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Abstract
The tolerance of an element of a combinatorial optimization problem with respect to 
a given optimal solution is the maximum change, i.e., decrease or increase, of its 
cost, such that this solution remains optimal. The bottleneck path problem, for given 
an edge-capacitated graph, a source, and a target, is to find the max-min value of 
edge capacities on paths between the source and the target. For any given sample of 
this problem with n vertices and m edges, there is known the Ramaswamy-Orlin-
Chakravarty’s algorithm to compute an optimal path and all tolerances with respect 
to it in O(m + n log n) time. In this note, for any in advance given (n, m)-network 
with distinct edge capacities and k source-target pairs, we propose an 
O

(

m�(m, n) +min
(

(n + k) log n, km
)

)

-time preprocessing, where �(⋅, ⋅) is the 
inverse Ackermann function, to find in O(k) time all 2k tolerances of an arbitrary 
edge with respect to some maxmin paths between the paired sources and targets. To 
find both tolerances of all edges with respect to those optimal paths, it asymptoti-
cally improves, for some n, m, k, the Ramaswamy-Orlin-Chakravarty’s complexity 
O
(

k(m + n log n)
)

 up to O(m�(n,m) + km).
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1  Introduction

1.1 � Tolerances: background and significance

First of all, we present known definitions and results, concerning combinatorial opti-
mization problems and their sensitivity analysis, following definitions and notations 
from [17, 34]. A combinatorial minimization problem is a problem of selecting a 
group of elements from a ground set, such that this combination yields a feasible 
solution and has the lowest cost among all feasible solutions. CMPs can have differ-
ent objectives. The sum objective function minimizes the sum of the costs, whenever 
the bottleneck (or min-max ) objective function minimizes the maximum cost among 
all elements in the solution. These CMPs are called additive and bottleneck (or min

-max ), respectively. There are many concrete additive and bottleneck CMPs, see, for 
example, [1, 2, 8, 10, 24].

More formally, following [34], an instance of a CMP is given by a tuple 
(E,F, c, fc) , where E is the finite ground set of elements, F ⊆ 2E ⧵ {�} is the set 
of feasible solutions, c ∶ E ⟶ ℝ is the cost function, fc ∶ F ⟶ ℝ is the objec-
tive function. A feasible solution S∗ ∈ F is called an optimal solution of the 
CMP if fc(S∗) = minS∈F fc(S) . The function fc(⋅) is the sum objective function if 
fc(S) =

∑

e∈S c(e) , and it is the bottleneck objective function if fc(S) = maxe∈S c(e) . 
Note that CMPs with these objectives are equivalent to the maximization ones, more 
precisely, to a max-min problem if those CMP is of the min-max type, by taking the 
costs with the opposite sign.

Sensitivity analysis is the field of finding limit cost changes, for which an optimal 
solution remains optimal. More specifically, upper tolerances measure the supre-
mum increase in the cost of an element, such that a current solution remains opti-
mal, and lower tolerances measure the corresponding supremum decrease [17].

If Π = (E,F, c, fc) is an instance of a combinatorial minimization or maximization 
problem, e ∈ E , and � ∈ ℝ is some constant, then, by Πe,� = (E,F, ce,� , fce,� ) , a prob-
lem is denoted with

Let S∗ be an optimal solution of Π and e ∈ E . The upper tolerance of e (with respect 
to S∗) is defined as

The lower tolerance of e (with respect to S∗) is defined as

By F+e and F−e , we denote the sets of those feasible solutions of Π that contain and 
do not contain e, respectively, i.e.

ce,�(e) = c(e) + �, ce,�(e
�) = c(e�) ∀e� ≠ e.

uS∗ (e) = sup{� ∈ ℝ≥0 ∶ S∗ is an optimal solution of Πe,�}.

lS∗ (e) = sup{� ∈ ℝ≥0 ∶ S∗ is an optimal solution of Πe,−�}.

F+e = {S ∈ F ∶ e ∈ S}, F−e = {S ∈ F ∶ e ∉ S}.
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By fc(F), fc(F+e) , and fc(F−e) , we denote the optimal values of the objective func-
tion on F,F+e,F−e , i.e.

