III. RESULTS

In this work we consider a 2D case of a free standing Bi-
2212 monolayer. It is justified since we are interested in
the collective electronic modes different from the conven-
tional 2D plasmon and quasi-2D gapless plasmon band
studied in details previously.

In a normal state of the optimally doped Bi-2212, the
dispersion of the energy band εk crossing the Fermi level
can be described in the tight-binding (TB) model72

εk =
∑

i

ciηi(k) (4)

with parameters ci and ηi listed in Tab. I. In the band
structure plot reported in Fig. 1 one can see that the
Fermi line has a characteristic shape with straight regions
in the vicinity of the nodal points [(±π, 0) and (0, ±π)].
Moreover in the Fermi level vicinity, as seen in the upper-
right part of Fig. 1, the shape of the lines of constant
energies (LCE) changes quickly as well. This is very dif-
ferent from the FEG model, where all the LCEs are the
circles. The difference between the realistic Bi-2122 band
dispersion of Fig. 1 and the 2D FEG one is seen in the
peak structure of the density of states (DOS) in the for-
mer case (reported in Fig. 2) instead of a step function
in the latter one.

We start with analyzing the dynamic part of the
density-density response function at T = 0. For simplic-
ity we use the system of coordinates centered at (π, π).
For small q ≪ pF we use the expansion of the quasi-
particle spectra εp+q ≈ εp + vF (φ)q. Integration over
εp followed by ω gives the dynamic part of the response
function

χ̃o(q, iω) = N(0)
∫

dφ

2π

iω

iω + vF (φ)q , (5)

where N(0) is the density of states at the Fermi level.
For the chosen dispersion we can write out vF (φ)q =

|vF 0|q cos(φ)(1 + a3 cos2(φ) + a5 cos4(φ)), where |vF 0|,
a3 and a5 are some coefficients. The corresponding func-
tion is shown in Fig. 3. It can be seen that the an-
gular dependence of the Fermi velocity can be divided
into three intervals. The first interval contains a dou-
ble peak angle dependence centered at φ = π, the sec-
ond is a double dip near φ = 0, and the last one are
inflection points at φ = π/2, 3π/2. The Fermi veloc-
ity in the double peak interval can be approximated as
vF (φ)q ≈ ω2 − ω2−ω1

φ4
0

(φ2 − φ2
0)2, where ω2 and ω1 are

the maximum and the minimum of vF (φ)q in this in-
terval, and φ0 is the maximum position. As the inte-
gral converges rapidly, it is possible to extend the limits
of integration to infinity. Following the integration, the
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FIG. 3: The x component of vF multiplied by qx at qx = 0.02π
as a function of angle for the Fermi surface centered at (π, π).

FIG. 4: Im[χo(q, ω)] at q = (0.02π, 0) as a function of ω.

function will assume the following form

χ̃o(q, ω) ≈ − iN(0)
2
√

2
φ0

(∆ω)1/4

×ω
√

(ω − ω1)1/2 + (∆ω)1/2
√

ω − ω1
√

ω2 − ω
, (6)

where ∆ω = ω2 − ω1. The double dip interval gives
similar result with opposite sign of ω1,2. The intervals
with the inflection points can be estimated as

χ̃o(q, ω) ≈ 2N(0)
∫ ∞

−∞

dφ

2π

ω

ω + aφ3q + i0

= N(0) ω1/3

3(aq)1/3

(√
3 − i

)
. (7)

The imaginary part of the response function is presented
in Fig. 4. The two peaks in the imaginary part of the

response function originate from the term in the denom-
inator

√
(ω − ω1)(ω2 − ω) of Eq. (6). The contribution

from the inflection points, which is ∼ ω1/3, does not re-
sult in the singular inverse power law contribution to the
response function.

In 2D systems, the inverse square root singularity is
a typical characteristic of response functions. For an
isotropic Fermi-gas with parabolic dispersion it has a
form of 1/

√
ω2 − (vF q)2. In the case of a nonmonotonic

dependence of vF for the electron band structure, as oc-
curs in high-Tc cuprates, the extremums of vF q yield an
inverse square root singularity in the response function,
as described in Eq. (6).

