
Vol.:(0123456789)

Optimization Letters
https://doi.org/10.1007/s11590-024-02170-5

ORIGINAL PAPER

Efficient online sensitivity analysis for the injective
bottleneck path problem

Kirill V. Kaymakov1 · Dmitry S. Malyshev2

Received: 24 August 2024 / Accepted: 3 November 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
The tolerance of an element of a combinatorial optimization problem with respect to
a given optimal solution is the maximum change, i.e., decrease or increase, of its
cost, such that this solution remains optimal. The bottleneck path problem, for given
an edge-capacitated graph, a source, and a target, is to find the max-min value of
edge capacities on paths between the source and the target. For any given sample of
this problem with n vertices and m edges, there is known the Ramaswamy-Orlin-
Chakravarty’s algorithm to compute an optimal path and all tolerances with respect
to it in O(m + n log n) time. In this note, for any in advance given (n, m)-network
with distinct edge capacities and k source-target pairs, we propose an
O

(

m�(m, n) +min
(

(n + k) log n, km
)

)

-time preprocessing, where �(⋅, ⋅) is the
inverse Ackermann function, to find in O(k) time all 2k tolerances of an arbitrary
edge with respect to some maxmin paths between the paired sources and targets. To
find both tolerances of all edges with respect to those optimal paths, it asymptoti-
cally improves, for some n, m, k, the Ramaswamy-Orlin-Chakravarty’s complexity
O
(

k(m + n log n)
)

 up to O(m�(n,m) + km).

Keywords  Bottleneck path problem · Sensitivity analysis · Efficient algorithm

The work of the author Malyshev D.S. was conducted within the framework of the Basic Research
Program at the National Research University Higher School of Economics (HSE).

 *	 Dmitry S. Malyshev
	 dsmalyshev@rambler.ru

	 Kirill V. Kaymakov
	 kirill.kaymakov@mail.ru

1	 Coleman Tech LLC, 40 Mira Avenue, Moscow 129090, Russia
2	 Laboratory of Algorithms and Technologies for Networks Analysis, National Research

University Higher School of Economics, 136 Rodionova Str., Nizhny Novgorod 603093, Russia

http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-024-02170-5&domain=pdf

	 K. V. Kaymakov, D. S. Malyshev

1  Introduction

1.1 � Tolerances: background and significance

First of all, we present known definitions and results, concerning combinatorial opti-
mization problems and their sensitivity analysis, following definitions and notations
from [17, 34]. A combinatorial minimization problem is a problem of selecting a
group of elements from a ground set, such that this combination yields a feasible
solution and has the lowest cost among all feasible solutions. CMPs can have differ-
ent objectives. The sum objective function minimizes the sum of the costs, whenever
the bottleneck (or min-max ) objective function minimizes the maximum cost among
all elements in the solution. These CMPs are called additive and bottleneck (or min

-max ), respectively. There are many concrete additive and bottleneck CMPs, see, for
example, [1, 2, 8, 10, 24].

More formally, following [34], an instance of a CMP is given by a tuple
(E,F, c, fc) , where E is the finite ground set of elements, F ⊆ 2E ⧵ {�} is the set
of feasible solutions, c ∶ E ⟶ ℝ is the cost function, fc ∶ F ⟶ ℝ is the objec-
tive function. A feasible solution S∗ ∈ F is called an optimal solution of the
CMP if fc(S∗) = minS∈F fc(S) . The function fc(⋅) is the sum objective function if
fc(S) =

∑

e∈S c(e) , and it is the bottleneck objective function if fc(S) = maxe∈S c(e) .
Note that CMPs with these objectives are equivalent to the maximization ones, more
precisely, to a max-min problem if those CMP is of the min-max type, by taking the
costs with the opposite sign.

Sensitivity analysis is the field of finding limit cost changes, for which an optimal
solution remains optimal. More specifically, upper tolerances measure the supre-
mum increase in the cost of an element, such that a current solution remains opti-
mal, and lower tolerances measure the corresponding supremum decrease [17].

