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Abstract. We study a series of reforms of school admissions mechanisms motivated, among
other reasons, by fairness concerns and vulnerability to manipulation. Before the reforms
and after, the mechanisms were vulnerable to preference manipulation and induced blocking
students: students who miss desired schools despite having higher priority or seats left empty.
We demonstrate that some of these reforms improved fairness by adopting mechanisms with
fewer blocking students compared to the preexisting ones, while several others did not. We
identify preexisting mechanisms where fairness consideration was more of an issue than
vulnerability to manipulation and those where it is the reverse.
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1. Introduction

In the last two decades, there has been a wave of reforms of school admissions mecha-
nisms around the world (Pathak and Sönmez, 2013). The surprising fact is that after such
reforms most matching mechanisms present the same poor properties that could have ar-
guably justified the policy changes. For example, despite some evidence that vulnerability to
manipulation and fairness concerns mostly drove the changes, most newly adopted matching
mechanisms still suffer from these two deficiencies.

Fairness is at the forefront of the concerns that led to the policy changes. Perhaps the
most vivid example is the 2007 major reform in England, which covers 146 local school
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admissions systems. According to the then-Secretary of State, Alan Johnson, the reform
aimed to “ensure that admission authorities – whether local authorities or schools – operate
in a fair way” (Department for Education and Skills, 2007). Among other things, the reform
prohibited the practice of giving “priority to children according to the order of other schools
named as preference by their parents,” known as the first-preference-first principle. This
principle states that a student who ranks a school higher in her list receives a higher admission
priority at this school compared to students who rank it lower. Before the reform, as many
as one-third of schools in England used this principle.

In 2009, Chicago education authorities reformed their Selective High School admission
system. They replaced the so-called Boston mechanism that used the first-preference-first
principle for each school, arguing that, due to this principle “high-scoring kids were being
rejected simply because of the order in which they listed their [schools] preferences” (Pathak
and Sönmez, 2013). The same Boston mechanism has also been used for college admissions
in several provinces in China, and it raised similar complaints. For example, one parent said:
“My child has been among the best students in his school and school district. He achieved a
score of 632 on the college entrance exam last year. Unfortunately, he was not accepted by his
first choice. After his first choice rejected him, his second and third choices were already full.
My child had no choice but to repeat his senior year” (Chen and Kesten, 2017; Nie, 2007).
In 2003, more than 3 million students, representing half of the annual intake, were matched
to significantly worse colleges than what their grades allowed (Wu and Zhong, 2020).

These examples illustrate fairness concerns with the old mechanisms: they can induce a
matching with a so-called blocking student, that is, a student who missed a school while at
least one seat at that school has been assigned to a student with a lower grade or priority
or even left empty. The blocking student is entitled to this seat, yet she has not been
assigned to it. It is important to note that we define the concept of fairness concerning true
preferences and not reported preferences. A matching with no blocking student is stable
and is viewed as a fair outcome as it eliminates “justified envy”, a situation in which a
student prefers a school that is assigned to another student with lower admission priority
(Abdulkadiroğlu and Sönmez, 2003).1 Gale and Shapley (1962) show that for any instance
there is a student-optimal stable matching, a matching that every student finds at least as
good as any other stable matching. This stable matching can be reached by the student-
proposing deferred acceptance algorithm by Gale and Shapley (1962). We refer to it as the
Gale-Shapley mechanism.

Apart from the first-preference-first principle, many mechanisms induce blocking students
because they have ranking constraints. In such a mechanism each student is allowed to
rank-list only a limited number of schools, typically between 3 and 5 (Pathak and Sönmez,

1In general, the relation between stability and fairness is more nuanced, see Romm et al. (2020).
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2013). Even in New York City, where the ranking constraint is 12 and there are more
than 1700 schools, around 25% of students report a complete list of 12 schools, while only
5% report 9, 10, or 11 schools, suggesting that around 20% of students in New York City
could not list all acceptable schools (Abdulkadiroğlu et al., 2009). Students who missed
all their listed schools but could have been admitted to unlisted schools will be dissatisfied
with the admissions system and deem it unfair. We consider all blocking students, whether
it concerns listed schools for which admissions authorities can verify priority violations or
unlisted schools that lead to dissatisfaction (see Calsamiglia et al., 2010).

Our first goal is to investigate whether the reforms led to more fair matching mechanisms.
Our second goal is to investigate the relative importance of vulnerability to manipulation
and fairness concerns in the preexisting mechanisms. Chen and Kesten (2017) propose to
compare mechanisms by set inclusion of problems where they produce stable outcomes.
However, this notion cannot further distinguish mechanisms in each instance where they are
not stable. A finer and complementary notion is useful, in particular, when the compared
mechanisms are not stable or a large fraction of instances or real-life instances lie in this
domain. We indeed illustrate that for many of our compared mechanisms, real-life instances
are likely to be in a domain where the compared mechanisms are not stable (Example 1).

To address this problem, we count and compare the number of blocking students across
mechanisms. In an instance where two mechanisms are not stable, they can still be contrasted
using the number of blocking students.2 Our investigation led to a result that supports an
important kind of reform. Broadly, these reforms involve extending ranking constraints in
the Gale-Shapley mechanism. The Gale-Shapley mechanism with a relaxed constraint has
weakly fewer blocking students than the restricted counterpart and there are instances where
it has fewer blocking students. This took place in Chicago (2010), in Ghana (2007, 2008),
in Newcastle (2010), and in Surrey (2010) (Pathak and Sönmez, 2013). For the remaining
reforms, it is not possible to conclude by comparing the number of blocking students. We
show that after those reforms the number of blocking students may increase.

We then answer the following question. Was fairness more of a concern compared to
vulnerability to manipulation? We focus on blocking students and manipulating students,
students who could gain by misreporting their preferences while others are truthful (as in
Bonkoungou and Nesterov, 2023). We show that for any instance the constrained Gale-
Shapley mechanism has weakly more blocking students than manipulating students. More
precisely, any manipulating student is a blocking student of the mechanism. In contrast, for
any instance, the constrained Boston mechanism has weakly more manipulating students
2To our knowledge, this criterion has been first used by Roth and Xing (1997). Niederle and Roth (2009),
Eriksson and Häggström (2008) and Doğan and Ehlers (2021) used the criterion of counting the number of
blocking pairs, which does not allow comparisons in our setting (see Remark in section 2.2). Doğan and
Ehlers (2021) and Doğan and Ehlers (2022) introduced criteria for counting the number of blocking pairs
and blocking students.
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than blocking students. More precisely, any blocking student is a manipulating student
of the mechanism. For the constrained serial dictatorship mechanism these sets coincide:
each blocking student is a manipulating student and vice versa. A more subtle relationship
between stability and manipulability can be seen in the reform in England. This reform did
not adopt less manipulable mechanisms in all school districts (Bonkoungou and Nesterov,
2021) and it did not adopt more fair matching mechanisms by stability either (Example 3).
However, the reform was successful according to at least one dimension by the following
criterion: if the reform disrupted fairness — by producing an unstable matching while it was
stable before the reform — the new mechanism is not vulnerable to manipulation.
Related literature. Apart from papers studying the reforms mentioned earlier (Pathak

and Sönmez, 2013; Chen and Kesten, 2017; Bonkoungou and Nesterov, 2021, 2023; Imamura
and Tomoeda, 2022) and papers that used the method of counting blocking agents and
blocking pairs (Roth and Xing, 1997; Niederle and Roth, 2009; Eriksson and Häggström,
2008) there is recent literature interested in various ways of comparing matching mechanisms
by fairness.