After establishing the general properties of the re-
sponse function in the limit of small q, we proceeded to
calculate the doping and momentum dependence of the
plasmon dispersion using a numerical approach. Quick
variations in the Bi-2122 band dispersion are reflected in
the non-isotropic distribution of the group velocities. An
useful quantity to analyze is the distribution of the den-
sity of states DOS(E, v) as function of an electron energy
E and a group velocity component v in a certain direc-
tion. The DOS for the group velocity components v[10]
and v[11] along the [10] and [11] symmetry directions,
respectively, is reported in Fig. 5. For more details,
these quantities at the Fermi level (set at zero energy
in the optimally doped case, x=-0.176), DOS(EF , v[10])
and DOS(EF , v[11]), are presented in Fig. 6. One can
see that the DOS for the carriers moving at the Fermi
level in the [10] direction is characterized by three sharp
peaks at vF 1=0, vF 2=0.049, and vF 3=0.123 a. u. Along
the [11] direction the carriers are moving at the Fermi
level essentially with velocities vF 1=0.034, vF 2=0.049,
and vF 3=0.156 a. u. Such distribution of the peaks in
the DOS is very different from that in the FEG model,
where a single peak locates at vF in any direction.2,90

In Ref. 71 the presence of three charge collective exci-
tations resulted from such peak structure of DOS(E, v)
was linked to the different regions in the vicinity of EF

characterized by different Fermi velocities. This is be-
cause at small momentum transfers q’s, the intra-band
contribution to the imaginary part of the dielectric func-
tion is essentially determined by the peak structure in
DOS(EF , v).2,90 As a result, a multi-peak behavior of
the DOS(EF , v) results in a multi-peak structure of the
imaginary part of the dielectric function, ϵ2(q, ω). Thus,
at momentum transfers along the [10] direction two clear
peaks can be observed in ϵ2, especially at small momen-
tum transfers q’s, as it is seen in Fig. 7. In turn, the
real part ϵ1, which is connected to ϵ2 by the Kramers-
Kroning relation, has unconventional behavior as well.
Its remarkable feature is the near horizontal dispersion
over an extended energy regions for q’s along [10]. In Fig.
7 these regions are highlighted by colored rectangles. For
instance, in Fig. 7(a) such an energy region with flat ϵ1
expands from ω=9.5 meV to ω=19.5 meV. In Fig. 7(b)
a similar interval is between ω=57 meV and ω=99 meV.
In the case of q = (0.2π, 0), presented in Fig. 7(c), such
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FIG. 5: Two-dimensional plot of the density of states versus
energy and group velocity component along (a) [10] and (b)
[11] symmetry directions. The Fermi level is set to zero en-
ergy. The peaks in the DOS at the Fermi level are marked by
respective Fermi velocity values, vF 1, vF 2, and vF 3.

a region in ϵ1 locates between ω=153 meV and ω=185
meV. Moreover, in these flat regions a value of ϵ1 is sig-
nificantly smaller than ϵ2. As a consequence, the imag-
inary part of the dielectric function almost completely
determines71 the imaginary part of the inverse dielectric
function, i.e. the loss function which is directly measured
in the loss experiments.2 Taking into consideration that
in these energy intervals (a) ϵ1 ≪ ϵ2, (b) ϵ2 has shal-
low minima, and (c) the loss function -Im[1/ϵ] presents
a peak, the spectral weight of which (marked in yellow)
in the loss functions of Figs. 7(a,b,c) was attributed to a
novel collective charge excitation called hyperplasmon of
type I (HPI). Notice, that the spectral weight of the HPI

FIG. 6: Density of states versus group velocity of the carriers
moving at the Fermi level in the [10] (red line) and [11] (blue
line) symmetry directions. Optimally doped case.

is notably larger in comparison to the usual acoustic plas-
mon appearing in a two-band scenario with the isotropic
FEG energy band dispersion at comparable momenta.71

