ON THE RK-PREORDER ON C-CONES OF RK-MINIMAL ULTRAFILTERS

N.L. Polyakov

HSE University, 11 Pokrovksy Bulvar, Moscow, 109028, Russia e-mail: npolyakov@hse.ru

Many works in the theory of ultrafilters consider different (pre)orders on the set βX (of ultrafilters on the set X). Apparently, the Rudin-Keisler and Comfort preorders on $\beta \omega$ are most well studied, see, e.g., [1, 2, 3], but there are still many open problems in this area. In this paper we describe the Rudin-Keisler preorder on the lower cones of RK-minimal ultrafilters with respect to the Comfort preorder.

1 Basic definitions

For any set X the set of all subsets of X is denoted by $\mathscr{P}(X)$. An *ultrafilter* on X is a set $\mathfrak{u} \subseteq \mathscr{P}(X)$ such that

- 1. $\emptyset \notin \mathfrak{u};$
- 2. if $A \in \mathfrak{u}$ and $B \in \mathfrak{u}$, then $A \cap B \in \mathfrak{u}$;
- 3. if $A \in \mathfrak{u}$ and $A \subseteq B$, then $B \in \mathfrak{u}$;
- 4. $A \in \mathfrak{u}$ or $X \setminus A \in \mathfrak{u}$

for all $A, B \subseteq X$. The set of ultrafilters on X is usually denoted by βX and provided with a natural topology with the base

$$\{\{\mathfrak{u}\in \boldsymbol{\beta}X:A\in\mathfrak{u}\}:A\subseteq X\}.$$

This topological space is compact, Hausdorff, zero-dimensional and extremely disconnected. An ultrafilter $\mathfrak{u} \in \boldsymbol{\beta} X$ is *principal* if $\mathfrak{u} = \{A \subseteq X : a \in A\}$ for some $a \in X$. Principal ultrafilters on X are usually identified with elements

of X, so βX is considered as an extension of X (called a *Stone-Čech compactification* of X). For any function $f : X \to \beta Y$, the *ultrafiter extension* $\tilde{f} : \beta X \to \beta Y$ is defined by the formula

$$\widetilde{f}(\mathfrak{u}) = \{ S \subseteq Y : (\forall A \in \mathfrak{u}) \ (\exists a \in A) \ S \in f(a) \}$$

for all $\mathfrak{u} \in \boldsymbol{\beta} X$. We obtain an equivalent definition if we put

$$\widetilde{f}(\mathfrak{u}) = \{ S \subseteq Y : (\exists A \in \mathfrak{u}) \ (\forall a \in A) \ S \in f(a) \}.$$

The function \tilde{f} is the unique continuous (with respect to the natural topology) function from βX to βY which extends the function f. Considering functions $f: X \to Y$ as functions from X to βY with a range consisting of principal ultrafilters, we also have the definition of the ultrafilter extension $\tilde{f}: \beta X \to \beta Y$ for each function $f: X \to Y$.

The Rudin-Keisler preorder (or RK-preorder) on βX is the binary relation $\leq_{\rm RK} \subseteq \beta X \times \beta X$ defined by

$$\mathfrak{u} \leq_{\mathrm{RK}} \mathfrak{v} \Leftrightarrow f(\mathfrak{v}) = \mathfrak{u} \text{ for some } f: X \to X.$$

An ultrafilter $\mathfrak{u} \in \boldsymbol{\beta} X$ is called RK-*minimal* if it is non-principal and

$$\mathfrak{v} \leqslant_{\mathrm{RK}} \mathfrak{u} \Rightarrow \mathfrak{v}$$
 is principal or $\mathfrak{u} \leqslant_{\mathrm{RK}} \mathfrak{v}$

for any $v \in \beta X$. There are many different characterizations of RK-minimal ultrafilters, see [4], Theorem 9.6, and also [5]. In particular, a non-principal ultrafilter $u \in \beta \omega$ is RK-minimal if and only if it is a Ramsey ultrafilter and if and only if it is a quasi-normal ultrafilter.