Among strategy-proof and Pareto efficient mechanisms, the Gale’s Top Trading Cycles
mechanism (Shapley and Scarf, 1974) is among the most fair by stability when each school has
one seat (Abdulkadiroğlu et al., 2020). This result also holds for other fairness comparisons,
such as the set of blocking students (Doğan and Ehlers, 2022) and the set of blocking triplets
(i, j, s) – student i blocking the matching of school s with student j (Kwon and Shorrer,
2020). The result holds for any stability comparison that satisfies a few basic properties
(Doğan and Ehlers, 2022).

Among Pareto efficient mechanisms, the Efficiency Adjusted Deferred Acceptance mech-
anism (EADA) due to Kesten (2010) is among the most fair in terms of blocking pairs and
blocking triplets (Doğan and Ehlers, 2021; Tang and Zhang, 2021; Kwon and Shorrer, 2020).
Independent from the present work, Doğan and Ehlers (2021) also introduced the fairness
comparison by counting to show that among efficient mechanisms, EADA is not the most
fair by counting unless the priority profile satisfies a few acyclicity conditions.

The first papers that studied constrained mechanisms are Romero-Medina (1998) and
Haeringer and Klijn (2009). They study the stability of Nash equilibrium outcomes of the
game induced by these mechanisms. The most important insight is that the Nash equilibrium
outcomes of the constrained Boston mechanism are all stable, while the Nash equilibrium
outcomes of the constrained Gale-Shapley may not all be stable.3 Besides, the Nash equi-
librium outcomes of the constrained Gale-Shapley are a subset of the Nash equilibrium
outcomes of any constrained Gale-Shapley with a relaxed constraint. Therefore, when the
Nash equilibrium outcomes of the constrained Gale-Shapley with a relaxed constraint are
3Ergin and Sönmez (2006) showed that the Nash equilibrium outcomes of the unconstrained Boston mecha-
nism are stable.
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all stable, the Nash equilibrium outcomes of the constrained Gale-Shapley with a restricted
constraint are also stable.

Finally, the mechanisms we studied bear some resemblance to Preference Rank Partitioned
mechanisms introduced by Ayoade and Pápai (2023) except that in constrained mechanisms
schools’ choice functions are not acceptant4 as in Ayoade and Pápai (2023). In particular, the
manipulation strategy in the constrained Gale-Shapley mechanism, consisting of including
an unlisted school in the constrained list, resembles the strategy in the Preference Rank
Partitioned mechanism, which consists of moving a school from a lower class to the first
class. In addition, the manipulation strategy of the constrained Boston mechanism, which
consists of moving a school from a lower rank to the highest rank has the same resemblance.

The rest of the paper is organized as follows. In Section 2, we introduce the model, the
mechanisms, and the comparison criteria. In Section 3, we present fairness comparisons. In
Section 4, we study the relationship between stability and manipulability. In Section 5, we
conclude. We present most of the proofs in the Appendix.

2. Model

We consider the school choice problem (Balinski and Sönmez, 1999; Abdulkadiroğlu and
Sönmez, 2003). It consists of the following elements:

• a finite set I of students,
• a finite set S of schools,
• a profile P = (Pi)∈I of preference relations for each student,
• a profile �= (�s)s∈S of priority orders for each school, and
• a vector q = (qs)s∈S of capacities for each school

where P and � are defined as follows. For each student i, Pi is a strict preference relation
Pi over S ∪ {∅}, where ∅ represents the outside option of being unmatched. For each school
s, �s is a strict priority order over I. For each student i, let Ri denote the “at least as good
as” relation associated with Pi.5 School s is acceptable to student i if s Pi ∅; and it is
unacceptable to student i if ∅ Pi s. We extend the priority order �s of each school s over
I to the set 2I of subsets of students and assume that it is responsive to the priority order
over I (Roth, 1985). By definition, the priority order �s over 2I is responsive if for any
students i, j ∈ I and any subset N ⊂ I \ {i, j} such that |N |< qs, (i) N ∪ {i} �s N , and (ii)
N ∪ {i} �s N ∪ {j} if and only if i �s j. Let k ∈ {1, . . . , |S|}, and Pi a preference relation
where student i has x acceptable schools. The truncation of Pi after the k’th acceptable
school (if any) of the preference relation Pi is a preference relation with min(x, k) acceptable

4A choice function is acceptant if it accepts all applicants when the capacity is not full (Kojima and Manea,
2010).
5That is, for each s, s′ ∈ S ∪ {∅}, s Ri s

′ if and only s Pi s
′ or s = s′.
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schools such that all schools are ordered as in Pi. Let P k
i denote the truncation of Pi after

the k’th acceptable school. Let P k = (P k
i )i∈I . Given a proper subset I ′ ( I of students,

we will often write a preference profile as P = (PI′ , P−I′) to emphasize the components for
students in I ′. The tuple (I, S, P,�, q) is a school choice problem or simply a problem. We
assume that there are more students than schools, that is, |I|> |S|. The set of students and
the set of schools are fixed throughout the paper, and we denote the (school choice) problem
by the triple (P,�, q).

A matching µ is a function µ : I → S ∪{∅} such that for each school s, |µ−1(s)|≤ qs. We
say that student i is matched under µ if µ(i) 6= ∅ and unmatched under µ if µ(i) = ∅. Let
(P,�, q) be a problem. A matching µ is individually rational under P if for each student
i, µ(i) Ri ∅. A pair (i, s) of a student and a school blocks the matching µ under (P,�, q)
if s Pi µ(i) and either there is a student j such that µ(j) = s and i �s j or |µ−1(s)|< qs.
Student i is a blocking student for the matching µ under (P,�, q) if there is a school s
such that the pair (i, s) blocks µ under (P,�, q). A matching µ is stable at (P,�, q) if it
is individually rational under P and has no blocking student. We often drop the problem
and refer to a stable matching. A mechanism ϕ is a function that maps each problem to
a matching. For each problem (P,�, q), let ϕi(P,�, q) denote the component for student i.
A mechanism ϕ is individually rational if for each problem (P,�, q) the matching ϕ(P,�, q)
is individually rational under P . A mechanism ϕ is stable if for each problem (P,�, q)
the matching ϕ(P,�, q) is stable at (P,�, q). We often drop the problem and say that a
mechanism is stable (at the implicitly assumed problem).

2.1. Mechanisms. We are interested in mechanisms that were used either before or after
the reforms. We first describe unconstrained versions.

Gale-Shapley. Gale and Shapley (1962) showed that for each problem, there exists a stable
matching. In addition, there is a student-optimal stable matching, which is a matching that
each student finds at least as good as any other stable matching. For each problem (P,�, q),
this matching can be found via the Gale and Shapley (1962) student-proposing deferred
acceptance algorithm.

• Step 1: Each student applies to her most preferred acceptable school (if any). If
a student did not rank any school acceptable, then she remains unmatched. Each
school s considers its applicants at the first step denoted as I1s and tentatively accepts
min(qs, |I1s |) of the �s-highest priority applicants and rejects the remaining ones. Let
A1

s denote the set of students whom school s has tentatively accepted at this step.
• Step t>1: Each student, who is rejected at step t − 1, applies to her most preferred
acceptable school among those which have not yet rejected her (if any). If a student
does not have any remaining acceptable school, then she remains unmatched. Each
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school s considers the set At−1
s ∪ I ts, where I ts are its new applicants at this step,

and tentatively accepts min(qs, |At−1
s ∪ I ts|) of the �s-highest priority applicants and

rejects the remaining ones. Let At
s denote the set of students whose school s has

tentatively accepted at this step.