If Π = (E,F, c, fc) is an instance of a combinatorial minimization or maximization
problem, e ∈ E , and � ∈ ℝ is some constant, then, by Πe,� = (E,F, ce,� , fce,�) , a prob-
lem is denoted with

Let S∗ be an optimal solution of Π and e ∈ E . The upper tolerance of e (with respect
to S∗) is defined as

The lower tolerance of e (with respect to S∗) is defined as

By F+e and F−e , we denote the sets of those feasible solutions of Π that contain and
do not contain e, respectively, i.e.

ce,�(e) = c(e) + �, ce,�(e
�) = c(e�) ∀e� ≠ e.

uS∗ (e) = sup{� ∈ ℝ≥0 ∶ S∗ is an optimal solution of Πe,�}.

lS∗ (e) = sup{� ∈ ℝ≥0 ∶ S∗ is an optimal solution of Πe,−�}.

F+e = {S ∈ F ∶ e ∈ S}, F−e = {S ∈ F ∶ e ∉ S}.

Efficient online sensitivity analysis for the injective…

By fc(F), fc(F+e) , and fc(F−e) , we denote the optimal values of the objective func-
tion on F,F+e,F−e , i.e.

The following statement is proved in [17], see Theorems 4 and 15 of those paper:

Statement 1  Let Π = (E,F, c, fc) be an instance of a combinatorial minimization/
maximization problem, S∗ be an optimal solution of Π , e ∈ E be an element of the
ground set. If Π is an additive minimization problem, then

If Π is a min-max problem, then

If Π is an additive maximization problem, then

If Π is a max-min problem, then

It follows from Statement 1 that if a tolerance is finite, then it does not depend on
an optimal solution. By the same reason, an element e ∈ E belongs to some optimal
solution of an additive combinatorial minimization/maximization problem if and
only if its lower/upper tolerance is +∞.

Tolerances give to a decision maker information about the stability of an optimal
solution with respect to perturbations of its elements. They are also used to design
algorithms for NP-hard and polynomially solvable combinatorial problems, like ver-
sions of the Assignment Problem [13], Travelling Salesman Problem [16, 33, 35],
Vehicle Routing Problem [4], Weighed Independent Set Problem [19], see the sur-
veys [34, 35] also. Efficiency of tolerance computations is an important problem,
which not only had applications in the mentioned problems, but it is also of inde-
pendent interest. Several studies are devoted to this question [6, 11, 14, 18, 22, 26,
27, 29–31].

fc(F) =min
S∈F

fc(S), fc(F+e) = min
S∈F+e

fc(S), fc(F−e) = min
S∈F−e

fc(S) or

fc(F) =max
S∈F

fc(S), fc(F+e) = max
S∈F+e

fc(S), fc(F−e) = max
S∈F−e

fc(S).

uS∗ (e) = fc(F−e) − fc(F), if e ∈ S∗, uS∗ (e) = +∞, if e ∈ E ⧵ S∗;

lS∗ (e) =fc(F+e) − fc(F), if e ∈ E ⧵ S∗, lS∗ (e) = +∞, if e ∈ S∗.

uS∗ (e) = fc(F−e) − c(e), if e ∈ S∗, uS∗ (e) = +∞, if e ∈ E ⧵ S∗;

lS∗ (e) =c(e) − fc(F), if e ∈ E ⧵ S∗ and min
S∈F+e

max
e�∈S⧵{e}

c(e�) < c(e),

lS∗ (e) = +∞, otherwise.

uS∗ (e) = fc(F) − fc(F+e), if e ∈ E ⧵ S∗, uS∗ (e) = +∞, if e ∈ S∗;

lS∗ (e) =fc(F) − fc(F−e), if e ∈ S∗, lS∗ (e) = +∞, if e ∈ E ⧵ S∗.

uS∗ (e) = fc(F) − c(e), if e ∈ E ⧵ S∗ and max
S∈F+e

min
e�∈S⧵{e}

c(e�) > c(e),

uS∗ (e) = +∞, otherwise;

lS∗ (e) =c(e) − fc(F−e), if e ∈ S∗, lS∗ (e) = +∞, if e ∈ E ⧵ S∗.

	 K. V. Kaymakov, D. S. Malyshev

1.2 � The bottleneck path problem

In this note, we consider sensitivity analysis for the Bottleneck Path Problem,
abbreviated as the BPP. In this problem, a simple, connected graph G = (VG,EG)
with VG = {v1, v2,… , vn} and EG = {e1, e2,… , em} is given and, for every edge ei ,
its capacity ci is also given. Additionally given a source vertex s ∈ VG and a target
vertex t ∈ VG , the BPP is to find the value bG(s, t) = max

P∈Pst

min
e∈P

c(e) , where Pst is the

set of all paths between s and t. A path is a sequence of vertices, in which any two
consecutive members form an edge, without repetitions of its vertices and edges.
The BPP arises as a subroutine in several flow problems, see, for example, [3] and
[15]. The online BPP is the problem, when sources s and targets t are entered in
the online regime. To the best of our knowledge, this problem was introduced in
[23], where it was named the online Multi-Pair Bottleneck Paths Problem. To
solve the online BPP, an input edge-capacitated graph can be preprocessed in
O(m + n log n) time, such that any bottleneck value bG(s, t) can be computed in
O(log n) time, see [23].

