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Abstract The study of Fermi–Pasta–Ulam–Tsingou
(FPUT) recurrence is examined within the frame-
work of the Gardner equation. The evolution of har-
monic waves is investigated for both positive and neg-
ative cubic nonlinearities. It is observed that harmonic
waves undergo fission into solitons, which then inter-
act with each other. For positive cubic nonlinearity,
recurrence occurs periodically over time for weak and
intermediate nonlinearities. However, as the dispersion
becomes weaker, this phenomenon ceases to occur.
Conversely, for negative cubic nonlinearity, recurrence
is also observed for weak and intermediate nonlineari-
ties, but it lacks a well-defined temporal period.
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1 Introduction

Fermi, Pasta, Ulam and Tsingou considered a model
where a chain of particles with equal masses is con-
nected by elastic springs, governed by a dynamical
system with quadratic and cubic spring forces [1,2].
They initially expected the system to distribute energy
evenly across all possible modes, similar to the behav-
ior of billiards. However, their results showed signif-
icant differences in the energy levels of each mode.
The energy spread to higher harmonics, but after a
finite number of oscillations, the flow of energy into
other modes ceased, and the dynamics reversed, caus-
ing the energy to flow back into the first mode. This
energy recurrence was found to be almost complete,
with only about a 2% loss of the total energy. It is like a
billiard returns to a triangular shape automatically (in
terms of energy). This periodic phenomenon is known
as Fermi–Pasta–Ulam–Tsingou (FPUT) recurrence. In
the continuum limit, the FPUT lattice is modeled by
the Korteweg-de Vries (KdV) equation. Zabusky and
Kruskal [3] also observed this phenomenon with a har-
monic lattice within the KdV framework. They noted
that the initial cosine wave splits into solitons due to
nonlinearity, which then interact with each other elas-
tically, later their interaction was classified by Lax [4].
After a critical time, the initial state is almost recon-
structed through nonlinear interactions. The first recur-
rence closely approximated the initial state, but sub-
sequent recurrences were “near recurrences” and not
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as accurate. Later, Abe and Abe [5] demonstrated that
even the first recurrence is incomplete (the energy is
recovered only partially) and leads to progressively
more incomplete recurrences.

Surprisingly, as we decrease the dispersion, periodic
behavior in the recurrence re-emerges. Figure10 shows
that recurrence occurs approximately every t ≈ 27.2.
As observed by Zabusky and Kruskal [3], the process
continues, and at t ≈ 54.4, a near-recurrence occurs,
though it is not as pronounced as the first recurrence,
as seen in Fig. 11. Further decreasing the dispersion
eventually eliminates recurrence, although the cosine
evolution remains visually similar. Figure12 displays
the pattern of the cosine wave evolution, demonstrating
behavior qualitatively similar to that reported in Fig. 10.
It is noteworthy that, despite the absence of recurrence
in this case, there are still two specific times when the
first mode recovers roughly 90% of its initial energy,
see for instance Fig. 13.

Goda [6] revisited the recurrence problem for a sinu-
soidal initial state for the KdV equation with a differ-
ent approach. The author analysed the recurrence phe-
nomenon through energy sharing. He showed that the
wave field does not recover its initial state perfeclty, but
it recurs close to it. For a two-harmonic initial state it
was possible to find a long but finite time, such that the
energy distribution recurs nearer to the initial state than
that regarded as almost recurring state in a short time.
Differently from the KdV equation, Goda [7] showed
that the recurrence property holds forRegularizedLong
Wave model (RLW) only if the nonlinearity and dis-
persion are perfectly balanced (same order). Nonethe-
less, the energy of the RLW solution is shared only
among the lower modes of the system (no thermaliza-
tion). There are extensive studies devoted to the study
of recurrence within different frameworks; readers are
referred to the works of Watanabe et al. [8] for the dis-
sipative KdV equation, Yoshimura and Watanabe [9]
for the Kawahara equation and others [10–14].