The following statement is proved in [17], see Theorems 4 and 15 of those paper:

Statement 1  Let Π = (E,F, c, fc) be an instance of a combinatorial minimization/
maximization problem, S∗ be an optimal solution of Π , e ∈ E be an element of the 
ground set. If Π is an additive minimization problem, then

If Π is a min-max problem, then

If Π is an additive maximization problem, then

If Π is a max-min problem, then

It follows from Statement 1 that if a tolerance is finite, then it does not depend on 
an optimal solution. By the same reason, an element e ∈ E belongs to some optimal 
solution of an additive combinatorial minimization/maximization problem if and 
only if its lower/upper tolerance is +∞.

Tolerances give to a decision maker information about the stability of an optimal 
solution with respect to perturbations of its elements. They are also used to design 
algorithms for NP-hard and polynomially solvable combinatorial problems, like ver-
sions of the Assignment Problem [13], Travelling Salesman Problem [16, 33, 35], 
Vehicle Routing Problem [4], Weighed Independent Set Problem [19], see the sur-
veys [34, 35] also. Efficiency of tolerance computations is an important problem, 
which not only had applications in the mentioned problems, but it is also of inde-
pendent interest. Several studies are devoted to this question [6, 11, 14, 18, 22, 26, 
27, 29–31].

fc(F) =min
S∈F

fc(S), fc(F+e) = min
S∈F+e

fc(S), fc(F−e) = min
S∈F−e

fc(S) or

fc(F) =max
S∈F

fc(S), fc(F+e) = max
S∈F+e

fc(S), fc(F−e) = max
S∈F−e

fc(S).

uS∗ (e) = fc(F−e) − fc(F), if e ∈ S∗, uS∗ (e) = +∞, if e ∈ E ⧵ S∗;

lS∗ (e) =fc(F+e) − fc(F), if e ∈ E ⧵ S∗, lS∗ (e) = +∞, if e ∈ S∗.

uS∗ (e) = fc(F−e) − c(e), if e ∈ S∗, uS∗ (e) = +∞, if e ∈ E ⧵ S∗;

lS∗ (e) =c(e) − fc(F), if e ∈ E ⧵ S∗ and min
S∈F+e

max
e�∈S⧵{e}

c(e�) < c(e),

lS∗ (e) = +∞, otherwise.

uS∗ (e) = fc(F) − fc(F+e), if e ∈ E ⧵ S∗, uS∗ (e) = +∞, if e ∈ S∗;

lS∗ (e) =fc(F) − fc(F−e), if e ∈ S∗, lS∗ (e) = +∞, if e ∈ E ⧵ S∗.

uS∗ (e) = fc(F) − c(e), if e ∈ E ⧵ S∗ and max
S∈F+e

min
e�∈S⧵{e}

c(e�) > c(e),

uS∗ (e) = +∞, otherwise;

lS∗ (e) =c(e) − fc(F−e), if e ∈ S∗, lS∗ (e) = +∞, if e ∈ E ⧵ S∗.
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1.2 � The bottleneck path problem

In this note, we consider sensitivity analysis for the Bottleneck Path Problem, 
abbreviated as the BPP. In this problem, a simple, connected graph G = (VG,EG) 
with VG = {v1, v2,… , vn} and EG = {e1, e2,… , em} is given and, for every edge ei , 
its capacity ci is also given. Additionally given a source vertex s ∈ VG and a target 
vertex t ∈ VG , the BPP is to find the value bG(s, t) = max

P∈Pst

min
e∈P

c(e) , where Pst is the 

set of all paths between s and t. A path is a sequence of vertices, in which any two 
consecutive members form an edge, without repetitions of its vertices and edges. 
The BPP arises as a subroutine in several flow problems, see, for example, [3] and 
[15]. The online BPP is the problem, when sources s and targets t are entered in 
the online regime. To the best of our knowledge, this problem was introduced in 
[23], where it was named the online Multi-Pair Bottleneck Paths Problem. To 
solve the online BPP, an input edge-capacitated graph can be preprocessed in 
O(m + n log n) time, such that any bottleneck value bG(s, t) can be computed in 
O(log n) time, see [23].

1.3 � Our contribution: results, motivation, and methods

In this note, for any in advance given (G = (VG,EG), c) with injective c(⋅) and 
(s1, t1),… , (sk, tk) , where si, ti ∈ VG , for any i, we present a preprocessing in 
O
(

m�(m, n) +min
(

(n + k) log n, km
)

)

 time, allowing to compute in O(k) time all 
2k tolerances of an arbitrary edge with respect to some maxmin siti-paths, for all 
i. We assume that the edge capacities are pairwise distinct, and this restriction is 
used in justification for correctness of our algorithm, see the reasonings before 
Algorithm 3.