1.3 � Our contribution: results, motivation, and methods

In this note, for any in advance given (G = (VG,EG), c) with injective c(⋅) and
(s1, t1),… , (sk, tk) , where si, ti ∈ VG , for any i, we present a preprocessing in
O
(

m�(m, n) +min
(

(n + k) log n, km
)

)

 time, allowing to compute in O(k) time all
2k tolerances of an arbitrary edge with respect to some maxmin siti-paths, for all
i. We assume that the edge capacities are pairwise distinct, and this restriction is
used in justification for correctness of our algorithm, see the reasonings before
Algorithm 3.

Note that computation of upper and lower tolerances of all edges for the BPP,
including determination of an optimal solution, can be done in O(m + n log n)
time [29]. But the approach from [29] does not allow to compute rapidly values
of tolerances for individual edges. Analysis of namely individual tolerances may
be important, for example, in sustainability research of flows in networks under
incidents with a single edges, like breakdowns or repairs of pipelines, possibly,
with respect to several source-target pairs. Moreover, to find both tolerances of
all edges with respect to some optimal siti-paths, our algorithm asymptotically
improves, for some n, m, k (e.g., m = O(n) ), the Ramaswamy-Orlin-Chakravarty’s
complexity O

(

k(m + n log n)
)

 up to O(m�(n,m) + km).
We use the formulae from [31] on sensitivity analysis for the minimum spanning

tree problem (the MSTP, for short) and the algorithms from [14, 27] with the com-
plexities O

(

m�(m, n)
)

 and O
(

m log �(m, n)
)

 , respectively, to compute all tolerances
for this problem. But our algorithm is not completely reduced to those sensitivity
analysis, involving some additional arguments. We also propose an algorithm for
sensitivity analysis of the minimum spanning tree problem, which is much simpler
to understand, than those in [14, 27], but with the worse complexity O(m log n).

Efficient online sensitivity analysis for the injective…

We also conducted computational experiments on synthetic networks, using
k = 1 and our sensitivity analysis of the MSTP. They confirmed O(m log n) - and
O(1)-theoretical complexity guaranties for preprocessing and tolerance computa-
tion times.

2 � Our algorithm

2.1 � Bottleneck paths and maximum spanning trees

A tree subgraph, containing all vertices of a graph, is called a spanning tree. The
maximum spanning tree problem, abbreviated as the MSTP, is to find a spanning
tree with the maximum sum of weights of its edges in a given edge-weighted graph.
Several classic algorithms were designed to solve the MSTP, like the Boruvka’s [7],
the Kruskall’s [25], the Prim’s [28], the Chazelle’s [9] algorithms. For a graph with
n vertices and m edges, the Prim’s algorithm can be implemented in O(m + n log n)
time, using Fibonacci heaps [21]. The Chazelle’s algorithm is the best known algo-
rithm among deterministic to solve the MSTP, it has the computational complexity
O
(

m�(m, n)
)

.
The MSTP has an important connection to the BPP, shown in Statement 2. This

is a well-known fact, but we did not know a corresponding reference, thus, a formal
proof was presented in [23].

Statement 2  Let T be an arbitrary maximum spanning tree of (G, c). Then, for any
s ∈ VG, t ∈ VG , the minimum capacity of edges on the path between s and t in T
equals bG(s, t).

Statement 2 makes to think of using the following strategy for computing the tol-
erances: monitor changes of a MST and minima in st-paths under capacity changes
of individual edges. The Ramaswamy-Orlin-Chakravarty’s algorithm explores
it, and it is also be applied in our algorithm. Ramaswamy, Orlin, and Chakravarty
directly compute maxmin values on st-paths in resulting trees, but we involve more
sophisticated arguments.

