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The main question raised in the letter is the applicability of a neural network trained on a spin
lattice model in one universality class to test a model in another universality class. The quantities
of interest are the critical phase transition temperature and the correlation length exponent. In
other words, the question of transfer learning is how “universal” the trained network is and under
what conditions. The traditional approach with training and testing spin distributions turns out to
be inapplicable for this purpose. Instead, we propose to use training and testing on binding energy
distributions, which leads to successful estimates of the critical temperature and correlation length
exponent for cross-tested Baxter-Wu and Ising models belonging to different universality classes.

Introduction. — Machine learning [1] is a promising
approach with possible applications in statistical physics.
It has already been established that supervised learning
with classification of the spin distribution into ferromag-
netic (FM) or paramagnetic (PM) phases can yield es-
timates of the critical temperature [2] and correlation
length exponent [3] when training and testing the same
model. A natural question is: can we train a neural net-
work (NN) with a model in one universality class and
use it to estimate the critical temperature and correla-
tion length exponent of a model of another universality
class? With the right choice of the data set, we answered
this question in the affirmative.

We use a recently developed finite-size scaling ap-
proach [3] to analyze variation V (T ) of the NN output
function P (T ) - it has been shown that extracting the
correlation length and critical temperature from V (T ) is
very robust both when applied to different physical mod-
els and when using different neural network (NN) archi-
tectures, as long as training and testing are performed
on the same model.

To the letter, we show that the problem of learn-
ing/testing spin distributions involves two aspects.
Firstly, there are the physical properties of ordered
states, which lie in the degeneracy of the ground state.
For the Ising model, the degeneracy is two, and the sys-
tem below Tc can equally have most spins in the +1 or
-1 state. In the case of the Baxter-Wu model, four com-
binations of spins on triangular plaques give the same
ground state energy, and this is a fourfold degeneracy.
The ground state degeneracy separates systems with the
same dimensionality and the same number of order pa-
rameter components into different universality classes [4].
In practice, this means a different set of values of the crit-
ical exponents.

Second, systems in the same universality class can dif-
fer in the symmetry of the interaction between spins,
which is reflected in the peculiarities of the local config-
urations of spins. For example, the universality class of
the 4-component Potts model [5] includes the Baxter-Wu

model [6], special cases of the Ashkin-Teller model [7],
and the Turban model [8]. All four models have the
same set of critical exponents and indistinguishable prop-
erties of thermodynamic functions at temperatures in
the neighborhood of the critical temperature [9]. From
the results of applying machine learning to second-order
phase transitions [2, 3] , we can conclude that the neural
network somehow senses correlations in the system, and
it is not clear how NNs will respond to local features of
the models.

Our problem is the part of the very broad problem of
the transfer learning [10], and generally it is connected
with the problem of domain adaptation, which arises
when there are several related domains containing a shift
associated with differences in feature space distributions.
Snapshots of spin distributions for different models at
temperatures below the critical temperature tend to be
very different from each other, and NN cannot correctly
predict the probability that specific spin distributions be-
long to the ferromagnetic phase. The goal is to train a
robust model to generalize the common properties of the
domains, such as phase transition point and set of the
critical exponents.

We have analyzed several possible representations of
the datasets used for the training/testing procedure, in-
cluding traditional spins snapshots [2], and found that
they do not provide acceptable estimates of the criti-
cal temperature and correlation length exponent during
cross-domain transfer learning (see details in the Sup-
plemental Materials). Fortunately, converting spin snap-
shots into energy snapshots, which are then used in the
training/testing process, leads to reasonably good esti-
mates of the critical temperature and correlation length
exponent during cross-domain testing of the Baxter-Wu
model using the Ising-trained neural network. Con-
versely, training on the Baxter-Wu dataset and testing
on the Ising dataset also yields good results.