Note that computation of upper and lower tolerances of all edges for the BPP, 
including determination of an optimal solution, can be done in O(m + n log n) 
time [29]. But the approach from [29] does not allow to compute rapidly values 
of tolerances for individual edges. Analysis of namely individual tolerances may 
be important, for example, in sustainability research of flows in networks under 
incidents with a single edges, like breakdowns or repairs of pipelines, possibly, 
with respect to several source-target pairs. Moreover, to find both tolerances of 
all edges with respect to some optimal siti-paths, our algorithm asymptotically 
improves, for some n, m, k (e.g., m = O(n) ), the Ramaswamy-Orlin-Chakravarty’s 
complexity O

(

k(m + n log n)
)

 up to O(m�(n,m) + km).
We use the formulae from [31] on sensitivity analysis for the minimum spanning 

tree problem (the MSTP, for short) and the algorithms from [14, 27] with the com-
plexities O

(

m�(m, n)
)

 and O
(

m log �(m, n)
)

 , respectively, to compute all tolerances 
for this problem. But our algorithm is not completely reduced to those sensitivity 
analysis, involving some additional arguments. We also propose an algorithm for 
sensitivity analysis of the minimum spanning tree problem, which is much simpler 
to understand, than those in [14, 27], but with the worse complexity O(m log n).
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We also conducted computational experiments on synthetic networks, using 
k = 1 and our sensitivity analysis of the MSTP. They confirmed O(m log n) - and 
O(1)-theoretical complexity guaranties for preprocessing and tolerance computa-
tion times.

2 � Our algorithm

2.1 � Bottleneck paths and maximum spanning trees

A tree subgraph, containing all vertices of a graph, is called a spanning tree. The 
maximum spanning tree problem, abbreviated as the MSTP, is to find a spanning 
tree with the maximum sum of weights of its edges in a given edge-weighted graph. 
Several classic algorithms were designed to solve the MSTP, like the Boruvka’s [7], 
the Kruskall’s [25], the Prim’s [28], the Chazelle’s [9] algorithms. For a graph with 
n vertices and m edges, the Prim’s algorithm can be implemented in O(m + n log n) 
time, using Fibonacci heaps [21]. The Chazelle’s algorithm is the best known algo-
rithm among deterministic to solve the MSTP, it has the computational complexity 
O
(

m�(m, n)
)

.
The MSTP has an important connection to the BPP, shown in Statement 2. This 

is a well-known fact, but we did not know a corresponding reference, thus, a formal 
proof was presented in [23].

Statement 2  Let T be an arbitrary maximum spanning tree of (G, c). Then, for any 
s ∈ VG, t ∈ VG , the minimum capacity of edges on the path between s and t in T 
equals bG(s, t).

Statement 2 makes to think of using the following strategy for computing the tol-
erances: monitor changes of a MST and minima in st-paths under capacity changes 
of individual edges. The Ramaswamy-Orlin-Chakravarty’s algorithm explores 
it, and it is also be applied in our algorithm. Ramaswamy, Orlin, and Chakravarty 
directly compute maxmin values on st-paths in resulting trees, but we involve more 
sophisticated arguments.

2.2 � Lowest common ancestors and some their applications

For a given rooted tree and its vertices x and y, the lowest common ancestor of x and 
y, abbreviated as LCA(x, y), is the deepest node, for which both x and y are descend-
ants, assuming that each vertex is a descendant of itself. It was shown in [20] that 
with a preprocessing step in O(n) time, where n is the vertex number in the tree, 
LCA of any pair of vertices can be found in O(1) time. The approach from [5], the 
so-called jump pointers algorithm with preprocessing time O(n log n) , is modified in 
[23] for computing in O(log n) time the minimum and maximum values on in online 
given paths of an in advance given edge-weighted tree. It can also be easily modified 
to return optimal edges on these paths.
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LCAs are also useful to solve the following task, which are used to compute the 
tolerances efficiently. Assume that we are given a tree T. For any vertices x and y, by 
T(x, y), we denote the path between x and y in T. We need to preprocess T quickly 
enough, such that, for any given vertices s, t of T and its edge xy, checking whether 
xy ∈ T(s, t) or not can also be performed rapidly.