2.2 � Lowest common ancestors and some their applications

For a given rooted tree and its vertices x and y, the lowest common ancestor of x and
y, abbreviated as LCA(x, y), is the deepest node, for which both x and y are descend-
ants, assuming that each vertex is a descendant of itself. It was shown in [20] that
with a preprocessing step in O(n) time, where n is the vertex number in the tree,
LCA of any pair of vertices can be found in O(1) time. The approach from [5], the
so-called jump pointers algorithm with preprocessing time O(n log n) , is modified in
[23] for computing in O(log n) time the minimum and maximum values on in online
given paths of an in advance given edge-weighted tree. It can also be easily modified
to return optimal edges on these paths.

	 K. V. Kaymakov, D. S. Malyshev

LCAs are also useful to solve the following task, which are used to compute the
tolerances efficiently. Assume that we are given a tree T. For any vertices x and y, by
T(x, y), we denote the path between x and y in T. We need to preprocess T quickly
enough, such that, for any given vertices s, t of T and its edge xy, checking whether
xy ∈ T(s, t) or not can also be performed rapidly.

It can be done in O(1) time with an O(n) preprocessing stage. To this end, T is
rooted at an arbitrary vertex r and it is preprocessed, according to [20]. The depth
of a vertex x ∈ V(T) with respect to r, i.e., |T(r, x)|, is denoted by dT (x) . By breadth-
first search, we find all depths in O(n) time. Denote by Tx and Ty the connected com-
ponents of T ⧵ {xy} , containing x and y, respectively. Without loss of generality, let
us assume that dT (y) = dT (x) + 1 . This means that x and r belong to Tx . Clearly that
xy ∈ T(s, t) if and only if s and t lie in distinct components. Checking the fact that
a vertex z ∈ {s, t} belongs to Ty can be done by checking the equality LCA(z, y) = y .
The exactly one of s and t must poses this property to satisfy xy ∈ T(s, t) . It gives an
O(1)-time algorithm to solve the task above.

2.3 � Disjoint‑set data structure

A disjoint-set data structure, DJS, for short, is a data structure that stores a partition
of a finite set into its disjoint subsets. It supports the following operations:

•	 Create(x) — creating the new singleton subset {x} and adding it to the structure,
•	 Find(x) — finding a canonical element of those subset, which contains x,
•	 Join(x, y) — replacing the two subsets with the canonical elements x and y by

their union

in near-constant time. More precisely, insertion and join can be performed in unit
time in the worst case, but search can be performed in amortized time, bounded
from above by a value of the inverse Ackermann function, see [32]. DJSs are use-
ful in efficient implementation, see, for example, [12], of the Kruskal’s algorithm,
which orders edges by their weights, scans their sorted set, and determines whether
a current edge can be added to an optimal solution or not. We use a similar idea in
our algorithm.

2.4 � Efficient sensitivity analysis for the MSTP

Let T be an arbitrary maximum spanning tree of the graph (G, c). It can be com-
puted in O

(

m�(m, n)
)

 time [9]. It was proved, see the paper [31], that, for the MSTP
on (G, c) and its optimal solution T, the following relations are true:

uT (xy) = +∞, if xy ∈ ET ; lT (xy) = −∞, if xy ∈ EG ⧵ ET ;

uT (xy) =min
{

c(x�y�) ∶ x�y� ∈ T(x, y)
}

− c(xy), if xy ∈ EG ⧵ ET ;

lT (xy) = c(xy) −max
{

c(x�y�) ∶ xy ∈ T(x�, y�)
}

, if xy ∈ ET .

Efficient online sensitivity analysis for the injective…

Based on these formulae, an algorithm is designed in [14] for computing all tol-
erances for the MSTP on (G, c), assuming that an optimal tree has been given. It
has the worst-case complexity O

(

m�(m, n)
)

 , but with O(m) randomized complexity.
The result from [14] is updated to the O

(

m log �(m, n)
)

 complexity [27]. Together
with computing all tolerances, it is possible to determine the following edges in
O
(

m�(m, n)
)

 or O
(

m log �(m, n)
)

 time:

Indeed, computed the corresponding argmins/argmax s x′y′ , called the replacement
edges, the trees T � =

(

T ⧵ {x�y�}
)

∪ {xy} and T � =
(

T ⧵ {xy}
)

∪ {x�y�} are the maxi-
mum spanning trees of (G, c) among its spanning trees, containing xy ∈ EG ⧵ ET or
not containing xy ∈ ET , respectively. For any edge of (G, c), its replacement edge is
unique if any, as all capacities are pairwise distinct. These observations are useful
for our aims, according to Statement 2.