Statistical physics models.— We focus on the two two-
dimensional models, the Ising model [11] and the Baxter-
Wu model [6]. The following representation of the Hamil-
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tonians is the key to the chosen representation with en-
ergy couplings in the datasets used for training and test-
ing. Only ferromagnetic couplings J>0 are considered
and periodic boundary conditions employed for all mod-
els. In the following text, we set the coupling constant J
equal to one, measuring the energy in units of J .
Two-dimensional Ising (IS) model on a square lattice

defined by the Hamiltonian

Hising = −J
∑
(i,j)

[σi,jσi+1,j + σi,jσi,j+1] . (1)

Two-dimensional Baxter-Wu (BW) model on a trian-
gular lattice defined by the Hamiltonian

Hbw = −J
∑
(i,j)

[σi,jσi+1,jσi+1,j+1 + σi,jσi,j+1σi+1,j+1] ,

(2)
and the lattice can be easily understood as a square lat-
tice with a right-to-down diagonal, and the first term in
brackets is the product of the spins of the up triangle and
the second term of the down triangle.

The Baxter-Wu model belongs to the universality class
of the four-component Potts model. The Baxter-Wu
model is chosen because it lacks [12] multiplicative loga-
rithmic corrections [13, 14], which are quite pronounced
in the four-component Potts model and spoil its critical
behaviour. The Ising model belongs to a different class
of universatility. Deep machine learning allows us to es-
timate the critical temperature Tc [2] and the value of
the correlation length exponent ν [3], which are known
analytically and equal to 1 for the Ising model [11] and
2/3 for BW [6].

Spin snapshot datasets — The datasets are generated
with conventional Markov chain Monte Carlo methods
and consist of spin configurations on the lattice [15], the
so-called spin snapshots. Each spin snapshot is taken af-
ter the previous one after a time larger than the correla-
tion time, making them statistically independent (details
can be found in the article [3]). The snapshots are used
to train and test NNs. Mathematically, a spin snapshot
is a L×L matrix, where L is the linear size of the system.
The elements of the matrix are the values of spins. In the
case of Ising and BW model these are the values 1 and
-1.

Supervised learning. — We performed transfer learn-
ing between these models in all possible combinations of
training and testing, using two neural network architec-
tures: convolutional neural network (CNN) [16] and deep
convolutional residual network (ResNet-10) [17] with 10
layers.

We first trained the networks with 1000 snapshots for
each model and each parameter set (T ;L), marking them
as FM if T < TC and PM otherwise. The trained neu-
ral networks are used to test models with N=500 snap-
shots modeled for the same parameter set. The output of
the FM phase prediction neuron is denoted by fi(T ;L),

which has a value between 0 and 1, where 1 means that
NN recognized the snapshot indexed i, (i =1, 2, . . . , N)
as definitely belonging to the FM phase, and 0 if it
does not definitely belong to the FM phase. The val-
ues fi(T ;L) are used to estimate corresponding proba-
bility [2]

P (T ;L) =
1

Nt

Nt∑
i=1

fi(T ;L) (3)

and the variation (VOT) [3]

V (T ;L) =
1

Nt

Nt∑
i=1

(fi(T ;L))
2 − P (T ;L)2. (4)

Test results using spin data sets. — To analyse the
resulting functions, we use the procedure proposed in [3],
which uses a Gaussian fit of the VOT function and
analyses the mean µ(L) and width σ(L) as functions
of lattice size. It is based on analogy with the known
facts [18, 19] from statistical mechanics that in the crit-
ical region there is a shift in the pseudocritical temper-
ature µ(L)−Tc ∝ 1/L1/ν , and the typical width behaves
as σ(L) ∝ 1/L1/ν .
The results of testing the Ising model and the Baxter-

Wu model with the NN trained on same model are shown
in the table I, in the second and fourth columns. The
third and fifth columns are the difference between the
estimated critical temperature and the exact critical tem-
perature ∆=|T ∗−Tc| divided by the statistical error ϵ of
the linear fitting [20]. It can be seen that IS@BW transfer
learning predicts the critical temperature with an accu-
racy approximately equal to that of direct learning, and
the abbreviation stands for testing the Ising model on
the NN trained by the Baxter-Wu model. We do not
provide estimates for testing/training BW@IS because
fitting the VOT function to a Gaussian is not possible.
Estimation of the correlation length exponent is not pos-
sible for both test/training cases, IS@BW and BW@IS.
The upper panel of the figure 1 shows the scatter of the
ferromagnetic phase prediction in the Baxter-Wu model,
which is due to the difference in the degeneracy of the
ground state of the tested model and the Ising model
whose snapshots were used for training.