As seen in Fig. 8, at q’s along the antinodal [11] direc-
tion the amplitude of the real part of dielectric function
again is significantly smaller than ϵ2 in the energy inter-
val where a broad prominent peak highlighted by yellow
color is observed in the loss function. However, in this
case ϵ1 changes the sign in this energy interval. In conse-
quence, the spectral weight of a resulting collective mode
is significantly larger in comparison to the case of HPI.
Therefore, the respective mode was called a hyperplas-
mon of type II (HPII).71

In the low-energy excitation spectrum of Bi-2122, be-
sides the HPI and HPII modes, in Ref. 71 another mode
was found. Its peculiarity is the quasi-one-dimensional
dispersion along the [10] and [01] symmetry directions.
For this reason it was called a quasi one-dimensional
plasmon (1DP). This mode has finite energies at q’s in
vicinity of the nodal [10] and [01] symmetry directions
whereas it is a soft mode (i.e. has a zero energy) exactly
along the lines from q = (0, 0) to q = (≈ 0.4π, 0) and
q = (0, ≈ 0.4π). Existence of this mode was explained
by the flat regions on the Fermi lines occurring at the op-
timal doping in the vicinity of the nodal (π, 0) and (0, π)
points.71

In Ref. 71 all the unusual features in the low-energy
excitation spectra of optimally doped Bi-2212 were linked
to the remarkable dispersion of the metallic energy band
and, especially, to the peak structure in the distribution
of the Fermi velocities. Therefore a reasonable question
arises - what would happen with these excitations upon
variation of the doping level. From the band structure
of Fig. 1 it is clear, that with shifting of the Fermi level
the shape of the Fermi line changes notably. This is ac-
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FIG. 7: Dielectric and loss functions obtained with the tight-
binding energy band dispersion of Ref. 72 at (a) q =
(0.02π, 0), (b) q = (0.1π, 0), and (c) q = (0.2π, 0), along
the [10] symmetry direction. The peaks corresponding to the
hyperplasmon of type I are marked as HPI. The colored boxes
highlight the region where ϵ1 has a horizontal line dispersion.

companied by quick change of the energies of peaks in
the DOS of Fig. 5 as well. In this paper we address this
question by shifting the Fermi level position, i.e. mimick-
ing in such a way the variation in the doping level. After
that, at each shifted Fermi level position, the response
calculations are realized. The relation of the doping level
with the Fermi level position is reported in the insert of
Fig. 2.
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along the [11] symmetry direction. The peaks corresponding
to the hyperplasmon of type II are marked as HPII.

In Fig. 9 the normalized loss function at momentum
transfers along the [10] symmetry direction at different
EF position (a respective value is reported in each panel)
is presented. We vary the EF from -0.1 eV to 0.1 eV ac-
cording to its optimal doping position. At the optimal
doping (EF =0) the HPI peak is seen in the lower-left
corner of the panel. Upon shifting EF downward the
intensity of this peak increases. Also the HPI peaks be-
comes wider. The peak width reaches a maximal value at
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1DP 

1DP 1DP 

1DP 

1DP 1DP 1DP 

FIG. 9: Normalized loss function L(q, ω)=-Im[1/ϵ(q, ω)]/ω at momentum transfers q along the [10] direction. Different panels
represent L(q, ω) for the Fermi level positions respective to its optimally doping position. The peaks corresponding to the
hyperplasmon of type I and the quasi one-dimensional plasmon are marked by HPI and 1DP, respectively. The dispersion of
the conventional two-dimensional plasmon 2DP at small q’s outside the electron-hole continuum is not shown.
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around EF =-40 meV. Upon subsequent lowering of the
Fermi level positions it reduces gradually again.

FIG. 10: Imaginary (top panel) and real (middle panel)
parts of the dielectric function at momentum transfer q =
(0, 1π, 0) for five Fermi-level positions. The respective loss
functions are presented in the bottom panel. Spectral weight
in the loss function at EF = 0 tentatively corresponding to the
hyperplasmon HPI is highlighted by grey color. Thin dashed
lines delimit such regions for all five doping levels. The peaks
in the loss function at EF =+25 and +50 meV corresponding
to the quasi-one dimensional plasmon are marked as 1DP.