The algorithm stops when no student is rejected. The tentative acceptances become final
at this step. Let GS denote this mechanism. Given k ∈ {1, ..., |S|}, the constrained version
GSk of the Gale-Shapley mechanism GS is the mechanism that assigns to each problem
(P,�, q) the matching GS(P k,�, q). That is, GSk(P,�, q) = GS(P k,�, q).

Serial Dictatorship. When schools have the same priority order, we call the Gale-Shapley
mechanism the serial dictatorship mechanism.6 Let SD denote this mechanism. The outcome
of this mechanism can be computed via the following simplified process. Students move in
sequence following the common priority order. The first student picks her most preferred
acceptable school. The next student picks her most preferred acceptable school among the
remaining ones, and so on. Given k ∈ {1, ..., |S|}, the constrained version SDk of the Serial
Dictatorship mechanism SD is the mechanism that assigns to each problem (P,�, q) the
matching SD(P k,�, q). That is, SDk(P,�, q) = SD(P k,�, q).

First-Preference-First. The schools are exogenously divided into two disjoint subsets Sfpf

and Sep such that Sfpf ∪ Sep = S. The set Seq is a set of equal-preference schools and
Sfpf is a set of first-preference-first schools. The First-Preference-First mechanism (FPF)
assigns to each problem (P,�, q), the matching GS(P, �̂, q) where �̂ is obtained as follows.
The priority order of each equal-preference school is maintained intact while the priority
order of each first-preference-first school is adjusted according to the rank that students
have assigned to it. Formally, the priority profile �̂ is obtained as follows:

1. for each equal-preference school s ∈ Sep, �̂s =�s and
2. for each first-preference-first school s ∈ Sfpf , �̂s is defined as follows. Let I1(s) be the

set of students who have ranked school s first under P , I2(s) the set of students who have
ranked school s second under P , and so on. Note that we count the ranking of ∅ as well.

• For each `, k ∈ {1, . . . , |S|+1} such that ` > k and each students i, j such that
i ∈ Ik(s) and j ∈ I`(s), i �̂s j.
• For each k ∈ {1, . . . , |S|+1} and each i, j ∈ Ik(s), i �̂s j if and only if i �s j.

Let FPF denote this mechanism. Given k ∈ {1, ..., |S|}, the constrained version FPF k of
the First-Preference-First mechanism FPF is the mechanism that assigns to each problem
(P,�, q) the matching FPF (P k,�, q). That is, FPF k(P,�, q) = FPF (P k,�, q).

6This is a slight abuse of our definition since the domain of a mechanism is the set of all problems — including
problems where schools have different priorities.
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Boston. Until 2005, the Boston public school system was using an immediate acceptance
mechanism called the Boston mechanism (Abdulkadiroğlu and Sönmez, 2003). This mecha-
nism assigns to each problem (P,�, q), the matching as described in the following algorithm.

• Step 1: Each student applies to her most preferred acceptable school (if any). Each
school s, considers its applicants at the first step denoted as I1s and immediately
accepts min(qs, |I1s |) of the �s-highest priority applicants and rejects the remaining
ones. For each school s, let q1s = qs−min(qs, |I1s |) denote its remaining capacity after
this step.
• Step t>1: Each student who is rejected at step t − 1, applies to her most-preferred
acceptable school among those who have not yet rejected her (if any). Each school
s considers its new applicants I ts at this step and immediately accepts min(qt−1s , |I ts|)
of the �s-highest priority applicants and rejects the remaining ones. For each school
s, let qts = qt−1 −min(qt−1s , |I ts|) denote its remaining capacity after this step.

The algorithm stops when every student is either accepted at some step or has applied
to all of her acceptable schools. Let β denote this mechanism. Given k ∈ {1, ..., |S|}, the
constrained version βk of the Boston mechanism β is the mechanism that assigns to each
problem (P,�, q) the matching β(P k,�, q). That is, βk(P,�, q) = β(P k,�, q).

Remark. In the (algorithm of the) Boston mechanism, students applying to the same school
at each step have assigned the same rank to it. Therefore, students applying to a school at
a given step of the algorithm rank this school higher than those applying to it at any step
after. In particular, no student could be rejected by a school while another student, who has
assigned a lower rank to it, is accepted by this school. Thus, the Boston mechanism is a
First-Preference-First mechanism where every school is a first-preference-first school. This
result follows from the Proposition 2 of Pathak and Sönmez (2008).

Chinese parallel. Chen and Kesten (2017) describe a parametric mechanism that many Chi-
nese provinces have been using. The parameter e ≥ 1 is a natural number. For each problem
(P,�, q), the outcome is a sequential application of constrained GS. In the first round, the
matching is final for students who are matched under GSe(P,�, q), while unmatched stu-
dents proceed to the next round. In the next round, each school reduces its capacity by the
number of students assigned to it in the last round, each matched student replaces her pref-
erences with a preference relation where she finds no school acceptable and the unmatched
students (in the previous round) are matched according to GS2e for the reduced capacities
and the new preference profile. The process continues until either no school has a remaining
seat or no unmatched student finds a school with a remaining seat acceptable. Let Ch(e)

denote this mechanism.7

7This definition of the Chinese parallel mechanisms is given only for the symmetric version where each round
has the same length e. See Chen and Kesten (2017) for details.
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2.2. Comparison criteria. We start with the criterion introduced by Chen and Kesten
(2017). Broadly, it is a problem-by-problem comparison such that mechanisms are compared
by the set inclusion of problems where they are stable.

Definition 1. (Chen and Kesten, 2017). Mechanism ϕ′ is more fair by stability than ϕ
if (i) at each problem where ϕ is stable, ϕ′ is also stable and (ii) there exists a problem where
ϕ′ is stable but ϕ is not.

There are two cases in which mechanisms cannot be compared using fairness by stability.
Case 1: there are two problems such that in one problem, one mechanism is stable but
not the second mechanism, and in the second problem, the second mechanism is stable but
not the first one. Case 2: two mechanisms have the same set of problems where they are
unstable. We illustrate the second case in a restricted domain of preferences. Indeed, for
certain problems that we encounter in real life, all mechanisms described above are likely to
induce unstable outcomes, and the comparisons therefore are driven by some less relevant
problems. Consider the high school admissions problem in Chicago8 where schools have a
common priority (constructed from student’s composite scores) and where students form
block preferences as illustrated in the following example.

Example 1 (Tier preferences). Consider a problem with n students and m schools such that
for each s, s′ ∈ S, �s=�s′. We assume that students have tier preferences. The set S of
schools is partitioned into two sets S1, S2. Each student i prefers each school in S1 to each
school in S2.9 We assume that each student finds each school acceptable and n >

∑
s qs.

Whenever |S1| ≥ k, no student ranks a school in S2 among the top k acceptable schools.
Any individually rational and k-constrained ranking mechanism has a blocking student. In-
deed, if every student reports her preferences truthfully, then some students are unmatched
while seats at schools in S2 are unassigned.