NN T ∗, IS ∆/ϵ T ∗, BW ∆/ϵ T ∗, IS@BW ∆/ϵ

CNN 2.273(6) 0.7 2.2687(2) 2.0 2.280(6) 1.8

ResNet-10 2.267(2) 1.2 2.2690(2) 1.1 2.301(29) 1.1

TABLE I. Estimation of the critical temperature using spin
configurations by testing the Ising model (IS) and the Baxter-
Wu (BW) model with a NN trained on the same model (sec-
ond and fourth columns) and testing the Ising model using a
NN trained on another model, Baxter-Wu (last two columns).
For the meaning of ∆ and ϵ, see text.
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Energy snapshot datasets — Due to the failure of cross-
domain testing using spin snapshots, we propose to use a
different representation of the input datasets, the energy-
based representation. The energy-based representation
reflects spin interactions in the Hamiltonians (1)-(2).

For the Ising model datasets, using spin snapshots, we
form two L×L matrices with elements equal to the hor-
izontal coupling energy with elements e1i,j=−σi,jσi+1,j

in the first matrix and with elements equal to the verti-
cal coupling energy with elements e2i,j=−σi,jσi,j+1 in the
second matrix.

For BW model datasets, the first matrix ele-
ments calculated with the first term in Expr. (2)
e1i,j=−σi,jσi+1,jσi+1,j+1 and the second ma-
trix elements calculated with the second term
e2i,j=−σi,jσi,j+1σi+1,j+1.

These representations result in matrix elements equal
to -1 or 1 for all models. Our energy snapshot approach
is an advance on the problem of domain adaptation of
different models, including transfer learning between uni-
versality classes. It is well suited for cross-domain train-
ing between the Ising and the Baxter-Wu models.

Energy datasets results. — The results of critical tem-
perature estimation when testing the Ising model and
the Baxter-Wu model with a network trained on same
model and using the energy data sets is presented in the
Table II. The results should be compared with the data
in table I, and the bias in the fit is smaller for vigorous
datasets, although we should not take this characteristic
too seriously, as we have not yet found a way to estimate
the systematic error of the approach.

In contrast to cross-domain testing with the spin
datasets, the cross-domain testing with the energy
datasets yields satisfactory estimate of the critical tem-
perature for both IS@BW and BW@IS combinations,
which is presented in table III and should be compared
with the results in the last two columns of the table I.
In addition, such approach makes it possible to extract
estimates for the correlation length exponent ν.

NN T ∗, IS ∆/ϵ T ∗, BW ∆/ϵ

CNN 2.266(8) 0.4 2.2696(7) 0.6

ResNet-10 2.263(8) 0.8 2.268(1) 1

TABLE II. Same as in the table I for training and testing the
same model but using energy datasets.

NN T ∗, IS@BW ∆/ϵ T ∗, BW@IS ∆/ϵ

CNN 2.226(24) 1.8 2.2694(2) 1

ResNet-10 2.214(21) 2.6 2.2686(5) 1.2

TABLE III. Same as in the table I for training and testing
the another model but using energy datasets.

From the width of the VOT function, expr. (4), we ob-
tain an estimate of the exponent of the correlation length
using three methods: fitting the entire dataset V (T ;L)
as a function of temperature T using a Gaussian and
estimating σ(L), separately fitting the left wing of the
data gives an estimate of σ−(L), and separately fitting
the right wing gives an estimate of σ+(L). The result of
the work [3] states that the width and half-width scale
with an exponent close to the inverse exponent of the
correlation length ν. Tables IV and V show the 1/ν esti-
mates for two models – Ising and Baxter-Wu. It can be
seen that the estimates within the errors are consistent
with those obtained from spin snapshots for in-domain
training/testing and presented in Tables 1 and 3 of the
article [3].