In this work, we investigate the recurrence phe-
nomenon in the Gardner equation with both positive
and negative cubic nonlinearities. The Gardner equa-
tion is prominently featured in the context of inter-
nal waves [15–22] and plasma physics [23–25]. This
equation is known to support a broader class of solu-
tions compared to the KdV equation. These solutions
include cnoidal waves, solitons of both polarities, and
breathers [26]. The Gardner equation has recently been
employed to study soliton interactions with external

forces [18,27], a topic that has also been explored in
the context of various dispersive equations [28–31].

To the best of our knowledge, the recurrence prob-
lem involving a single harmonic has never been
addressed in the literature. It is important to mention
that the evolution of long sine waves has also been
explored within the Gardner framework [32,33]. How-
ever, recurrence was not investigated in these studies.
The authors primarily focused on solitonic regimes,
whereas our approach diverges by concentrating on a
different regime. To study the recurrence phenomenon
in the Gardner equation, we use a cosine wave as the
initial condition and track the evolution of the Fourier
mode energies over time. Our findings reveal that for
both strong and intermediate dispersion, the Gard-
ner equation with positive cubic nonlinearity exhibits
the recurrence phenomenon. In contrast, with negative
cubic nonlinearity, although the initial mode occasion-
ally regains its initial energy under strong and inter-
mediate dispersion, it does not demonstrate periodic
behavior over time.

The article is structured as follows: Sect. 2 intro-
duces the Gardner equation and outlines the numeri-
cal methods employed in our study. Section3 presents
the asymptotic results. Section4 presents the numerical
results and final conclusions in Sect. 5.

2 The Gardner equation

In our research, we investigate solitary wave interac-
tions by focusing on the Gardner equation in its canon-
ical form

ut + uux + βu2ux + μuxxx = 0. (1)

Within this equation, the variable u represents the wave
field at a specific position x and time t . The parame-
ter μ controls the dispersion regime and β the cubic
nonlinearity sign (β = ±1).

The FPUT recurrence problem is first analyzed ana-
lytically for the simple case of two harmonic interac-
tions. However, this analytical approach is not applica-
ble when considering a single-harmonic solution. For
the latter case, we solve Eq. (1) numerically using
an initial data given by a single harmonic. This is
accomplished with a Fourier pseudospectral method
combined with an integrating factor. The computa-
tional domain for the simulation is a periodic interval
[−L , L], discretized with an equidistant grid consist-

123



Fput recurrence within the Gardner equation

Fig. 1 Different phase portraits of the dynamical system (11) for different values of W and �ω

ing of N points. This grid configuration facilitates pre-
cise approximation of spatial derivatives, as discussed
in [34]. For the temporal evolution of the equation, we
employ the classical fourth-order Runge–Kuttamethod
with discrete time steps of size�t . Typical simulations
use parameter values such as L = π , N = 210, and

�t = 10−4. The initial data is always taken as

u(x, 0) = A0 cos(x), (2)

Here, A0 represents the wave amplitude, while the dis-
persion parameter μ is varied. In what follows, we
fix A0 = 1. The reason for this choice is that for
small values of A0, the problem is approximately linear,
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Fig. 2 The evolution of the
cosine wave with μ = 0.1
and β = +1
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Fig. 3 The modal energy of the first three harmonic modes k = 1, k = 2, k = 3 in blue, red and yellow respectively and the variation
of the energy defined in Eq. (13) as a function of time for μ = 0.1 and β = +1

necessitating long simulation times to observe nonlin-
ear effects. Conversely, large values of A0 quickly lead
to the appearance of higher harmonics.

3 Simple analysis of two harmonics interactions

The investigation of the recurrence phenomenon for
two harmonics is motivated by the search for a two-
harmonic solution to the Gardner Eq. (1). To achieve
this,we follow the approachoutlinedbyPelinovsky and
Shavratsky [19]. We begin by examining the linearized

form of Eq. (1), considering a two-harmonic solution
in its complex form

u(x, t) = A1 exp(i(ω1t − k1x))

+A2 exp(i(ω2t − 2k1x)). (3)

The solution can be easily obtained from the dispersion
relation. Substituting into the linearized version of (1)
we obtain

ω1 = −μk31 and ω2 = −μ(2k1)
3. (4)