However, we can still distinguish different constrained Gale-Shapley mechanisms by count-
ing the number of blocking students within this preference domain. For example, suppose
that students have the same ranking over all schools in S1 and we compare GSk−1 and GSk.
A student is a blocking student if and only if she is unmatched, and GSk matches strictly
more students than GSk−1. Thus GSk has fewer blocking students than GSk−1 does.

While this example is simplified to illustrate the fact that fairness by stability might not be
able to distinguish the mechanisms that we study in real-life instances, all that is necessary
for the result is that many students rank a subset of schools such that they exhaust the
listing constraint, and such that these schools do not have enough seats to accommodate all
these students. This example motivates the following definition.
8See Bonkoungou and Nesterov (2021) for details on school admissions in Chicago.
9Coles et al. (2013) observed that the academic job market has this structure and referred to it as block-
correlated preferences.
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Definition 2. A mechanism ϕ′ is more fair by counting (the number of blocking students)
than a mechanism ϕ if (i) for each problem, there are at least as many blocking students of
the outcome of ϕ as there are of the outcome of ϕ′, and (ii) there is a problem where there
are more blocking students of the outcome of ϕ than the outcome of ϕ′.

Fairness by counting is not logically related to fairness by stability, but the first can be
complementary to the second. If mechanism ϕ′ is more fair by counting than ϕ, then for
each problem where ϕ induces a stable matching, i.e., there is no blocking student, ϕ′ also
necessarily induces a stable matching. In addition, in some cases, in each problem where ϕ′

and ϕ are not stable, ϕ may have less number of blocking students than ϕ.

3. Comparisons of Mechanisms

In this section, we compare mechanisms according to the two fairness criteria introduced.
Our main result with fairness by counting is a strengthening of the comparison between
different constraints of the Gale-Shapley mechanism. We first illustrate the intuition using
the example below.

Example 2. Let I = {i1, . . . , i5} and S = {s1, . . . , s4}. Let (P,�, q) be a problem where
each school has one seat, and the remaining components are specified as follows.

Pi1 Pi2 Pi3 Pi4 Pi5 �s1 �s2 �s3 �s4

s1 s1 s2 s3 s3 i3 i2 i1 i5

s2 s2 s1 s1 s4 i1 i4 i5
...

s3 s3 s3 s2
...

...
...

...

Let us compare the mechanisms GS2 and GS1. We have

GS2(P,�, q) =

(
i1 i2 i3 i4 i5

∅ s2 s1 ∅ s3

)
where student i1 is the unique blocking student for the matching under (P,�, q). Indeed, i1
is unmatched, finds s3 acceptable and has a higher priority at s3 than i5. Let us shorten the
reported list only for student i2. Then,

GS2(P 1
i2
, P−i2 ,�, q) =

(
i1 i2 i3 i4 i5

s1 ∅ s2 ∅ s3

)
.

As a result of this replacement, there are three types of students, given their status in the
previous matching. First, student i2 — who was matched — became a blocking student.
Second, student i1 — who was a blocking student — is not a blocking student for the new
matching. Finally, student i4 is a new blocking student.
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The intuition of this result is that by shortening the schools listed by student i2, she is
worse off while the other students are weakly better off. First, she is a blocking student for
the new matching. Second, student i1 is not a blocking student for the new matching, though
she was a blocking student for the old matching. But a new blocking student appears so there
are two blocking students in total.

This example turns out to be a general pattern. When students shorten the list, the set of
blocking students changes, but the size of this set never decreases. By sequentially applying
this argument to all students, we get the following result.10

Theorem 1. Let there be at least two schools and `, k integers such that |S|> k > ` ≥ 1.
(i) The constrained Gale-Shapley mechanism GS` is more fair by stability than the con-
strained Gale-Shapley mechanism GSk, and
(ii) the constrained Gale-Shapley mechanism GS` is more fair by counting than the con-
strained Gale-Shapley mechanism GSk.

Statement (i) easily follows from statement (ii). The proof of the latter is in the appendix.
In the following Proposition, we show that the two fairness notions do not explain many
changes that followed the 2007 reform in the UK, as the constrained First-Preference-First
mechanism is not comparable to the constrained Gale-Shapley mechanism according to this
criterion.

Proposition 1. Let there be at least seven schools and at least five students and let k > 3.
The constrained First-Preference-First mechanism FPF k and the constrained Gale-Shapley
mechanism GSk

(i) are not comparable via fairness by stability, and
(ii) are not comparable via fairness by counting.

We prove both statements using the following example.11

Example 3. Let I = {i1, . . . , i7} and S = {s1, . . . , s5}. Let school s3 be the only first-
preference-first school. Let (P,�, q) be a problem where each school has one seat and the

remaining components are specified as follows. (The sign
... indicates that the remaining part

is arbitrary.)

10We are very grateful to a referee for suggesting a simple technique for proving this result.
11Example where FPF k has blocking students while GSk does not is immediate and omitted. Besides, βk

is a special case of FPF k.
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Pi1 Pi2 Pi3 Pi4 Pi5 Pi6 Pi7 �s1 �s2 �s3 �s4 �s5

s1 s1 s4 s1 s2 s1 s5 i4 i5 i3 i1 i7

s2 s3 s3 s2 s1 s2 s1
...

... i1 i6
...

s3 ∅ ∅ s3 s3 s5 s2 i2 i3

s4 ∅ ∅ s3 ∅ ...
...

∅ s4

∅
The outcomes of the constrained First-Preference-First FPF 4 and the constrained Gale-

Shapley GS4 at (P,�, q) are as follows:

FPF 4(P,�, q) =

(
i1 i2 i3 i4 i5 i6 i7

s4 ∅ s3 s1 s2 ∅ s5

)
,

GS4(P,�, q) =

(
i1 i2 i3 i4 i5 i6 i7

s3 ∅ s4 s1 s2 ∅ s5

)
.

The matching FPF 4(P,�, q) is stable.12 However, the matching GS4(P,�, q) is not stable.
Indeed, the pair (i6, s4) blocks this matching because student i6 is unmatched and finds school
s4 acceptable, but student i3 is matched to s4 while i6 �s4 i3. The intuition is that the
constraint in GS shortened the chains of the rejections needed to reach a stable matching
in the Gale-Shapley algorithm. For example, student i3 is temporarily matched to school s4
at some step of the algorithm. At the student-optimal stable matching for (P,�, q), school
s4 is assigned to student i1. However, we need an application of student i1 at that school
to displace student i3 from s4. This does not occur under GS4 because no student initiates
the rejection chain. However, under FPF 4, the application of student i2 at school s3 causes
the rejection of student i1 at s3 (student i2 has ranked it higher than i1 and school s3 is a
first-preference-first school). This is the rejection needed to reach the student-optimal stable
matching.

This example illustrates how the constrained GS mechanism has shortened the chains
needed to reach a stable matching. It is well known that this type of chain leads to un-
ambiguous welfare losses. Each student in the chain is worse off, and all other students
are unaffected (Kesten, 2010).13 However, under the Boston mechanism, (where all schools
are first-preference-first schools) there is no such chain, and thus the constrained Boston
mechanism can be compared to the constrained Gale-Shapley mechanism.