In order to demonstrate how the HPI spectral weight
varies with doping, in Fig. 10 we report the real and
imaginary parts of dielectric function as well as the loss
function calculated at q = (0.1π, 0) for five values of the
doping level. One can see that, upon downward shift of
EF , the energy of the right peak A in ϵ2 slightly reduces,
which correlates with a small reduction of the vF 3 value
on the left side of the Fermi level position in Fig. 5(a).
On the contrary, the left peak B in ϵ2 shifts downward
dramatically. This can be explained by strong reduction
of vF 2 from its value of 0.049 a.u. at the Fermi level
to a zero value at about E = −50 meV, as observed in
Fig. 5(a). As a result, upon the lowering of the Fermi
level position the energy interval between two peaks in ϵ2
increases. This results in increasing of the energy interval
where ϵ1 has a near straight line dispersion (being at the

same time notably smaller than ϵ2) as well. For instance,
in the case of EF = −50 meV, this energy interval spans a
region from ω ≈25 to ω ≈95 meV. At the same time, upon
the downward shift of EF the HPI-peak width in the
loss function increases as well. Also the spectral weight
of this peak in the loss function increases (compare the
regions in the loss functions above the orange and red
thin dashed lines with that shaded in grey color) as well
as the total spectral weight. Such increase of the total
spectral weight correlates with the increase of the doping
level.

Figure 9 shows that when the Fermi level shifts upward
the intensity of the HPI peak quickly reduces. This is
accompanied by gradual narrowing of the HPI peak in
the loss function. When EF locates above +50 meV the
HPI peak disappears. The HPI peak narrowing can be
explained by reduction of the energy distance between
the A and B peaks in ϵ2 upon upward shift of EF . For
instance, in Fig. 10 this distance at EF =+25 meV is
significantly smaller than at EF =0, mainly due to the
upward shift of the peak B. This shift is caused by strong
increase of vF 2 at small positive energies observed in Fig.
5(a).

The disappearance of HPI in the loss function is ac-
companied by emerging of a sharp peak at finite ener-
gies corresponding to the 1DP. In the optimally doped
case (EF =0), along this direction this mode has a zero
value from q = (0, 0) to q(≈ 0.4π, 0).71 But, as the EF

shifts upward, the 1DP energy becomes finite at momenta
q=(q,0) with q’s between zero and some finite value qM

(which depends on the doping) having an arch-like dis-
persion. For instance, at EF =+100 meV the 1DP dis-
perses from q=(0,0) to q=(0.53π,0), as highlighted by
the orange dash line in the bottom-right panel of Fig. 9.
The top energy in the 1DP dispersion increases as well.

In Fig. 11, the normalized loss functions at different
Fermi level positions are reported at momentum transfers
q along the [11] direction. At EF =0 the loss function
is dominated by a prominent HPII peak, dispersing in
the energy interval from zero up to about 0.5 eV. This
mode have a sound-like dispersion as well. When EF

is shifted downward this peak becomes broader and its
intensity increases tiil the EF reaches a value of -50 meV.
When the Fermi level position is at about -30 meV, a
peak corresponding to the 1DP becomes visible in the
loss function at small momenta and energies. Apparently,
it arises gradually on the lower-energy side of the broad
HPII peak. With subsequent EF lowering, the intensity
of the 1DP peak increases, its decoupling from the HPII
peak becomes more clear, and it expands over the larger
momentum region.

As seen in Fig. 11, when the Fermi level shifts
above zero, the intensity of the HPII peak reduces. At
EF =+100 meV this peak in the loss function becomes
very narrow and its spectral weight is extremely small.