The algorithms from [14, 27] are quite difficult to understand. Here, we present
much simpler alternative LCA- and DJS-based algorithms with the worst-case
complexities O(m log n) . A pseudo code for determining the replacement edges,
corresponding to MSTP upper tolerances, is presented in Algorithm 1. Its compu-
tational complexity is O(m log n) , which is obvious.

Algorithm 1   MSTP upper tolerances replacement edges computation

Now, let us consider determining the replacement edges, corresponding to
MSTP lower tolerances. Let T be any MST of (G, c), rooted at an arbitrary ver-
tex. Sort edges from EG ⧵ ET by decreasing the capacities. Then, for any e ∈ ET ,
its replacement edge is the first edge xy ∈ EG ⧵ ET with respect to the order with
e ∈ ET(x,y) . Scanning the ordered set EG ⧵ ET , our algorithm catches the corre-
sponding moments, for all edges in ET.

∀xy ∈ EG ⧵ ET arg min
{

x�y�∶ x�y�∈T(x,y)

}

c(x�y�),

∀xy ∈ ET arg max
{

x�y�∶ xy∈T(x�,y�)

}

c(x�y�).

	 K. V. Kaymakov, D. S. Malyshev

Let us define a multigraph (G�, c�) , i.e., multiple edges are allowed. For any
xy ∈ EG ⧵ ET , change xy to the edges xz and yz, where z = LCA(x, y) , with the
same capacity c(xy). The tree T is a MST of (G�, c�) , see [14], and, obviously, any
edge of (G�, c�) connects an ancestor with its descendant. Put E� = EG� ⧵ ET.

Together with T, we keep a DJS on VT , whose all elements, i.e., subsets of VT ,
are vertices of some tree T ′ . Initially, DJS contains all n singletons, correspond-
ing to vertices of T, and T � = T  . At any moment, all vertices of T ′ are vertex
sets of some subtrees of T and all its edges are exactly edges of T, for which
replacement edges have not yet been determined. Reading an edge xy ∈ E� , by
Find(x) and Find(y), we determine the vertices X, Y ∈ VT � , such that x ∈ X and
y ∈ Y  . Suppose that X ≠ Y  . The invariant of the process is that Y is a descendant
of X, or vice versa, in T ′ , determined by the descendant relation between x and
y in T. Supposing that Y is a descendant of X in T, we contract T �(X, Y) in T ′ and
join the corresponding subsets of VT into a single vertex in T ′ . Walking through
T �(X, Y) , for any its edge with a capacity c∗ , we assign e as the replacement edge
of e� ∈ ET with c−1(e�) = c∗.

A pseudo code for determining the replacement edges, corresponding to
MSTP lower tolerances, is presented in Algorithm 2. Its computational com-
plexity is, clearly, O(m log n).

Algorithm 2   MSTP lower tolerances replacement edges computation

Efficient online sensitivity analysis for the injective…

2.5 � Combining all together

Suppose that some vertices s, t and an edge e = xy are given in the graph (G, c). Let T
be an arbitrary MST of (G, c). Let P∗ be an arbitrary maxmin st-path of (G, c) and e∗
be its edge argmin

e∈P∗
c(e) . The edge e∗ is unique, as c(⋅) is injective. It is clear that

uP∗ (e) = +∞ ∀e ∈ ET and lP∗ (e) = +∞ ∀e ∈ EG ⧵ ET , because the corresponding
changes of c(e) do not break the optimality of T as a MST. By the same reason, if a tol-
erance (upper or lower) of e is finite, then there is a replacement edge e′ and this toler-
ance is at least |c(e�) − c(e)| . It follows from Statement 1 that if uP∗ (e) < +∞ , then
uP∗ (e) = c(e∗) − c(e).

Let us assume that e ∈ T(s, t) , i.e., e ∈ ET , which can be checked in constant time,
see Subsect. 2.2. If L[e] =’No’, i.e., removing e disconnects (G, c), then lP∗ (e) = +∞ ,
because any decrease of c(e) keeps the optimality of T for the MSTP and the resultant
graph. Suppose that there is an edge e� = x�y� = L[e] . It is clear that e� ∉ ET . Then, by
Statements 1 and 2, we have lP∗ (e) = c(e) −min

(

c(e�), c(e∗)
)

 , since

Suppose that e = xy ∉ T(s, t) . Then, lP∗ (e) = +∞ , as T(s, t) exists in a new tree after
any decrease of c(e). If U[e] =’No’, then uP∗ (e) = +∞ . Suppose that there is an
edge e� = U[e] . Then, e ∉ ET , e