Theorem 2. Let there be at least two schools and an integer such that |S|≥ k > 1.
12This matching is both the student-optimal and the school-optimal stable matching.
13These chains are initiated by the so-called interrupters. These are students who initiate chains of rejections
that return to them (Kesten, 2010).
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(i) The constrained Gale-Shapley mechanism GSk is more fair by stability than the con-
strained Boston mechanism βk, and

(ii) the constrained Gale-Shapley mechanism GSk is not comparable to the constrained
Boston mechanism βk by the criterion of fairness by counting when k > 2 and there are at
least seven students and five schools.

The proof of (i) is in the appendix and the following counterexample proves point (ii).

Example 4 (Constrained Boston and constrained Gale-Shapley). Let n ≥ 7, I = {i1, ..., in}
and S = {s1, . . . , s5}. Let (P,�, q) be a problem where each school has one seat and the
remaining components are specified as follows.

Pi1 Pi2 Pi3 Pi4 Pi5 . . . Pin−1 Pin �s, s∈S

s1 s2 s3 s1 s1 s1 s1 s4 i1
...

...
... s4 s2 s2 s2 s5 i2

s5 s3 s3 s3
... i3

... s5 s5 s5 i4

∅ ∅ ∅ i5
...
in

The outcomes of β3 and GS3 for this problem are specified as follows:

β3(P,�, q) =

(
i1 i2 i3 i4 i5 . . . in−1 in

s1 s2 s3 s5 ∅ . . . ∅ s4

)
and

GS3(P,�, q) =

(
i1 i2 i3 i4 i5 . . . in−1 in

s1 s2 s3 s4 ∅ . . . ∅ s5

)
.

Let us compare the number of blocking students for the two matchings. On one hand, stu-
dent i4 is the only blocking student for β3(P,�, q). Indeed, the pair (i4, s4) blocks matching
β3(P,�, q) under (P,�, q). On the other hand, students i5, . . . , in−1 are all blocking stu-
dents of GS3(P,�, q) because they are unmatched, each of them prefers school s5 to being
unmatched, and has higher priority than in under �s5. Since n ≥ 7, there are at least two
blocking students of GS3(P,�, q). Therefore, there are more blocking students of GS3(P,�, q)
than β3(P,�, q). By Theorem 1, there is a problem where GS3 is stable but not β3.

Chen and Kesten (2017) have established that any (unconstrained) Chinese mechanism
Che is more stable than any Chinese mechanism Che

′ where e′ = ke for k ∈ N ∪ {∞}.
Their result and ours are similar but not corollary of each other. Indeed, Ch1 is the Boston
mechanism and Ch∞ is the Gale-Shapley mechanism such that for a problem (P,�, q), we
can write βk(P,�, q) = Ch(1)(P k,�, q) and GSk(P,�, q) = Ch∞(P k,�, q). Our results
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concern constrained Chinese mechanisms where both the parameter e and the constraint k
could be a source of blocking while in Chen and Kesten (2017), the parameter e is the only
source of blocking.

Let us now consider the Chinese mechanisms and fairness by counting. We use the fact
that Ch(1) = β and also note that for the problem (P,�, q) specified in Example 4, Ch(1)(P,�
, q) = β3(P,�, q) and Ch(3)(P,�, q) = GS3(P,�, q). According to the conclusion in Example
4, there are more blocking students for Ch(3)(P,�, q) than Ch(1)(P,�, q). According to Chen
and Kesten (2017), there is a problem where Ch(3) produces a stable outcome but Ch(1) does
not. We can formulate the following result.

Theorem 3. Let e,m ∈ N and m > 2.
(i) The Chinese mechanism Ch(me) is more fair by stability than the Chinese mechanism

Ch(e) (Chen and Kesten, 2017), and
(ii) the Chinese mechanism Ch(me) is not comparable to the Chinese mechanism Ch(e) by

the criterion of fairness by counting.

Remark. Two other notions, comparing mechanisms by the inclusion of blocking pairs and
blocking students, have also been studied by Doğan and Ehlers (2021). These criteria are
stronger than fairness by counting (if the set of blocking pairs or blocking students shrinks,
then the number of blocking students does as well) and will lead to negative results for our
comparisons. To see this, consider Example 4. In this example, (i5, s5) is a blocking pair for
SD4(P,�, q) but not for β4(P,�, q). In addition, (i4, s4) is a blocking pair for β4(P,�, q)
but not for SD4(P,�, q).

For the comparison between different constrained Gale-Shapley, consider Example 2 where
(i1, s3) is a blocking pair for GS2 but not GS1. In addition, (i2, s2) is a blocking pair for
GS1 but not GS2.

4. Stability and manipulability

In this section, we search for the relationship between blocking students and manipulat-
ing students, i.e., students who may benefit from misrepresenting their preferences to the
mechanisms as defined below.

Definition 3. Let ϕ be a mechanism. (i) Student i is a manipulating student of ϕ at
(P,�, q) if there is a preference relation P ′i such that

ϕi(P
′
i , P−i,�, q) Pi ϕi(P,�, q).

(ii) Mechanism ϕ is not manipulable at (P,�, q) if there is no manipulating student of ϕ
at (P,�, q).
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It turns out that there is a relationship between blocking students and manipulating stu-
dents for the constrained Boston mechanism and the constrained Gale-Shapley mechanism.

Theorem 4. Let k ≥ 1. For any problem (P,�, q),
(i) student i is a manipulating student of the constrained Boston mechanism βk at (P,�, q)

if and only if there is a school s such that s Pi β
k
i (P,�, q) and there are less than qs number

of students who ranked school s first and have higher priority than student i at s, and
(ii) every blocking student of the constrained Boston mechanism βk is a manipulating

student of βk. If the constrained Boston mechanism βk is not manipulable, then it is stable.

Note that there are instances where a student is not a blocking student of the constrained
Boston mechanism but a manipulating student. Consider Example 4 and suppose that there,
student in prefers school s1 first, s4 next, and s5 last. The preferences of the remaining
students are unchanged. Then under β3 student in is matched to school s5 and is not a
blocking student. However, she is matched to it by ranking school s4 first as in the example.
That is she is a manipulating student of β3.

Part (iii) of the theorem characterizes the set of manipulating students of the Boston
mechanism by those who missed schools that are not ranked first by “enough” students who
have higher priority than i at the school in question. Clearly, if student i is a blocking
student of βk(P,�, q), then there is a school s such that s Pi β

k
i (P,�, q) and a student j who

is matched to school s under βk(P,�, q) and has lower priority than i at s (or school s has
an unassigned seat under βk(P ;�, q)). Then, there are less than qs number of students who
ranked school s first and have higher priority than i at s. Otherwise, student j would not
have been matched to school s under βk(P,�, q) or no seat would have been left unassigned.
This is the reason why the set of manipulating students includes blocking students.

Interestingly, the relationship between blocking students and manipulating students as
stated in the theorem above is reversed in the constrained Gale-Shapley mechanism.

Theorem 5. Let k > 1. For any problem,
(i) every manipulating student of the constrained Gale-Shapley mechanism GSk is a block-

ing student of the mechanism. If the constrained Gale-Shapley mechanism GSk is stable,
then it is not manipulable, and

(ii) a student is a manipulating student of the constrained serial dictatorship mechanism
SDk if and only if it is a blocking student. The constrained serial dictatorship mechanism
SDk is not manipulable if and only if it is stable.

In general, the constrained Gale-Shapley mechanism may be unstable and not manipulable.
We illustrate this in the following example.
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Example 5. Let I = {i1, . . . , i4} and S = {s1, . . . , s4}. Let (P,�, q) be a problem where
each school has one seat and the following components are specified.