It can be done in O(1) time with an O(n) preprocessing stage. To this end, T is 
rooted at an arbitrary vertex r and it is preprocessed, according to [20]. The depth 
of a vertex x ∈ V(T) with respect to r, i.e., |T(r, x)|, is denoted by dT (x) . By breadth-
first search, we find all depths in O(n) time. Denote by Tx and Ty the connected com-
ponents of T ⧵ {xy} , containing x and y, respectively. Without loss of generality, let 
us assume that dT (y) = dT (x) + 1 . This means that x and r belong to Tx . Clearly that 
xy ∈ T(s, t) if and only if s and t lie in distinct components. Checking the fact that 
a vertex z ∈ {s, t} belongs to Ty can be done by checking the equality LCA(z, y) = y . 
The exactly one of s and t must poses this property to satisfy xy ∈ T(s, t) . It gives an 
O(1)-time algorithm to solve the task above.

2.3 � Disjoint‑set data structure

A disjoint-set data structure, DJS, for short, is a data structure that stores a partition 
of a finite set into its disjoint subsets. It supports the following operations:

•	 Create(x) — creating the new singleton subset {x} and adding it to the structure,
•	 Find(x) — finding a canonical element of those subset, which contains x,
•	 Join(x, y) — replacing the two subsets with the canonical elements x and y by 

their union

in near-constant time. More precisely, insertion and join can be performed in unit 
time in the worst case, but search can be performed in amortized time, bounded 
from above by a value of the inverse Ackermann function, see [32]. DJSs are use-
ful in efficient implementation, see, for example, [12], of the Kruskal’s algorithm, 
which orders edges by their weights, scans their sorted set, and determines whether 
a current edge can be added to an optimal solution or not. We use a similar idea in 
our algorithm.

2.4 � Efficient sensitivity analysis for the MSTP

Let T be an arbitrary maximum spanning tree of the graph (G, c). It can be com-
puted in O

(

m�(m, n)
)

 time [9]. It was proved, see the paper [31], that, for the MSTP 
on (G, c) and its optimal solution T, the following relations are true:

uT (xy) = +∞, if xy ∈ ET ; lT (xy) = −∞, if xy ∈ EG ⧵ ET ;

uT (xy) =min
{

c(x�y�) ∶ x�y� ∈ T(x, y)
}

− c(xy), if xy ∈ EG ⧵ ET ;

lT (xy) = c(xy) −max
{

c(x�y�) ∶ xy ∈ T(x�, y�)
}

, if xy ∈ ET .
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Based on these formulae, an algorithm is designed in [14] for computing all tol-
erances for the MSTP on (G, c), assuming that an optimal tree has been given. It 
has the worst-case complexity O

(

m�(m, n)
)

 , but with O(m) randomized complexity. 
The result from [14] is updated to the O

(

m log �(m, n)
)

 complexity [27]. Together 
with computing all tolerances, it is possible to determine the following edges in 
O
(

m�(m, n)
)

 or O
(

m log �(m, n)
)

 time:

Indeed, computed the corresponding argmins/argmax s x′y′ , called the replacement 
edges, the trees T � =

(

T ⧵ {x�y�}
)

∪ {xy} and T � =
(

T ⧵ {xy}
)

∪ {x�y�} are the maxi-
mum spanning trees of (G, c) among its spanning trees, containing xy ∈ EG ⧵ ET or 
not containing xy ∈ ET , respectively. For any edge of (G, c), its replacement edge is 
unique if any, as all capacities are pairwise distinct. These observations are useful 
for our aims, according to Statement 2.

The algorithms from [14, 27] are quite difficult to understand. Here, we present 
much simpler alternative LCA- and DJS-based algorithms with the worst-case 
complexities O(m log n) . A pseudo code for determining the replacement edges, 
corresponding to MSTP upper tolerances, is presented in Algorithm 1. Its compu-
tational complexity is O(m log n) , which is obvious.

Algorithm 1   MSTP upper tolerances replacement edges computation

Now, let us consider determining the replacement edges, corresponding to 
MSTP lower tolerances. Let T be any MST of (G, c), rooted at an arbitrary ver-
tex. Sort edges from EG ⧵ ET by decreasing the capacities. Then, for any e ∈ ET , 
its replacement edge is the first edge xy ∈ EG ⧵ ET with respect to the order with 
e ∈ ET(x,y) . Scanning the ordered set EG ⧵ ET , our algorithm catches the corre-
sponding moments, for all edges in ET.