In particular, defining �ω = ω2 − ω1 we have that
�ω �= 0.
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Fig. 4 The evolution of the
cosine wave with μ = 0.05
and β = +1 and a series of
snapshots at different times
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Now, for the nonlinear case, we assume that the
amplitudes are time-dependent and small, therefore the
cubic nonlinearity can be neglected. In other words, we
seek for a two-harmonic solution of the form

u(x, t) = A1(t) exp(i�)

+A2(t) exp(i(2� + �ωt)) + c.c, (5)

where �(x, t) = ω1t − k1x and c.c denotes the har-
monic complex conjugate. Substituting expression (5)
into the Gardner Eq. (1) and collecting the terms with
ei� and e2i� lead to the following complex dynamical

system

d A1

dt
= − ik

2
A∗
1A2e

i�ωt ,

d A2

dt
= − ik

2
A2
1e

−i�ωt .

(6)

It is convenient to write the amplitudes in real form. To
this end, we write

An(t) = Bn(t) exp(iϕn(t)), for n = 1, 2. (7)
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Fig. 5 The modal energy of the first three harmonic modes k = 1, k = 2, k = 3 in blue, red and yellow respectively and the variation
of the energy defined in Eq. (13) as a function of time for μ = 0.05 and β = +1

Consequently, we can write the dynamical system (6)
in terms of real quantities as

dB1

dt
= −k1

2
B1B2 sin(ϕ2 − 2ϕ1 + �ωt),

dB2

dt
= −k1B

2
1 sin 2(ϕ1 − 2ϕ2 − �ωt),

dϕ1

dt
= −k1

2
B2 cos(ϕ2 − 2ϕ1 + �ωt),

dϕ2

dt
=k1

B2
1

B2
cos(ϕ1 − ϕ2 − �ωt).

(8)

Defining � = ϕ2 − 2ϕ1 + �ωt and using it in the
dynamical system (8) yields

dB1

dt
= −k1

2
B1B2 sin(�),

dB2

dt
= k1B

2
1 sin(�),

d�

dt
= k1

( B2
1

B2
− B2

)
cos(�) + �ω.

(9)

A trivial integral of system (9) is given by

B2
1 + B2

2 = W, (10)

where W is constant. Consequently, we can derive a
new dynamical system that involves only B2 and �,

namely

dB2

dt
= k1(W − B2

2 ) sin(�),

d�

dt
= k1

W − 2B2
2

B2
cos(�) + �ω.

(11)

This dynamical system can be rescaled by making
B2 → B2/k1, � → �/k1 and �ω → �ω/k1, which
yields

dB2

dt
= (W − B2

2 ) sin(�),

d�

dt
= W − 2B2

2

B2
cos(�) + �ω.

(12)

The phase portrait of (12) is depicted in Fig. 1 for dif-
ferent values of W and �ω. The center equilibrium
points correspond to traveling waves, indicating per-
fect recurrence, while the closed trajectories represent
the recurrence phenomenon.

4 Results with one harmonic

The study of the recurrence is carried out using the
energy of the harmonics instead of the wave shape
itself. This idea was first considered the work of Goda
[6] while investigating the recurrence phenomenon
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Fig. 6 The evolution of the
cosine wave with μ = 0.01
and β = +1
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within the KdV equation. To measure the degree of
recurrence we introduce the energy function

ε(t) =
N∑

k=0

∣∣∣|̂u(k, t)|2 − |̂u(k, 0)|2
∣∣∣, (13)

where N is the highest mode in the discrete solu-
tion. This quantity measure the degree of recurrence,
if ε(T ) = 0 for any T > 0, this means that the solu-
tion recurs exactly to the initial state in the sense of
energy sharing. It does not mean that the wave recov-
ers its initial shape though. Moreover, the nonlinearity
is responsible for the energy transfer among harmon-
ics. Consequently, in the linearized problem, there is no
energy transfer, and thus the energy function defined in
Eq. (13) will be zero. Another important quantity is
the modal energy associated with the wavenumber k,
defined as

Ek(t) = |̂u(k, t)|2. (14)

This quantity is computed using the Fast Fourier Trans-
form (FFT) [34], and allows us to evaluate the energy
distribution across wavenumbers at any given time.