Pi1 Pi2 Pi3 Pi4 �s1 �s2 �s3 �s4

s1 s1 s2 s3 i1 i4 i3
...

... s2 s3 s2
... i3 i2

s3
...

... i2 i4

∅ i1 i1

Let us consider the constrained Gale-Shapley mechanism GS2. We have

GS2(P,�, q) =

(
i1 i2 i3 i4

s1 ∅ s2 s3

)
.

This matching is not stable at (P,�, q) because student i2 is unmatched, finds school s3 ac-
ceptable while student i4 is matched to it and i2 �s3 i4. We claim that GS2 is not manipulable
at (P,�, q). Only student i2 could benefit from misrepresenting her preferences to the mech-
anism GS2 because each of the other students is matched to her most preferred school. Let
P s3
i2

be a preference relation where student i2 has ranked only school s3 acceptable. Then,

GS2(P s3
i2
, P−i2 ,�, q) =

(
i1 i2 i3 i4

s1 ∅ s3 s2

)
,

that is, student i2 remains unmatched even by ranking school s3 first. (It is easy to verify that
any other strategy also leaves i2 unmatched.) Therefore, GS2 is not manipulable at (P,�, q).
The intuition is that this ranking initiates a chain of rejections which returns to this student.
Student i2 becomes a so-called “interrupter” when she ranks school s3 first (Kesten, 2010).

The contrasting results between the constrained Boston mechanism (Theorem 4 (i)) and
the constrained Gale-Shapley (Theorem 5 (i)) can be traced back to the immediate versus
deferred acceptance features and the constraint. By the deferred acceptance feature, students
who are matched are neither blocking students nor manipulating students of the constrained
Gale-Shapley mechanism. Blocking students and manipulating students are all students
for whom the constraint is binding. That is, they are unmatched and have more acceptable
schools than the ranking constraint. Because of the deferred acceptance feature, the priorities
matter when a student contemplates a manipulation. No priority is violated for schools
ranked within the constraint. If no student’s priority is violated in any school that she
has missed, then she cannot obtain a seat at any of these schools by ranking it within the
constraint. To understand this conclusion, note that for any unmatched student who replaces
one acceptable school with a school where her priority is not violated, the original matching
remains stable under the new problem. Since she is unmatched in a stable matching, she



17

βk not manipulable

βk stable

GSk stable

GSk not manipulable

Figure 1. Set inclusion of prob-
lems for GSk and βk.

GSk stable
GSk not
manipulable

GSk+1 stable GSk+1 not
manipulable

Figure 2. Set inclusion of prob-
lems for GSk and GSk+1.

will be unmatched in any other stable matching of the new problem (Roth, 1986). Then, all
manipulating students are also blocking students.

These results have important implications for the relation between manipulability and
stability. To see this, suppose that there is no manipulating student of the constrained
Boston mechanism βk. Then, by Theorem 4 (i), there is no blocking student for βk(P,�, q).
Since βk is individually rational, then βk(P,�, q) is stable. Suppose now that there is
no blocking student for GSk(P,�, q). Since GSk is individually rational, this means that
GSk(P,�, q) is stable. Then, by Theorem 5 (i), there is no manipulating student of GSk.
We summarize these results in the following Figures 1 and 2.

The manipulation strategy under the constrained GS is to include an unlisted acceptable
school in the list. But when the constrained GS is stable, all the seats of such a school are
assigned to higher-priority students, and such manipulation does not help. This implies that
constrained the serial dictatorship mechanism is non-manipulable and stable for the same
set of problems.

Proposition 2. Let (P,�, q) be a problem and k > 1. If the constrained First-Preference-
First mechanism FPF k is stable, then the constrained Gale-Shapley mechanism GSk is not
manipulable.

The above proposition is a surprising interplay between the two concepts for the com-
pared mechanisms. Note that the constrained First-Preference-First mechanism and the
constrained Gale-Shapley mechanism are not comparable via manipulability (Bonkoungou
and Nesterov, 2021) and via fairness by stability (Example 3). However, if at some profile
(P,�, q), FPF k is stable (while GSk might not), then GSk is not manipulable at (P,�, q).

5. Conclusions

In response to various concerns, many school districts around the world have recently
reformed their admissions systems. The reforms essentially contain two major changes.
First, they replaced the immediate acceptance procedure (as in the Boston mechanism) with
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Gale-Shapley’s student-proposing deferred acceptance procedure while maintaining ranking
constraints. Second, some school districts kept using the Gale-Shapley mechanism but ex-
tended the number of schools each student could report. Anecdotal evidence points to the
vulnerability to manipulation and fairness as reasons for these reforms. We showed that the
immediate acceptance procedure has weakly more manipulating students than blocking stu-
dents and the reverse for Gale-Shapley’s deferred acceptance procedure. We demonstrated
that extending ranking constraints in the Gale-Shapley mechanism led to fewer blocking
students.

The fact that constrained Gale-Shapley has relatively more blocking students (than it
has manipulating students) suggests that in theory fairness of this mechanism might be of
stronger concern than manipulability. Simultaneously, relaxing the constraint in this mech-
anism is guaranteed to decrease the number of blocking students. Whether this theoretical
fact had any practical relevance for the reforms under consideration is an open question and
requires further empirical research.

Overall, we found that all but some of the UK reforms adopted more fair matching mech-
anisms by stability. More specifically, the reform in the UK, where a constrained first-
preference-first mechanism was replaced by a constrained Gale-Shapley mechanism with the
same constraint, did not adopt a more fair matching mechanism by stability. However, we
showed that the reform improved the system in at least one dimension (Proposition 2).

In addition, a few reforms can be justified using the new criterion, fairness by counting,
which we explored in this paper. These reforms took place in Chicago (2010), in Ghana
(2007, 2008), in Newcastle (2010), and in Surrey (2010). The other reforms in Chicago
(2009), Denver (2012), thirteen provinces in China, and about sixty cities in the UK did not
adopt more fair mechanisms by counting, which is not too surprising, since the new criterion
of fairness by counting is a strong criterion for evaluating the reforms on the unrestricted
domain of preferences. A promising future direction may be to investigate the particular
preference patterns of these reforms on more restricted domains, and complement theoretical
findings using empirical and computational methods.

References
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Appendix: Proofs

To simplify the exposition we divide the appendix into three subsections. In each subsec-
tion, we order the results in logical order. All mechanisms that we consider are individually
rational. We only consider blocking pairs to check for (the violation of) stability. We first
present a useful lemma.

Lemma 1 (Rural hospital theorem, Roth, 1986). Given a problem, let ν and µ be two stable
matchings. Then,

(i) the same set of students are matched under ν and µ, and
(ii) each school is matched to the same number of students under ν and µ, and every school

which has an empty seat at one stable matching is matched to the same set of students under
all stable matchings.

Appendix A: Proofs of Theorem 4 (i), Theorem 2 (i), and Proposition 2.

Proof of Theorem 4 (i). Suppose that student i is a manipulating student of βk at (P,�, q).
Then there is P ′i such that

(1) βk
i (P

′
i , P−i,�, q) Pi β

k
i (P,�, q).