The equivalence relation $\leq_{\rm RK} \cap \leq_{\rm RK}^{-1}$ is denoted by $\approx_{\rm RK}$. The equivalence class of an ultrafilter $\mathfrak{u} \in \boldsymbol{\beta} X$ with respect to the relation $\approx_{\rm RK}$ is called *a type* of ultrafilter \mathfrak{u} and is denoted by $\tau(\mathfrak{u})$, see [4]. The Rudin-Keisler preorder naturally extends to the quotient set $\boldsymbol{\beta} X/_{\approx_{\rm RK}}$: $\tau(\mathfrak{u}) \leq_{\rm RK} \tau(\mathfrak{v}) \Leftrightarrow \mathfrak{u} \leq_{\rm RK} \mathfrak{v}$ for all types $\tau(\mathfrak{u})$ and $\tau(\mathfrak{v})$ of ultrafilters \mathfrak{u} and \mathfrak{v} , respectively. Obviously, $\leq_{\rm RK}$ is a partial order on $\boldsymbol{\beta} X/_{\approx_{\rm RK}}$. Therefore, we call the relation $\leq_{\rm RK}$ on the set $\boldsymbol{\beta} X/_{\approx_{\rm RK}}$ the *Rudin-Keisler order* (or RK-*order*).

To define the Comfort preorder on βX we need some topological concepts. Let $\mathfrak{u} \in \beta X$. A point $y \in Y$ of a topological space (Y,T) is called the \mathfrak{u} -limit of a function $f : X \to Y$ if for any neighborhood U of y the set $\{x \in X : f(x) \in U\}$ belongs to \mathfrak{u} . The \mathfrak{u} -limit of a function f is denoted by the symbol \mathfrak{u} -lim f. A topological space (Y,T) is called \mathfrak{u} -compact if for any $f : X \to Y$ there exists \mathfrak{u} -lim $f \in Y$. The Comfort preorder $\leq_{\mathbb{C}}$ on βX is defined as follows: for all ultrafilters $\mathfrak{u}, \mathfrak{v} \in \beta X$, $\mathfrak{u} \leq_{\mathbb{C}} \mathfrak{v}$ iff any \mathfrak{v} -compact topological space (Y,T) is \mathfrak{u} -compact. It is well known that $\leq_{\text{RK}} \subseteq \leq_{\text{C}}$, and hence \approx_{RK} is a congruence of the structure $(\boldsymbol{\beta}X; \leq_{\text{C}})$. Thus, we can assume that the Comfort preorder is defined on $\boldsymbol{\beta}X/_{\approx_{\text{RK}}}$. More information can be found in the [2, 3].

The C-cone of an ultrafilter $\mathfrak{u} \in \boldsymbol{\beta} X$ is the set

$$\operatorname{Con}_{\mathcal{C}}(\mathfrak{u}) = \{ \tau(\mathfrak{v}) : \mathfrak{v} \in \beta X \land \mathfrak{v} \leq_{\mathcal{C}} \mathfrak{u} \}$$

An ultrafilter $\mathfrak{u} \in \boldsymbol{\beta} X$ is called C-*minimal* if it is non-principal and

 $\mathfrak{v} \leqslant_{\mathrm{C}} \mathfrak{u} \Rightarrow \mathfrak{v} \text{ is principal or } \mathfrak{u} \leqslant_{\mathrm{C}} \mathfrak{v}$

for any $\mathbf{v} \in \boldsymbol{\beta} X$. It is well known (see [2]) that if the type of ultrafilter $\mathbf{v} \in \boldsymbol{\beta} \omega \setminus \omega$ belongs to the C-cone of some RK-minimal ultrafilter $\mathbf{u} \in \boldsymbol{\beta} \omega$, then \mathbf{v} is a C-minimal ultrafilter. The inverse implication remains an open problem.