Fig. 1 shows how the energy dataset representation as
opposed to the spin dataset, enables cross-domain trans-
fer learning of the phase transition for BW@IS combi-
nation of models. While the behaviour of the function
V (T ;L) calculated using the spin domain classification
does not provide a way to analyse critical behaviour of
the Baxter-Wu model using the NN trained on the Ising
model, the use of the energy domain gives clear predic-
tions and the possibility to analyse the critical behaviour
with acceptable accuracy.

Thus, we obtain for the first time that an NN trained
on a dataset of one universality class can be used to pre-
dict the correlation length values of a model in another
universality class. And this is possible by using an appro-
priate representation of the dataset. In our case, these
are datasets with local energy distribution.

IS@IS 1/νσ 1/νσ− 1/νσ+

CNN 1.12(3) 1.15(5) 1.07(2)

ResNet-10 1.15(3) 1.17(6) 1.09(11)

IS@BW 1/νσ 1/νσ− 1/νσ+

CNN 1.16(5) 1.31(8) 0.98(1)

ResNet-10 0.85(6) 1.13(11) 0.78(15)

TABLE IV. Estimates of the inverse correlation length ex-
ponent 1/ν for testing the Ising model on NN trained on
the Ising model IS@IS and on NN trained on the Baxter-
Wu model IS@BW. Energy datasets used.

Discussion.–

The main conclusion that can be drawn from our study
is that choosing an appropriate domain to represent data
for the purpose of knowledge transfer in machine learn-
ing is not straightforward and obviously predictable. We
had to go through many options to select a suitable do-
main and possible pairs of statistical physics models for
the knowledge transfer process. So far, we have been
able to find one pair and one data representation domain
to successfully demonstrate knowledge transfer between
models from different universality classes. Nevertheless,
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FIG. 1. Cross-domain transfer learning between Ising and Baxter-Wu models using CNNs. a) The variation V (T ) of the FM
phase prediction for the Baxter-Wu model trained on the Ising model (BW@IS) using the spin domain cannot be approximated.
b) The variation V (T ) of the same testing/training combination of models BW@IS on the energy domain with Gaussian
approximation and estimation of the inverse correlation length exponent 1/ν from σ(L) scaling.

BW@BW 1/νσ 1/νσ− 1/νσ+

CNN 1.48(5) 1.61(10) 1.52(3)

ResNet-10 1.50(7) 1.62(17) 1.52(4)

BW@IS 1/νσ 1/νσ− 1/νσ+

CNN 1.45(2) 1.51(2) 1.42(6)

ResNet-10 1.45(3) 1.45(10) 1.47(4)

TABLE V. Estimates of the inverse correlation length expo-
nent 1/ν for testing the Baxter-Wu model on NN trained on
the Baxter-Wu model BW@BW and on NN trained on the
Ising model BW@IS. Energy datasets used.

there is one such example, and it led to transfer learning
between two models in two universality classes, with a
satisfactory transition temperature estimate and an esti-
mate of the critical exponent of the correlation length.

It should be noted that many groups have previously
reported critical temperature estimates using the spin
representation of various models [2, 3, 21–27]. This is
not surprising since they used a binary classification pro-
cedure that is very sensitive to the number of training
epochs, and starting from a certain number of epochs
the neural network is almost perfectly trained to classify
the snapshots into ordered and disordered phases, lead-
ing to a good estimate of the transition temperature. A
more detailed discussion is given in [28]. An estimate of

the correlation length cannot be extracted from the NN
outputs with sufficient accuracy - the network only solves
the problem of classifying domains into two phases.

Research supported by the Russian Science Foundation
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Research University Higher School of Economics.
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