∀xy ∈ EG ⧵ ET arg min
{

x�y�∶ x�y�∈T(x,y)

}

c(x�y�),

∀xy ∈ ET arg max
{

x�y�∶ xy∈T(x�,y�)

}

c(x�y�).
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Let us define a multigraph (G�, c�) , i.e., multiple edges are allowed. For any 
xy ∈ EG ⧵ ET , change xy to the edges xz and yz, where z = LCA(x, y) , with the 
same capacity c(xy). The tree T is a MST of (G�, c�) , see [14], and, obviously, any 
edge of (G�, c�) connects an ancestor with its descendant. Put E� = EG� ⧵ ET.

Together with T, we keep a DJS on VT , whose all elements, i.e., subsets of VT , 
are vertices of some tree T ′ . Initially, DJS contains all n singletons, correspond-
ing to vertices of T, and T � = T  . At any moment, all vertices of T ′ are vertex 
sets of some subtrees of T and all its edges are exactly edges of T, for which 
replacement edges have not yet been determined. Reading an edge xy ∈ E� , by 
Find(x) and Find(y), we determine the vertices X, Y ∈ VT � , such that x ∈ X and 
y ∈ Y  . Suppose that X ≠ Y  . The invariant of the process is that Y is a descendant 
of X, or vice versa, in T ′ , determined by the descendant relation between x and 
y in T. Supposing that Y is a descendant of X in T, we contract T �(X, Y) in T ′ and 
join the corresponding subsets of VT into a single vertex in T ′ . Walking through 
T �(X, Y) , for any its edge with a capacity c∗ , we assign e as the replacement edge 
of e� ∈ ET with c−1(e�) = c∗.

A pseudo code for determining the replacement edges, corresponding to 
MSTP lower tolerances, is presented in Algorithm  2. Its computational com-
plexity is, clearly, O(m log n).

Algorithm 2   MSTP lower tolerances replacement edges computation
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2.5 � Combining all together

Suppose that some vertices s, t and an edge e = xy are given in the graph (G, c). Let T 
be an arbitrary MST of (G, c). Let P∗ be an arbitrary maxmin st-path of (G, c) and e∗ 
be its edge argmin

e∈P∗
c(e) . The edge e∗ is unique, as c(⋅) is injective. It is clear that 

uP∗ (e) = +∞ ∀e ∈ ET and lP∗ (e) = +∞ ∀e ∈ EG ⧵ ET , because the corresponding 
changes of c(e) do not break the optimality of T as a MST. By the same reason, if a tol-
erance (upper or lower) of e is finite, then there is a replacement edge e′ and this toler-
ance is at least |c(e�) − c(e)| . It follows from Statement 1 that if uP∗ (e) < +∞ , then 
uP∗ (e) = c(e∗) − c(e).

Let us assume that e ∈ T(s, t) , i.e., e ∈ ET , which can be checked in constant time, 
see Subsect. 2.2. If L[e] =’No’, i.e., removing e disconnects (G, c), then lP∗ (e) = +∞ , 
because any decrease of c(e) keeps the optimality of T for the MSTP and the resultant 
graph. Suppose that there is an edge e� = x�y� = L[e] . It is clear that e� ∉ ET . Then, by 
Statements 1 and 2, we have lP∗ (e) = c(e) −min

(

c(e�), c(e∗)
)

 , since

Suppose that e = xy ∉ T(s, t) . Then, lP∗ (e) = +∞ , as T(s, t) exists in a new tree after 
any decrease of c(e). If U[e] =’No’, then uP∗ (e) = +∞ . Suppose that there is an 
edge e� = U[e] . Then, e ∉ ET , e

� ∈ ET . If e� ∉ T(s, t) , which can be verified in O(1) 
time, see Subsect.  2.2, then uP∗ (e) = +∞ . Indeed, for any increase of c(e), either 
T or T � =

(

T ⧵ {e�}
)

∪ {e} is an optimal solution of the MSTP. The path T(s,  t) 
exists in both these trees. Suppose that e� ∈ T(s, t) . Then, uP∗ (e) = c(e∗) − c(e) if 
c(e�) = c(e∗) , otherwise uP∗ (e) = +∞ . Indeed, we have

and since c(⋅) is injective and e� = arg min
{

ẽ∶ ẽ∈T(x,y)

}

c(ẽ) we have

A pseudo code of an algorithm for working with a pair of a source and a target is 
presented in Algorithm 3. Its preprocessing stage, emphasized with the underlines, 
takes O