In Fig. 12 we report the dielectric functions and re-
spective loss functions evaluated at q = (0.1π, 0.1π) for
five energy positions of the Fermi level. At EF =0, a clear
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FIG. 11: Normalized loss function L(q, ω)=-Im[1/ϵ(q, ω)]/ω at momentum transfers q along the [11] direction. Different
panels represent L(q, ω) for the Fermi level positions respective to its optimally doping position. The peaks corresponding to
the hyperplasmon of type II and the quasi one-dimensional plasmon are marked by HPII and 1DP, respectively. The dispersion
of the conventional two-dimensional plasmon 2DP at small q’s outside the electron-hole continuum is not shown.
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FIG. 12: Imaginary (top panel) and real (middle panel)
parts of the dielectric function at momentum transfer q =
(0.1π, 0.1π) for five Fermi-level positions. The respective loss
functions are presented in the bottom panel. Spectral weight
in the loss function at EF = 0 tentatively corresponding to
the hyperplasmon HPII is highlighted by grey color. Thin
dashed lines delimit these regions for all five doping levels.
The peak in the loss function at EF =-50 meV corresponding
to the quasi-one dimensional plasmon is marked as 1DP.

two-peaks structure is observed in the imaginary part of
the dielectric function. As discussed above, this results
in a small value of ϵ1 over an extended energy interval
between the energy positions of the A and B peaks in ϵ2.
The peak B is generated by the intra-band transitions
involving the states moving in this direction with the ve-
locities vF 1 and vF 2 which are similar as can be seen in
Fig. 5(b). The higher energy peak A is related to the
fast carriers moving with the Fermi velocity vF 3.

When the Fermi level is placed at -25 meV (orange
curves) the energy position of the peak A in ϵ2 is not
changed almost. This is explained by a weak dependence
of the group velocity of the upper peak in the vicinity of
Fermi level in the DOS reported in Fig. 5(b). On the
contrary, a notable shift to the lower energies of the peak
B in ϵ2 is evident. This is accompanied by a strong in-
crease of the static ϵ1. The HPII peak in the loss function
becomes wider and its spectral weight increases. More-

over, in general, the spectral weight of the loss function
increases as well.

At EF =-50 meV (the red curves) the low-energy peak
B in ϵ2 locates at about the same energy as in the EF =-
25 meV case. However, its amplitude is notably reduced
in comparison to the orange curve. Again, this can be ra-
tionalized analyzing the DOS reported in Fig. 5(b). One
can see that at the energy of -50 meV the group velocity
of the lower peak becomes zero and respective contribu-
tions to ϵ2 are suppressed. At the same time, the velocity
of the second peak in DOS at the energy of -50 meV is
close to that of the lower peak at -25 meV. At EF =-50
meV, a weak peak B in ϵ2 produces only a small cusp in
ϵ1 at about 40 meV instead of a shallow zero crossing ob-
served at other four doping levels. This cusp in ϵ1 results
in emerging on the low-energy side of the broad HPII
peak of an additional peak 1DP, corresponding to the
quasi one-dimensional plasmon. This appearance of the
1DP is accompanied by reduction of the spectral weight
of the HPII peak.

When EF is placed at +25 meV (blue curves), the low-
energy peak B in ϵ2 shifts upward whereas the peak A
stays at fairly the same energy. As a consequence, in
the dielectric function the energy region where |ϵ1| ≪ ϵ2
reduces. This results in the upward shift of the centre
of gravity of the HPII peak in the loss function which
is accompanied by reduction of its spectral weight. At
EF =+50 meV this tendency maintains.

Analysing Figs. 8, 11, and 12 one can notice a strong
suppression of the loss function on the low-energy side
in the optimally-doped case (at EF =0). As a result, a
probability of the e-h excitations at the Fermi level in
respective momentum regions is extremely low, i.e. some
kind of pseudogap appears in a metallic system. Compar-
ing the loss functions at different doping levels one can
see how the energy interval with a pseudogap in the loss
function in the low-energy side reduces (increases) when
EF shifts to the negative (positive) energy positions. The
pseudogap closes completely at EF =-50 meV.