� ∈ ET . If e� ∉ T(s, t) , which can be verified in O(1)
time, see Subsect. 2.2, then uP∗ (e) = +∞ . Indeed, for any increase of c(e), either
T or T � =

(

T ⧵ {e�}
)

∪ {e} is an optimal solution of the MSTP. The path T(s, t)
exists in both these trees. Suppose that e� ∈ T(s, t) . Then, uP∗ (e) = c(e∗) − c(e) if
c(e�) = c(e∗) , otherwise uP∗ (e) = +∞ . Indeed, we have

and since c(⋅) is injective and e� = arg min
{

ẽ∶ ẽ∈T(x,y)

}

c(ẽ) we have

A pseudo code of an algorithm for working with a pair of a source and a target is
presented in Algorithm 3. Its preprocessing stage, emphasized with the underlines,
takes O

(

m�(m, n)
)

 time. Its running time is O(1) per an edge.
Algorithm 3   BPP online tolerances computation

min
ẽ∈T(x�,y�)∪{e�}

c(ẽ) = c(e�), where T � =
(

T ⧵ {e}
)

∪ {e�}, by the maximality of T ,

min
ẽ∈T(s,t)

c(ẽ) = c(e∗).

uP∗ (e) ≥ c(e�) − c(e) ≥ c(e∗) − c(e), as c(e�) ≥ c(e∗),

uP∗ (e) > c(e∗) − c(e) ⟶ uP∗ (e) = +∞,

c(e�) = c(e∗) ⟷ e� = e∗ ⟷ e∗ ∉ T �(s, t),

e∗ ∈ T �(s, t) ⟶ arg min
ẽ∈T �(s,t)

c(ẽ) ∈ {e, e∗} ⟶ uP∗ (e) = +∞.

	 K. V. Kaymakov, D. S. Malyshev

Algorithm 3 can be modified to work with k pairs (s1, t1),… , (sk, tk) of sources and
targets. To this end, we find all e∗

i
= argmine∈P∗

i
c(e) , where P∗

i
 is a maxmin siti-path,

either in O(km) time or in O(n log n + k log n) time, using LCA-based approach from

Subsect. 2.2. Hence, all 2k tolerances of any given edge with respect to P∗
1
–P∗

k
 can be

computed in O(k) time under O
(

m�(m, n) +min
(

(n + k) log n, km
)

)

-time preprocess-
ing. It gives an O(m�(m, n) + km)-time algorithm for computing both tolerances of all
edges with respect to P∗

1
–P∗

k
 , sometimes improving the Ramaswamy-Orlin-Chakravar-

ty’s complexity O
(

k(m + n log n)
)

 , e.g., when k = 1 and m = O(n).

Efficient online sensitivity analysis for the injective…

3 � Computational experiments

In order to verify the proposed algorithm, its software implementation was carried
out, see

https://​github.​com/​Kirun​del/​PHD/​tree/​main/​Sensi​tivit​yAnal​ysis.
An interested reader can independently justify the correctness of our algorithm

on small networks. Here, we describe conditions and results of the conducted exper-
iments to evaluate its performance. To generate growing networks for experiments, a
simple cycle on vertices 1, 2,… , n was used, to which m − n pairwise distinct edges
ab were added, where different a and b were independently pseudo-randomly gener-
ated from the discrete uniform distribution on {1, 2,… , n} . Values for s and t and
an edge e were selected in the same way. Edge capacities were generated indepen-
dently in a pseudo-random manner with the uniform distribution on [0, 1]. Replace-
ment edges were found by Algorithms 1 and 2. It was considered n = 2p , where
5 ≤ p ≤ 15 , and m ∈ {2n, n(log n)2, ⌊n1.5⌋}.

Computational experiments were conducted to justify the complexity guaranties
for the preprocessing and tolerance computation phases of Algorithm 3. They were
made on a machine with a 4-core Intel Core i7-7700hq processor of the frequency
2.8 GHz and 24 Gb of RAM. They showed the following results, which confirm the-
oretical guaranties for the complexity, independently of the considered graph densi-
ties (Figs. 1 and 2):

4 � Conclusion and future work

In this note, we considered the bottleneck path and sensitivity analysis problems in
the form of tolerances computation for individual edges with respect to an optimal
solution. The previous state-of-the-art algorithm, due to Ramaswamy, Orlin, and
Chakravarty, computes an optimal solution and tolerances with respect to it in
O(m + n log n) time. In this note, for any in advance given distinct-capacities

Fig. 1   Ratio of preprocessing time to m log2 n

https://github.com/Kirundel/PHD/tree/main/SensitivityAnalysis.