(

m�(m, n)
)

 time. Its running time is O(1) per an edge.
Algorithm 3   BPP online tolerances computation

min
ẽ∈T(x�,y�)∪{e�}

c(ẽ) = c(e�), where T � =
(

T ⧵ {e}
)

∪ {e�}, by the maximality of T ,

min
ẽ∈T(s,t)

c(ẽ) = c(e∗).

uP∗ (e) ≥ c(e�) − c(e) ≥ c(e∗) − c(e), as c(e�) ≥ c(e∗),

uP∗ (e) > c(e∗) − c(e) ⟶ uP∗ (e) = +∞,

c(e�) = c(e∗) ⟷ e� = e∗ ⟷ e∗ ∉ T �(s, t),

e∗ ∈ T �(s, t) ⟶ arg min
ẽ∈T �(s,t)

c(ẽ) ∈ {e, e∗} ⟶ uP∗ (e) = +∞.
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Algorithm 3 can be modified to work with k pairs (s1, t1),… , (sk, tk) of sources and 
targets. To this end, we find all e∗

i
= argmine∈P∗

i
c(e) , where P∗

i
 is a maxmin siti-path, 

either in O(km) time or in O(n log n + k log n) time, using LCA-based approach from 

Subsect. 2.2. Hence, all 2k tolerances of any given edge with respect to P∗
1
–P∗

k
 can be 

computed in O(k) time under O
(

m�(m, n) +min
(

(n + k) log n, km
)

)

-time preprocess-
ing. It gives an O(m�(m, n) + km)-time algorithm for computing both tolerances of all 
edges with respect to P∗

1
–P∗

k
 , sometimes improving the Ramaswamy-Orlin-Chakravar-

ty’s complexity O
(

k(m + n log n)
)

 , e.g., when k = 1 and m = O(n).
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3 � Computational experiments

In order to verify the proposed algorithm, its software implementation was carried 
out, see

https://​github.​com/​Kirun​del/​PHD/​tree/​main/​Sensi​tivit​yAnal​ysis.
An interested reader can independently justify the correctness of our algorithm 

on small networks. Here, we describe conditions and results of the conducted exper-
iments to evaluate its performance. To generate growing networks for experiments, a 
simple cycle on vertices 1, 2,… , n was used, to which m − n pairwise distinct edges 
ab were added, where different a and b were independently pseudo-randomly gener-
ated from the discrete uniform distribution on {1, 2,… , n} . Values for s and t and 
an edge e were selected in the same way. Edge capacities were generated indepen-
dently in a pseudo-random manner with the uniform distribution on [0, 1]. Replace-
ment edges were found by Algorithms  1 and 2. It was considered n = 2p , where 
5 ≤ p ≤ 15 , and m ∈ {2n, n(log n)2, ⌊n1.5⌋}.

Computational experiments were conducted to justify the complexity guaranties 
for the preprocessing and tolerance computation phases of Algorithm 3. They were 
made on a machine with a 4-core Intel Core i7-7700hq processor of the frequency 
2.8 GHz and 24 Gb of RAM. They showed the following results, which confirm the-
oretical guaranties for the complexity, independently of the considered graph densi-
ties (Figs. 1 and 2):

4 � Conclusion and future work

In this note, we considered the bottleneck path and sensitivity analysis problems in 
the form of tolerances computation for individual edges with respect to an optimal 
solution. The previous state-of-the-art algorithm, due to Ramaswamy, Orlin, and 
Chakravarty, computes an optimal solution and tolerances with respect to it in 
O(m + n log n) time. In this note, for any in advance given distinct-capacities 

Fig. 1   Ratio of preprocessing time to m log2 n

https://github.com/Kirundel/PHD/tree/main/SensitivityAnalysis.
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network and k source-target pairs, we propose an 
O
(

m�(m, n) +min
(

(n + k) log n, km
)

)

-time preprocessing to find in O(k) time all 
2k tolerances of an arbitrary edge with respect to some maxmin paths between the 
paired sources and targets. To compute both tolerances of all edges with respect to 
those optimal paths, it asymptotically improves, for some n, m, k, the Ramaswamy-
Orlin-Chakravarty’s complexity O

(

k(m + n log n)
)

 up to O(m�(n,m) + km) . Con-
ducted experiments with usage of our sensitivity analysis for the maximum spanning 
tree problem justified on synthetic data all the complexity guaranties. Developing 
new algorithms and improving existing ones is a challenging research problem for 
future work.
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