In the next sections we focus on the recurrence phe-
nomenon as we vary the the dispersion parameter (μ)
within the Gardner equation with positive and negative
cubic nonlinearity.

4.1 Positive cubic nonlinearity

We begin by considering the Gardner equation with
a positive cubic nonlinearity for various values of μ.
The wave pattern is highly sensitive to the choice of μ,
with nonlinear effects becoming more pronounced as
μ decreases.

For μ = 0.1, the initial cosine is slightly deformed
due to nonlinear effects. However, no fission of the
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Fig. 7 The modal energy of the first three harmonic modes k = 1, k = 2, k = 3 in blue, red and yellow respectively and the variation
of the energy defined in Eq. (13) as a function of time for μ = 0.01 and β = +1

Fig. 8 The evolution of the
cosine wave with μ = 0.1
and β = −1

sinusoidal wave is observed. This scenario is exhibited
in Fig. 2. The energy at the first harmonic is initially
transferred to other the second and third harmonics,
then at t = 5 and t = 10 the first mode recovers about
97% of the energy. This is not when the first recurrence
takes place though. At time t = 15.1 the first harmonic
regains up to 99% of its initial energy state and the
same at time t = 30.2 and t = 40.3, which indicates a
“super recurrence”, see Fig. 3.

As the nonlinearity becomes stronger (e.g., for small
values such as μ = 0.05), the initial state fission into

a series of solitons (see Fig. 4) and most energy from
the first harmonic is transferred to the second harmonic
due to wave steepness as show in Fig. 5 (left). The first
recurrence occurs at time t = 19.5where the first mode
recovers about 98 % of its initial energy, however the
second recurrence t = 29 is not as good as the first
since the recovered energy is about 95%.

Further decreasing the dispersion parameter, the
recurrence no longer happens. At an early stage, the
initial cosine splits into several solitons that interact
with each other elastically causing a phase shift in their
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Fig. 9 The modal energy of the first three harmonic modes k = 1, k = 2, k = 3 in blue, red and yellow respectively and the variation
of the energy defined in Eq. (13) as a function of time for μ = 0.1 and β = −1

Fig. 10 The evolution of
the cosine wave with
μ = 0.05 and β = −1

crests as shown in Fig. 6. About 93 % of the energy is
recovered at t = 14.9, however our simulations show
that first mode only recovers about 60 % of its energy
at t = 29.8, which does not feature a recurrence. The
energy is spread out more evenly in other harmonics,
see Fig. 7.

4.2 Negative cubic nonlinearity

The effects of weak dispersion are initially considered.
Figure8 illustrates the evolution of the cosine wave

with dispersion μ = 0.1. The energy from the first
mode is mainly transferred to the secondmode.At time
t = 51.7, approximately 99 % of the energy of the first
mode is recovered, as shown in Fig. 9. The next recur-
rence occurs at t = 108.8. This indicates that while
the energy of the first mode is nearly fully recovered,
the process is not periodic, unlike the Gardner equation
with positive cubic nonlinearity.
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Fig. 11 The modal energy of the first three harmonic modes k = 1, k = 2, k = 3 in blue, red and yellow respectively and the variation
of the energy defined in Eq. (13) as a function of time for μ = 0.05 and β = −1

Fig. 12 The evolution of
the cosine wave with
μ = 0.01 and β = −1

5 Conclusion

In this study, we have investigated the FPUT recurrence
phenomenon within the context of the Gardner equa-
tion.We began by analyzing a simplified case involving
two harmonics with time-dependent amplitudes, from
which we derived a dynamical system to describe the
amplitude evolution of these harmonics. For this sce-
nario, we found that exact FPUT recurrence occurs at
the equilibrium center of the dynamical system. How-
ever, for the single harmonic case, the same analytical
approach proved inadequate, necessitating a numeri-

cal analysis. Our results demonstrate that the Gardner
equation with positive cubic nonlinearity exhibits the
recurrence phenomenon under both strong and inter-
mediate dispersion. In contrast, with negative cubic
nonlinearity, while the initial mode can occasionally
recover its energy under strong and intermediate dis-
persion, it does not exhibit sustained periodic motion
over time.
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