Figure 13 demonstrates how the excitation spectra
evolve at q = (qx = 0.1π, qy) as a function of the qy

coordinate. Here one can see that the HPI and HPII are,
indeed, the different modes at all doping levels. Also it is
seen in more details how the 1DP mode peak decouples
from the HPII one at large negative values of the EF . At
small negative EF , the position of the 1DP peak shifts
to the right-hand side from its dispersion at EF =0. Con-
sequently, this mode becomes soft at the momenta out-
side the [10] symmetry directions. On the contrary, at
the positive EF positions the 1DP peak dispersion shifts
to the left, in such a way that the energy of this mode
becomes positive at qy=0. The resulting full dispersion
along the [10] direction can be found in Fig. 9.
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FIG. 13: Normalized loss function L(q, ω)=-Im[1/ϵ(q, ω)]/ω at momentum transfers q along the [10] direction at fixed
qx = 0.1π. Different panels represent L(q, ω) for the Fermi level positions respective to its optimally doping position. The
peaks corresponding to the hyperplasmons of types I and II, as well as the quasi one-dimensional plasmon are marked by HPI,
HPII, and 1DP, respectively.
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IV. DISCUSSION

A problem to find the Pines demon in one-band de-
scription of different materials is far from being settled
yet though in the two-band systems and in the surface
layers (on Tamm levels on the surface) the acoustic plas-
mons are well-established. The acoustic plasmon in all
the systems corresponds to one of the zeroes of the real
part of the dielectric function and is well-defined bosonic
quasi-particle. The discovery28 of Pines demon in ruthen-
ates Sr2RuO4 where the Fermi-surface has three different
sheets (pockets) and partially filled d-orbitals triggered
investigations of the plasmon spectrum in novel super-
conducting materials.

It occurs that the dielectric function of the monolayer
in the most 2D bismuth family of high-Tc cuprates does
not contain the Pines demon. However, when we take
into account the full band dispersion it contains very in-
teresting plasmonic spectrum. Besides a standard 2D
plasmon with square root q-dependence ωpl ∼ √

q of the
spectrum we get there two overdamped hyperplasmon
modes (contributing to the shape and maximum of the
form-factor S(q, ω)) and one mode corresponding to a
quasi 1D plasmon which has a linear dispersion in one
momentum direction and no dispersion in the other. In
contrast to the conventional acoustic plasmon which be-
comes soft only at the q = 0, the latter has a zero energy
over a finite line, i. e. its implication to the low-energy
phenomena should be more relevant.

Let us stress that both ruthenates and cuprates are
strongly-correlated materials where effective mass sub-
stantially exceeds the bare (band) mass (m∗ ∼ 4 · m in
ruthenates91 and m∗ ∼ 6 · m in cuprates) and where
Hubbard interaction is playing a decisive role (Hubbard
interaction on d-orbitals in cuprates Udd ∼ 6 eV).92,93 In
numerical simulations usually the Mott-Hubbard physics
is described in LDA+U or similar schemes which can give
reasonable results especially close to a metal-insulator
transition.

Throughout both this paper on cuprates and the pub-
lication for ruthenates28 the authors calculate the un-
correlated dielectric function. The problem of correctly
inserting the U Hubbard term directly in the dielectric
function is very nontrivial subject in spite of several re-
cent and early attempts to include Hubbard in the RPA
scheme (see e.g., Refs. 94,95). Note that already in sim-
ple, Hubbard-I approximation96 the one-particle Green’s
function has a two-pole structure corresponding to Lower
and Upper Hubbard bands separated by the Hubbard
gap of the order of U . As a result, the polarization loop
χ(q, ω) in the RPA scheme will contain the contribu-
tion from the Upper Hubbard band at large frequencies
ω ∼ U (though usually with a small statistical weight of
the order of ω

U → W
U , W is the bandwidth).

This contribution and the transfer of the statistical
weight from small to larger frequencies nevertheless can
be important for optical conductivity in the materials
with moderate U -values and not very small W

U -ratios.

Inclusion of the oxygen orbitals in the consideration com-
plicates the problem switching on additional channels of
the statistical weight transfer, connected with the charge
transfer gap on top the Hubbard gap (usually the smaller
charge transfer gap is inside the large Hubbard gap).97

An attempt of the better account of Hubbard correla-
tions at least on the level of simple approximations for
the dielectric function will be the subject of our next
publications.