	 K. V. Kaymakov, D. S. Malyshev

network and k source-target pairs, we propose an
O
(

m�(m, n) +min
(

(n + k) log n, km
)

)

-time preprocessing to find in O(k) time all
2k tolerances of an arbitrary edge with respect to some maxmin paths between the
paired sources and targets. To compute both tolerances of all edges with respect to
those optimal paths, it asymptotically improves, for some n, m, k, the Ramaswamy-
Orlin-Chakravarty’s complexity O

(

k(m + n log n)
)

 up to O(m�(n,m) + km) . Con-
ducted experiments with usage of our sensitivity analysis for the maximum spanning
tree problem justified on synthetic data all the complexity guaranties. Developing
new algorithms and improving existing ones is a challenging research problem for
future work.

Author contributions  All authors contributed to the study conception and design. Material preparation
was performed by Kirill Kaymakov and Dmitriy Malyshev. The first draft of the manuscript was written
by Kirill Kaymakov and Dmitriy Malyshev and all authors commented on previous versions of the manu-
script. All authors read and approved the final manuscript.

Funding  The work of the author Malyshev D.S. was conducted within the framework of the Basic
Research Program at the National Research University Higher School of Economics (HSE).

Data availability  Our note has no associated data.

References

	 1.	 Aissi, H., Bazgan, C., Vanderpooten, D.: Min-max and min-max regret versions of combinatorial
optimization problems: a survey. Eur. J. Oper. Res. 197, 427–438 (2009)

	 2.	 Applegate, D., Cook, W., Dash, S., Rohe, A.: Solution of a min-max vehicle routing problem.
INFORMS J. Comput. 14, 132–143 (2002)

	 3.	 Baier, G., Köhler, E., Skutella, M.: On the k-splittable flow problem. In: Möhring, R., Raman, R.
(eds.). Proceedings of European Symposium on Algorithms, 101–113, Springer (2002)

	 4.	 Batsyn, M., Goldengorin, B.I., Kocheturov, A., Pardalos, P. Tolerance-based versus cost-based
branchng for the asymmetric capacitated vehicle routing problem. In: Goldengorin, B., Kalyagin, V.,

Fig. 2   Tolerances computation time

Efficient online sensitivity analysis for the injective…

Pardalos, P. (eds.). Proceedings of the Second International Conference on Network Analysis, 1–10
Springer (2012)

	 5.	 Bender, M., Farach-Colton, M.: The level ancestor problem simplified. Theoret. Comput. Sci. 321,
5–12 (2004)

	 6.	 Booth, H., Westbrook, J.: A linear algorithm for analysis of minimum spanning and shortest-path
trees of planar graphs. Algorithmica 11, 341–352 (1994)

	 7.	 Boruvka, O.: About a certain minimal problem. In: Proceedings of the Moravian Society of Natural
Sciences. 3, 37–58 (1926)

	 8.	 Burkard, R., Dell’Amico, M., Martello, S.: Assignment problems. SIAM, Philadelphia (2009)
	 9.	 Chazelle, B.: A minimum spanning tree algorithm with inverse-Ackermann type complexity. J.

ACM. 47, 1028–1047 (2000)
	10.	 Cherkassky, B., Goldberg, A., Radzik, T.: Shortest paths algorithms: theory and experimental evalu-

ation. Math. Programming Series A. 73, 129–174 (1996)
	11.	 Chin, F., Houck, D.: Algorithms for updating minimal spanning trees. J. Comput. Syst. Sci. 16,

333–344 (1978)
	12.	 Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to algorithms, 4th edn. The MIT Press,

Cambridge (2022)
	13.	 Dell’Amico, M., Toth, P.: Algorithms and codes for dense assignment problems: the state of the art.