Since βk is individually rational, then βk
i (P,�, q) Ri ∅ and together with Equation 1, we

have βk
i (P

′
i , P−i,�, q) = s for some school s ∈ S. Then student i did not rank school s

first under Pi. Suppose that there are at least qs students who ranked school s first and
have higher priority than student i under (P,�, q). Then all seats of school s would have
been allocated in the first step of the immediate acceptance algorithm to some students who
ranked school s first and have higher priority than student i. Then, βk

i (P
′
i , P−i,�, q) 6= s,

which is a contradiction. Therefore, there are less than qs number of students who ranked
school s first and have higher priority than student i at school s.

Let (P,�, q) be a problem, i a student, and s a school, and suppose that s Pi β
k(P,�, q)

and that there are less than qs students who ranked school s first and have higher priority
than student i at school s. Thus βk(P s

i , P−i,�, q) = s and that student i is manipulating
student of βk at (P,�, q). �

Proof of Proposition 2. We call on to two claims.

Claim 1. Suppose that student i is matched to school s under GSk(P,�, q) and let P s
i be

a preference relation where she has ranked only school s as acceptable. Then student i is
matched to school s under GSk(P s

i , P−i,�, q).

By Roth (1982), GSi(P
k,�, q) = s implies that GSi(P

s
i , P

k
−i,�, q) = s. We know that

(P s
i )

k = P s
i . Thus, GSk

i (P
s
i , P−i,�, q) = s.
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Claim 2 (Pathak and Sönmez, 2013). Suppose that student i is a manipulating student of
GSk at (P,�, q). Then she is unmatched under GSk(P,�, q).

Suppose that µ = FPF k(P,�, q) is stable at (P,�, q). By Claim 2 every matched student
under GSk(P,�, q) is not a manipulating student of GSk at (P,�, q). It is enough to show
that no unmatched student under GSk(P,�, q) has a profitable misrepresentation. Because
GSk is individually rational, by Claim 1, we further need to restrict ourselves to manipulation
by top-ranking schools. Since µ is stable at (P,�, q), we claim that it is also stable at
(P k,�, q). Since GSk is individually rational, we need to check that there is no blocking
pair. Suppose, to the contrary, that a pair (i, s) is a blocking pair for µ under (P k,�, q).
Then, s P k

i µ(i) and either (i) school s has an empty seat under µ or (ii) there is a student j
such that µ(j) = s and i �s j. Note that s P k

i µ(i) implies that s Pi µ(i). Therefore, (i, s) is
also a blocking pair for µ under (P,�, q), thus contradicting our assumption that µ is stable
at (P,�, q). Therefore µ is stable at (P k,�, q). Since GS(P k,�, q) is the student-optimal
stable matching under (P k,�, q),

(2) for each student i, GSi(P
k,�, q) Rk

i µ(i).

By Lemma 1 the same set of students are matched under µ and GS(P k,�, q). Let i be
a student and s a school and suppose that i is unmatched under GS(P k,�, q) and that
s Pi GSi(P

k,�, q). Then, student i is also unmatched under µ. Thus, s Pi µ(i) = ∅. Because
µ is stable at (P,�, q) every student in µ−1(s) has higher priority than i under �s. Let P s

i

denote a preference relation where i has ranked only school s acceptable. Since µ is stable at
(P k,�, q) it is also stable at (P s

i , P
k
−i,�, q). By Lemma 1, the set of matched students is the

same at all stable matchings. Thus, student i is also unmatched under GS(P s
i , P

k
−i,�, q).

By Claim 1, there is no preference relation P ′i such that GSk
i (P

′
i , P−i) = s. Thus, GSk is not

manipulable at (P,�, q).
�

Proof of Theorem 2 (i). The Boston mechanism is a special case of the First-Preference-First
mechanism when every school is a first-preference-first school. Suppose that βk(P,�, q) is
stable at (P,�, q). By equation 2, each student finds the outcome GSk(P,�, q) at least
as good as βk(P,�, q) under P k. We also know that the Boston mechanism is Pareto
efficient, that is, for each problem, there is no other matching that each student finds at
least as good as its outcome (Abdulkadiroğlu and Sönmez, 2003). Therefore, the matching
βk(P,�, q) = β(P k,�, q) is Pareto efficient under P k. Thus, GSk(P,�, q) = βk(P,�, q) is
stable at (P,�, q).

We construct a problem where GSk is stable but not βk. Since there are at least two
schools and more students than schools, let s1, s2 be two distinct schools and i1, i2 and i3
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three students. Let (P,�, q) be a problem where each school has one seat and the remaining
components are specified as follows.

Pi 6=3 P3 �s∈S

s1 s2 i1

s2 s1 i2

∅ ∅ i3
...

Since k ≥ 2, GSk(P,�, q) = GS(P,�, q) is stable at (P,�, q). However, the matching

βk(P,�, q) =

(
i1 i3 i 6= 1, 3

s1 s2 ∅

)
is not stable because the pair (i2, s2) blocks it under (P,�, q).

�

Appendix B: Proof of Theorem 1 (ii).

Lemma 2. Let N be a subset of students and µ = GS(P `
N , P

k
−N ,�, q). Any blocking student

for µ under (P,�, q) is unmatched.

Proof. We prove it by the contradiction. Suppose, to the contrary, that student i is a blocking
student for µ under (P,�, q) such that µ(i) = s for some school s. Then, there is a school s′

such that s′ Pi µ(i) and either (i) |µ−1(s′)|< qs′ or (ii) there is a student j such that µ(j) = s′

and i �s′ j. Since µ(i) = s, school s is one of the top x acceptable schools under Pi where
x = ` if i ∈ N and x = k if x /∈ N . Thus s′ P x

i µ(i) = s and (i, s′) is a blocking pair of µ
under (P `

N , P
k
−N ,�, q), contradicting the stability of µ under (P `

N , P
k
−N ,�, q).

�

Proof of Theorem 1 (ii). We call on to the sequential version of McVitie and Wilson (1970)
of the deferred acceptance algorithm. This is a version where students apply one at a time
according to a predetermined order such that in each step the highest-ordered student among
the ones whose applications have not yet been tentatively accepted applies.

The idea of the proof is to consider close ranking constraints k−1 and k, where k > 1, and
replace students’ preference relations in P k−1 with the ones in P k. Let N ( I be a proper
subset of I and i /∈ N . Suppose that starting from P k−1 we have replaced all the preferences
of students in N by their preferences in P k and define P̂ = (P k

N , P
k−1
−N ). Note that N may

be empty. Next we consider student i: from P̂ we replace her preference relation P k−1
i by

P k
i . Let ν = GS(P k−1

i , P̂−i,�, q) and µ = GS(P k
i , P̂−i,�, q).
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If student i has less than k schools acceptable under Pi or is matched under ν, of course
to one of her top k − 1 most preferred schools, then µ = ν and both matchings have the
same number of blocking students. Without loss of generality suppose that student i has
at least k schools acceptable under Pi and ν(i) = ∅. Note that student i has applied to all
her first k − 1 acceptable schools in the algorithm for ν. Let s denote her k’th acceptable
school under P k

i . The algorithm for µ is a continuation of the one for ν by letting i apply to
school s and completing the subsequent sequences of applications and rejections. Consider
the following possible pointing sequences starting from the step at which student i applied
to school s:

(3) i→ s→ i1 → s1 → i2 → s2 → ...in → sn → in+1 → ∅,

(4) i→ s→ i1 → s1 → i2 → s2 → ...in → sn → in+1 → sn+1

where the pointing i′ → s′ means that student i′ applies to school s′ and s′ → i′ means that
school s′ rejects the application of student i′. In the sequence in equation 3, the pointing
in+1 → ∅ means that student in+1 applied to all her acceptable schools and thus remained
unmatched. In the sequence in equation 4, the pointing in+1 → sn+1 for which school sn+1

does not point to any student means that school sn+1 did not reject any student after in+1’s
application. Note that there might be cycles and some students could appear several times
in each sequence.