2 Main result

For all posets $\mathfrak{A} = (A, \leq_0)$ and $\mathfrak{B} = (B, \leq_1)$, their sum is the poset $\mathfrak{A} + \mathfrak{B} = (C, \leq_2)$, where $C = A \cup B'$, $A \cap B' = \emptyset$, $(A, \leq_2) = \mathfrak{A}$, $(B', \leq_2) \cong \mathfrak{B}$, and $a \leq_2 b$ for all $a \in A$ and $b \in B'$.

For any model \mathfrak{M} and ultrafilter $\mathfrak{u} \in \boldsymbol{\beta} X$, the ultrapower of \mathfrak{M} modulo \mathfrak{u} is denoted by $\prod \mathfrak{M}$.

For any limit ordinal α and non-decreasing sequence $\{\mathfrak{M}_{\beta}\}_{\beta<\alpha}$ of models in the same signature, the direct limit of $\{\mathfrak{M}_{\beta}\}_{\beta<\alpha}$ is denoted by $\lim_{\alpha\to\infty}\mathfrak{M}_{\beta}$.

For any poset \mathfrak{A} , ultrafilter $\mathfrak{u} \in \boldsymbol{\beta} X$, and ordinal α , define the *overbuilding ultralimit* olim of \mathfrak{A} of rank α modulo \mathfrak{u} by recursion on α :

i. $\lim_{\mathfrak{u},0}\mathfrak{A}=\mathfrak{A};$

ii. if $\alpha = \beta + 1$, $\lim_{\mathfrak{u},\beta} \mathfrak{A} = (A, \leqslant_0)$, and $\prod_{\mathfrak{u}} \lim_{\mathfrak{u},\beta} \mathfrak{A} = (B, \leqslant_1)$ then

$$\lim_{\mathfrak{u},\alpha}\mathfrak{A}=\lim_{\mathfrak{u},\beta}\mathfrak{A}+\mathfrak{B}$$

where \mathfrak{B} is the submodel of $\prod_{\mathfrak{u}} \underset{\mathfrak{u},\beta}{\operatorname{olim}} \mathfrak{A}$ with the universe $\{b \in B : b \cap A = \emptyset\}$;

iii. if α is a limit ordinal, then $\lim_{\mathfrak{u},\alpha}\mathfrak{A} = \lim_{\beta \to \alpha} \lim_{\mathfrak{u},\beta}\mathfrak{A}$.

This construction resembles the construction of a *limiting ultrapower* of a model (also called an *ultralit* of a model), but does not coincide with it. In particular, an overbuilding ultralimit of positive rank of a finite poset \mathfrak{A} is not isomorphic to \mathfrak{A} .

Denote the one-element poset $(1, \leq)$ by \mathfrak{O} .

Theorem 1. For any RK-minimal ultrafilter $\mathfrak{u} \in \boldsymbol{\beta}\omega$

$$(\operatorname{Con}_{\mathcal{C}}(\mathfrak{u}), \leq_{\operatorname{RK}}) \cong \lim_{\mathfrak{u},\omega_1} \mathfrak{O}$$

Sketch of proof. First, we establish the "ordinal stratification" of the Comfort preorder on $\beta \omega /_{\approx_{\mathrm{RK}}}$ (essentially introduced in [8, 9]). For any ultrafilter $\mathfrak{u} \in \beta \omega$ and ordinal α we define the sets $U_{\alpha}(\mathfrak{u}), U_{<\alpha}(\mathfrak{u}) \subseteq \beta \omega /_{\approx_{\mathrm{RK}}}$:

- i. $U_0(\mathfrak{u}) = \{\tau(0)\},\$
- ii. for $\alpha > 0$, we put $U_{<\alpha}(\mathfrak{u}) = \bigcup_{\beta < \alpha} U_{\beta}(\mathfrak{u})$ and

$$U_{\alpha}(\mathfrak{u}) = \{\tau(\widetilde{f}(\mathfrak{u})) : f \in (\mathbf{\beta}\omega)^{\omega} \text{ and } (\forall i < \omega) \, \tau(f(i)) \in U_{<\alpha}(\mathfrak{u}) \}.$$

We prove that for each ultrafilters $\mathfrak{u} \in \boldsymbol{\beta}\omega$

$$\operatorname{Con}_{\mathcal{C}}(\mathfrak{u}) = U_{<\omega_1}(\mathfrak{u}). \tag{1}$$

Next, we show that if an ultrafilter \mathfrak{u} is RK-minimal, then we can restrict ourselves to injective functions $f : \omega \to \beta \omega$ with a discrete range when constructing the sets $U_{\alpha}(\mathfrak{u})$. A set $W \subseteq \beta X$ is *discrete* if there is a partition $\{A_{\mathfrak{w}}\}_{\mathfrak{w}\in W}$ of X such that $A_{\mathfrak{w}} \in \mathfrak{w}$ for all $\mathfrak{w} \in W$. Let DF be a set of all injective functions $f : \omega \to \beta \omega$ with a discrete range. For any ultrafilter $\mathfrak{u} \in \beta \omega$ and ordinal $\alpha > 0$ we define the sets $V_{\alpha}(\mathfrak{u}), V_{<\alpha}(\mathfrak{u}) \subseteq \beta \omega/_{\approx_{\mathrm{RK}}}$:

i. $V_1(\mathfrak{u}) = \{\tau(\mathfrak{u})\},\$

ii.

for
$$\alpha > 1$$
, we put $V_{<\alpha}(\mathfrak{u}) = \bigcup_{\beta < \alpha} V_{\beta}(\mathfrak{u})$ and
 $V_{\alpha}(\mathfrak{u}) = \{\tau(\widetilde{f}(\mathfrak{u})) : f \in \text{DF and } (\forall i < \omega) \tau(f(i)) \in V_{<\alpha}(\mathfrak{u})\}.$

We prove that for any positive ordinal α and RK-minimal ultrafilter $\mathfrak{u} \in \boldsymbol{\beta}\omega$

$$U_{\alpha}(\mathfrak{u}) = V_{\alpha}(\mathfrak{u}) \cup \{\tau(0)\}.$$
(2)

Finally, we will need the fact that for all functions $f, g \in DF$ and ultrafilter $\mathfrak{u} \in \mathbf{\beta}\omega$

$$\widetilde{f}(\mathfrak{u}) \leqslant_{\mathrm{RK}} \widetilde{g}(\mathfrak{u}) \Leftrightarrow \{i < \omega : f(i) \leqslant_{\mathrm{RK}} g(i)\} \in \mathfrak{u}$$
(3)

(see, e.g., [10]).

Using the facts (1) – (3), the theorem can be easily proved by induction on α .

The equivalence relation $\leq_{\mathrm{C}} \cap \leq_{\mathrm{C}}^{-1}$ on $\boldsymbol{\beta}X/_{\approx_{\mathrm{RK}}}$ is denoted by \approx_{C} . For any $\mathfrak{u} \in \boldsymbol{\beta}X$, let $[\mathfrak{u}]_{\mathrm{C}} = \{\tau(\mathfrak{v}) : \mathfrak{v} \in \boldsymbol{\beta}X \text{ and } \tau(\mathfrak{v}) \approx_{\mathrm{C}} \tau(\mathfrak{u})\}$. It is easy to see that for any RK-minimal ultrafilter $\mathfrak{u} \in \boldsymbol{\beta}\omega$ and non-principal ultrafilter $\mathfrak{v} \leq_{\mathrm{C}} \mathfrak{u}$ we have: $\mathfrak{u} \leq_{\mathrm{RK}} \mathfrak{v}$ and, so,

$$[\mathfrak{v}]_{\mathcal{C}} \cup \{\tau(0)\} = \operatorname{Con}_{\mathcal{C}}(\mathfrak{u}).$$

Therefore, theorem 1 immediately entails the following corollary.