Finally, considering important subject of superconduc-
tivity, note, that, while the Kohn-Luttinger98–100 and
plasmon mechanisms of superconductivity11,12,101,102

compete in low density electron systems, the mechanism
of spin-exchange can be dominant in high-Tc cuprates.103

Nevertheless, the charge sector can be also important
in cuprates, at least on the level of the non-trivial cor-
rections to the critical temperature. The low-energy
overdamped hyperplasmon modes as well as quasi one-
dimensional plasmon mode found in the present paper
can contribute in cuprate superconductivity though its
statistical weight yet not clear.

Note that an example of the important contribution of
the overdamped magnon modes (called paramagnons) to
the triplet p-wave superfluidity of He-3 in the framework
of the scenario of the almost ferromagnetic Fermi-liquid
could encourage us there.104 Another example is the con-
tribution of the overdamped spin waves to the singlet d-
wave superconductivity of the strongly underdoped high-
Tc cuprates close to the antiferromagnetic ordering in the
framework of the slave-fermion approach to the spin liq-
uid state of a slightly doped Mott insulator.105,106

V. CONCLUSIONS

The influence of the doping level on the low-energy
dielectric properties in the metallic state of Bi-2212 is
studied taking explicitly into account the realistic disper-
sion of its conducting energy band. Realizing the density
response calculations in the framework of the random
phase approximation we observed how the properties of
two hyperplasmons HPI and HPII having a sound-like
dispersion and a quasi one-dimensional plasmon 1DP are
changing with the doping level close to the optimal dop-
ing. The hyperplasmons characterized by anysotropic
sound-like dispersions represent overdamped charge col-
lective excitations. The 1DP becomes a soft mode over
finite momentum interval along the [10] (as well as along
[01]) symmetry direction. All these anomalous modes
can be important for low-energy physics and contribute
strongly to the photoemission spectra and kinetic char-
acteristics of the high Tc cuprates.

Upon increasing the hole doping level (downward shift
of the Fermi level) the strength of the hyperplasmons
increases and the respective peaks in the loss function
become broader. On the contrary, upon upward shift of
the Fermi level, these modes becomes weaker. At the EF

position above 50 meV in respect to that at the optimal
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doping, the hyperplasmon HPI ceases to exist.
As for the 1DP, its spectral weight strongly reduced

upon downward shifting of the EF . This is accompanied
by its gradual merging the low-energy side of the HPII
hyperplasmon peak. Upon reduction of the doping level,
the 1DP peak becomes stronger and its energy is finite at
all momenta except the zero momentum and some point
along the [10] symmetry direction.
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Chis, and B. Hellsing, Oxygen Vibrations and Acoustic
Surface Plasmon on Be(0001), Phys. Rev. B 86, 085453
(2012).

32 S. J. Park and R. E. Palmer, Acoustic Plasmon on the
Au(111) Surface, Phys. Rev. Lett. 105, 016801 (2010).

33 L. Vattuone, M. Smerieri, T. Langer, C. Tegenkamp, H.
Pfnür, V. M. Silkin, E. V. Chulkov, P. M. Echenique,
and M. Rocca, Correlated Motion of Electrons on the
Au(111) Surface: Anomalous Acoustic Surface-Plasmon
Dispersion and Single-Particle Excitations, Phys. Rev.
Lett. 110, 127405 (2013).

34 J. Pischel, E. Welsch, O. Skibbe, and A. Pucci, Acoustic
Surface Plasmon on Cu(111) as an Excitation in the Mid-
Infrared Range, J. Phys. Chem. C 117, 26964 (2014).

35 G. Bracco, L. Vattuone, M. Smerieri, G. Carraro, L.
Savio, G. Paolini, G. Benedek, P. M. Echenique, and M.
Rocca, Prominence of Terahertz Acoustic Surface Plas-
mon Excitation in Gas-Surface Interaction with Metals,
J. Phys. Chem. Lett. 12, 9894 (2021).

36 G. Benedek, M. Bernasconi, D. Campi, I. V. Silkin, I. P.
Chernov, V. M. Silkin, E. V. Chulkov, P. M. Echenique, J.
P. Toennies, G. Anemone, A. Al Taleb, R. Miranda, and
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