Let α and β denote the number of blocking students of µ and ν respectively, among the
students in I \ {i, i1, . . . , in+1} and x and y the number of blocking students of µ and ν

respectively, among the students in {i, i1, . . . , in+1}.

Claim. β ≥ α, and [x = y or x = y − 1].

We first prove that x = y or x = y − 1. Note first that all students in {i, i1, . . . , in+1} \
{i, in+1} are matched under µ and ν. By Lemma 2 they are not blocking students of µ and
ν. Hence, the comparison of the number of blocking students of µ and ν among the students
in {i, i1, . . . , in+1} concerns students i and in+1. We consider two cases:

Case 1: i = in+1. If student i is not a blocking student of ν, then school s does not have
an empty seat under ν and for each student j ∈ ν−1(s), j �s i. The sequence is the one in
equation 3 but in simple version i→ s→ i→ ∅. Thus µ = ν and student i is not a blocking
student of µ. Thus x = y.

Case 2: i 6= in+1. In this case i1 6= i. We claim that student i is a blocking student of ν
but not a blocking student of µ. The reason is that school s has accepted i’s application and
rejected student i1. Thus i �s i1 and µ(i) = s. Since ν(i) = ∅ and ν(i1) = s, student i is a
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blocking student of ν. Since µ(i) = s, by Lemma 2, she is not a blocking student of µ. Note
now that student in+1 is matched under ν. Thus by Lemma 2 she is not a blocking student
of ν. Therefore, 0 = x = y − 1 if in+1 is not a blocking student of µ and 1 = x = y if in+1 is
a blocking student of µ. Overall, x = y or x = y − 1.

We now prove that β ≥ α. We prove the claim that there is no student in I\{i, i1, . . . , in+1}
who is not a blocking student of ν but a blocking student of µ. Let j /∈ I\{i, i1, . . . , in+1} and
note that ν(j) = µ(j). If student j is matched under ν, then she is not a blocking student of
ν and µ. Suppose that ν(j) = ∅, and for a contradiction, that she is not a blocking student
of ν but a blocking student of µ under (P,�, q). There is a school s′ such that s′ Pj µ(j) and
either (i) school s′ has an empty seat under µ or (ii) there is a student j′ such that µ(j′) = s′

and j �s′ j
′. Consider (i). As above, school s′ has an empty seat under ν. Therefore, student

j is also a blocking student of ν, contradicting our assumption. Consider (ii). Suppose that
school s′ did not reject any student in any step from the step at which student i applies to
school s to the end. Then µ(j′) = ν(j′) = s′ and student j is also a blocking student of
ν. Suppose that school s′ has rejected a student j′′ such that ν(j′′) = s′. Since µ(j′) = s′,
then j′ �s′ j

′′. Thus j �s′ j
′′ and since ν(j′′) = s′, student j is a blocking student of ν,

contradicting again our assumption. Therefore there is no student who is simultaneously not
a blocking student of ν but a blocking student of µ under (P,�, q). Thus α ≥ β.

By this claim, α + y ≥ β + x. Therefore, ν has a weakly larger number of blocking
students than µ. Starting from N = ∅ and successively replacing students’ preferences in
any order we conclude that GS(P k−1,�, q) has weakly more number of blocking students
than GS(P k,�, q).

Finally, we describe a problem where the outcome of GS` has more blocking students
than the outcome of GSk. Let (P,�, q) be a problem where each school has one seat,
each student has k acceptable schools, and such that students have a common ranking of
schools. Then, GSk(P,�, q) = GS(P,�, q). Thus GSk(P,�, q) is stable at (P,�, q). Let s
be the school that students have ranked at the k’th position starting from the top. Since
there are more students than schools and k > `, at least one student is not matched under
GS`(P,�, q) and no student is matched to school s even though every student prefers it to be
unmatched. Therefore, there are more blocking students for GS`(P,�, q) than GSk(P,�, q)
under (P,�, q). �

Appendix C: Proof of Theorem 4 (ii), 5 (i), 5 (ii).

Proof of Theorem 4 (ii). Let i be a blocking student of µ = β(P k,�, q). There is a school
s such that the pair (i, s) blocks µ under (P,�, q). Then, s Pi µ(i) and either (a) school s
has an empty seat under µ or (b) there is a student j such that µ(j) = s and i �s j. We
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claim that student i did not rank school s first under Pi. Otherwise, school s has rejected
student i at the first step of the Boston algorithm under (P k,�, q). This is because k > 1

and the top-ranked schools are considered under βk. This contradicts the assumption that
school s has an empty seat or has accepted student j with i �s j. Let P s

i be a preference
relation where i has ranked school s first. Since s has an empty seat under βk(P,�, q) or
has accepted student j with i �s j, there are less than qs students who have ranked school s
first under P k and have a higher priority than i under �s. Therefore, βk

i (P
s
i , P−i,�, q) = s.

Since s Pi µ(i), i is a manipulating student of βk at (P,�, q). Finally, suppose that βk is
not manipulable at (P,�, q). Then, there is no manipulating student and thus, there is no
blocking student. Since βk is individually rational, then βk(P,�, q) is stable at (P,�, q).

Proof of Theorem 5 (i): We prove this part by contradiction. Suppose that student i is a
manipulating student of GSk at (P,�, q) but is not a blocking student of µ = GSk(P,�, q)
under (P,�, q). By Claim 2, i is unmatched under GSk(P,�, q). Let s be a school such
that s Pi µ(i). Then, |µ−1(s)|= qs and every student in µ−1(s) has higher priority than i

under �s. Let P s
i be a preference relation where i has ranked only school s as an acceptable

school. Since µ is stable at (P k,�, q), it is also stable at (P s
i , P

k
−i,�, q). This follows from

the fact that µ(i) = ∅ and that every student in µ−1(s) has higher priority than i under
�s. By Lemma 1, the set of unmatched students is the same under µ and GS(P s

i , P
k
−i,�, q).

Thus, i is also unmatched under GSk(P s
i , P−i,�, q). By Claim 1, there is no misreport by

which student i is matched to s. Since s has been chosen arbitrarily, i is not a manipulating
student of GSk at (P,�, q), a conclusion that contradicts our assumption. Therefore student
i is a blocking student of GSk(P,�, q) under (P,�, q). Finally, suppose that GSk(P,�, q)
is stable. Then, there is no blocking student, and thus a manipulating student of GSk at
(P,�, q). Hence, GSk is not manipulable at (P,�, q).

Proof of Theorem 5 (ii). By Theorem 5 (i), every manipulating student of SDk is a
blocking student of SDk(P,�, q). Let i be a blocking student of µ = SDk(P,�, q). Then at
i’s turn, there is no seat left among her top k acceptable schools. She is then left unmatched
while she has ranked a school s as acceptable and below the position k which still has a seat
available. Let P s

i be a preference relation where i ranks s first. Then SDk
i (P

s
i , P−i,�, q) = s.

Therefore, student i is a manipulating student of SDk at (P,�, q). �
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