Corollary 1. Let $\mathfrak{u}, \mathfrak{v} \in \boldsymbol{\beta}\omega$. If \mathfrak{u} is RK-minimal and $\tau(\mathfrak{u}) \in [\mathfrak{v}]_{\mathcal{C}}$ then

$$([\mathfrak{p}]_{C}, \leqslant_{RK}) \cong \lim_{\mathfrak{u},\omega_{1}} \mathfrak{O}.$$

Discussion. Can the poset $\lim_{\mathbf{u},\omega_1} \mathfrak{O}$ be described more explicitly? Note, e.g., that $\lim_{\mathbf{u},\omega+1} \mathfrak{O}$ is isomorphic to the ultrapower of (ω, \leqslant) modulo \mathbf{u} where \leqslant is the natural ordering of ω . Are the posets $\lim_{\mathbf{u},\omega_1} \mathfrak{O}$ and $\lim_{\mathbf{v},\omega_1} \mathfrak{O}$ isomorphic for all RK-minimal ultrafilters $\mathbf{u}, \mathbf{v} \in \boldsymbol{\beta}\omega$? Let us call a C-minimal ultrafilter $\mathbf{v} \in \boldsymbol{\beta}\omega$ a normal C-minimal ultrafilter if $\tau(\mathbf{u}) \in [\mathbf{v}]_{\mathrm{C}}$ for some RK-minimal ultrafilter $\mathbf{u} \in \boldsymbol{\beta}\omega$. Is the statement inverse to Corollary 1 true? In other words, is it true that the condition "there exists an RK-minimal ultrafilter $\mathbf{u} \in \boldsymbol{\beta}\omega$ for which $([\mathbf{v}]_{\mathrm{C}}, \leqslant_{\mathrm{RK}}) \cong \lim_{\mathbf{u},\omega_1} \mathfrak{O}$ " exactly characterises normal C-minimal ultrafilters $\mathbf{v} \in \boldsymbol{\beta}\omega$?

References

- Blass A. R. The Rudin-Keisler ordering of P-points. Trans. Amer. Math. Sot. 179 (1973), 145–166.
- [2] García-Fereira S. Three orderings on $\beta(\omega) \setminus \omega^*$. Topology and its Applications 50, 3 (1990): 199–216.
- [3] García-Ferreira S. Comfort types of ultrafilters, Proc. Amer. Math. Soc. 120 (1994), 1251–1260.
- [4] Comfort W. W., Negrepontis S. The theory of ultrafilters. Springer, Berlin (1974).

- [5] Polyakov N. L. On the Canonical Ramsey Theorem of Erdős and Rado and Ramsey Ultrafilters. Dokl. Math. 108 (2023): 392–401.
- [6] Poliakov N. L., Saveliev D. I. On two concepts of ultrafilter extensions of first-order models and their generalizations. Logic, Language, Information, and Computation, Lecture Notes in Computer Science, 10388, eds. J. Kennedy, R. J. G. B. de Queiroz, Springer, Berlin, Heidelberg, 2017, 336–348.
- [7] Poliakov, N.L., Saveliev, D.I. On ultrafilter extensions of first-order models and ultrafilter interpretations. Arch. Math. Logic 60 (2021), 625–681.
- [8] Saveliev D.I.(joint work with Polyakov N.L.). Between the Rudin-Keisler and Comfort preorders. Report at the conference Ultramath, Pisa (2022).
- [9] Poliakov N. L., Saveliev D. I. Between the Rudin-Keisler and Comfort preorders. Report at the International Conference on Topology and its Applications, Nafpaktos (2023).
- [10] Booth D.D. Ultrafilters on a countable set. Ann. Math. Logic 2 (1970) 1–24.