Discret. Appl. Math. 140, 17–48 (2004)
	14.	 Dixon, B., Rauch, M., Tarjan, R.: Verification and sensitivity analysis of minimum spanning trees in

linear time. SIAM J. Comput. 21, 1184–1192 (1992)
	15.	 Edmonds, J., Karp, R.: Theoretical improvements in algorithmic efficiency for network flow prob-

lems. J. ACM. 19, 264–284 (1972)
	16.	 Germs, R., Goldengorin, B., Turkensteen, M.: Lower tolerance-based branch and bound algorithms

for the ATSP. Comput. Oper. Res. 39, 291–298 (2012)
	17.	 Goldengorin, B., Jäger, G., Molitor, P.: Tolerances applied in combinatorial optimization. J. Com-

put. Sci. 2, 716–734 (2006)
	18.	 Goldengorin, B., Malyshev, D., Pardalos, P.: Efficient computation of tolerances in weighted inde-

pendent set problems for trees. Dokl. Math. 87, 368–371 (2013)
	19.	 Goldengorin, B., Malyshev, D., Pardalos, P., Zamaraev, V.: A tolerance-based heuristic approach for

the weighted independent set problem. J. Comb. Optim. 29, 433–450 (2015)
	20.	 Fischer, J., Heun, V.: Theoretical and practical improvements on the RMQ-problem, with applica-

tions to LCA and LCE. In: Lewenstein, M., Valiente, G. (eds.). Proceedings of the 17th Annual
Symposium on Combinatorial Pattern Matching, 36–48 (2006)

	21.	 Fredman, M., Tarjan, R.: Fibonacci heaps and their uses in improved network optimization algo-
rithms. J. ACM. 34, 596–615 (1987)

	22.	 Jönker, R., Volgenant, A.: Improving the Hungarian assignment algorithm. Oper. Res. Lett. 5, 171–
175 (1986)

	23.	 Kaymakov, K., Malyshev, D.: On efficient algorithms for bottleneck path problems with many
sources. Optim. Lett. 18, 1273–1283 (2024)

	24.	 Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack problems. Springer, Berlin (2004)
	25.	 Kruskal, J.: On the shortest spanning subtree of a graph and the traveling salesman problem. In:

Proceedings of the American Mathematical Society. 7, 48–50 (1956)
	26.	 Malyshev, D., Pardalos, P.: Efficient computation of tolerances in the weighted independent set

problem for some classes of graphs. Dokl. Math. 89, 253–256 (2014)
	27.	 Pettie, S.: Sensitivity analysis of minimum spanning trees in sub-inverse-Ackermann time. J. Graph

Algorithms Appl. 19, 375–391 (2015)
	28.	 Prim, R.: Shortest connection networks And some generalizations. Bell Syst. Tech. J. 36, 1389–

1401 (1957)
	29.	 Ramaswamy, R., Orlin, J., Chakravarty, N.: Sensitivity analysis for shortest path problems and max-

imum capacity path problems in undirected graphs. Math. Programming Series A. 102, 355–369
(2005)

	30.	 Shier, D., Witzgall, C.: Arc tolerances in minimum-path and network flow problems. Networks 10,
277–1980 (1980)

	31.	 Tarjan, R.: Sensitivity analysis of minimum spanning trees and shortest path trees. Inf. Process.
Lett. 14, 30–33 (1982)

	32.	 Tarjan, R., van Leeuwen, J.: Worst-case analysis of set union algorithms. J. ACM 31, 245–281
(1984)

	 K. V. Kaymakov, D. S. Malyshev

	33.	 Turkensteen, M., Ghosh, D., Goldengorin, B., Sierksma, G.: Tolerance-based branch and bound
algorithms for the ATSP. Eur. J. Oper. Res. 189, 775–788 (2008)

	34.	 Turkensteen, M., Jäger, G.: Efficient computation of tolerances in the sensitivity analysis of combi-
natorial bottleneck problems. Theoret. Comput. Sci. 937, 1–21 (2022)

	35.	 Turkensteen, M., Malyshev, D., Goldengorin, B., Pardalos, P.: The reduction of computation times
of upper and lower tolerances for selected combinatorial optimization problems. J. Global Optim.
68, 601–622 (2017)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

	Efficient online sensitivity analysis for the injective bottleneck path problem
	Abstract
	1 Introduction
	1.1 Tolerances: background and significance
	1.2 The bottleneck path problem
	1.3 Our contribution: results, motivation, and methods

	2 Our algorithm
	2.1 Bottleneck paths and maximum spanning trees
	2.2 Lowest common ancestors and some their applications
	2.3 Disjoint-set data structure
	2.4 Efficient sensitivity analysis for the MSTP
	2.5 Combining all together

	3 Computational experiments
	4 Conclusion and future work
	References

