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Many works in the theory of ultrafilters consider different (pre)orders on
the set BX (of ultrafilters on the set X). Apparently, the Rudin-Keisler and
Comfort preorders on fw are most well studied, see, e.g., [1, 2, 3], but there
are still many open problems in this area. In this paper we describe the
Rudin-Keisler preorder on the lower cones of RK-minimal ultrafilters with
respect to the Comfort preorder.

1 Basic definitions

For any set X the set of all subsets of X is denoted by Z(X). An
ultrafilter on X is a set u C (X)) such that

1. 0 ¢u

2. if Acuand B € u, then AN B € u;
3. if Acuand A C B, then B € u;

4. Acuor X\Acu

for all A, B C X. The set of ultrafilters on X is usually denoted by X and
provided with a natural topology with the base

{{uepBX :Acu}: AC X}

This topological space is compact, Hausdorff, zero-dimensional and extremely
disconnected. An ultrafilter u € BX is principal if u={A C X :a € A} for
some a € X. Principal ultrafilters on X are usually identified with elements
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of X, so BX is considered as an extension of X (called a Stone-Cech com-
pactification of X). For any function f : X — BY, the ultrafiter extension
f:BX — BY is defined by the formula

f)={SCY:(VAecu) (3ac A)S € fla)}

for all u € BX. We obtain an equivalent definition if we put

fw)={SCY:(3Acu)(Vac A)S € f(a)}.

The function fvis the unique continuous (with respect to the natural topol-
ogy) function from BX to BY which extends the function f. Considering
functions f : X — Y as functions from X to BY with a range consisting of
principal ultrafilters, we also have the definition of the ultrafilter extension
f:BX — BY for each function f: X — Y.

The Rudin-Keisler preorder (or RK-preorder) on BX is the binary rela-
tion <gx C BX x BX defined by

u<gg v < f(v) =u for some f: X — X.
An ultrafilter u € X is called RK-minimal if it is non-principal and
b <prx U = v is principal or u <grx v

for any v € B.X. There are many different characterizations of RK-minimal
ultrafilters, see [4], Theorem 9.6, and also [5]. In particular, a non-principal
ultrafilter u € Bw is RK-minimal if and only if it is a Ramsey ultrafilter and
if and only if it is a quasi-normal ultrafilter.

The equivalence relation <gg N <1§}1< is denoted by ~grk. The equivalence
class of an ultrafilter u € 3.X with respect to the relation ~ry is called a type
of ultrafilter u and is denoted by 7(u), see [4]. The Rudin-Keisler preorder
naturally extends to the quotient set BX/~xp: T(u) <k 7(v) & u <px v
for all types 7(u) and 7(v) of ultrafilters u and v, respectively. Obviously,
<grk is a partial order on BX/~,,. Therefore, we call the relation <gx on
the set BX/~py the Rudin-Keisler order (or RK-order).

To define the Comfort preorder on 3.X we need some topological concepts.
Let u € BX. A point y € Y of a topological space (Y,T) is called the
u-limit of a function f : X — Y if for any neighborhood U of y the set
{z € X : f(x) € U} belongs to u. The u-limit of a function f is denoted by
the symbol u-lim f. A topological space (Y, T) is called u-compact if for any
f X = Y there exists u-lim f € Y. The Comfort preorder <c on BX is
defined as follows: for all ultrafilters u,v € BX, u <¢ v iff any v-compact
topological space (Y, T) is u-compact.
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It is well known that <zgx C <, and hence =gk is a congruence of
the structure (BX; <c). Thus, we can assume that the Comfort preorder is
defined on BX/~p- More information can be found in the [2, 3].

The C-cone of an ultrafilter u € BX is the set

Cong(u) ={7(v) : v € BX Ao < u}.
An ultrafilter u € BX is called C-minimal if it is non-principal and
v <cu = v is principal or u <¢ v

for any v € BX. It is well known (see [2]) that if the type of ultrafilter
v € Bw \ w belongs to the C-cone of some RK-minimal ultrafilter u € Buw,
then v is a C-minimal ultrafilter. The inverse implication remains an open
problem.

2 Main result

For all posets A = (A,<o) and B = (B, <), their sum is the poset
A+B = (C,<s), where C = AUB', ANB' =0, (A, <o) =2, (B, <y) & B,
and a <sbforallae Aand b e B'.

For any model 9t and ultrafilter u € 3.X, the ultrapower of 2t modulo u
is denoted by [] 9.
u

For any limit ordinal o and non-decreasing sequence {9z }s-, of models
in the same signature, the direct limit of {9M3}s-, is denoted by éim M.
—a

For any poset A, ultrafilter u € X, and ordinal «, define the overbuilding
ultralimit olim of A of rank o modulo u by recursion on «a:

i. olignfll =,
i. ifa=p+1, oli};an = (A, <), and Holign%l = (B, <;) then
olim®A = oliéan +B

where B is the submodel of [ ] olién 2 with the universe {b € B: bN A = (};

iii. if o is a limit ordinal, then olim 2 = lim olim 2.
u,x B—a u,8



This construction resembles the construction of a limiting ultrapower of
a model (also called an wltralit of a model), but does not coincide with it. In
particular, an overbuilding ultralimit of positive rank of a finite poset 2 is
not isomorphic to 2.

Denote the one-element poset (1, <) by ©O.

Theorem 1. For any RK-minimal ultrafilter u € Bw

(Cong(u), <grk) = olim O.

U,

Sketch of proof. First, we establish the “ordinal stratification” of the Com-
fort preorder on Bw/~py (essentially introduced in [8, 9]). For any ultrafilter
u € Bw and ordinal o we define the sets U, (1), Uco(ut) € Bw/apy:

i. Uo(w) ={7(0)},

ii. for a > 0, we put U.,(u) = |J Up(u) and
B<a

Ua(u) ={7(f(w) : f € (Bw)*” and (Vi <w)7(f(i)) € U<a(u)}.
We prove that for each ultrafilters u € Bw
Cong(u) = Uy, (u). (1)

Next, we show that if an ultrafilter u is RK-minimal, then we can restrict
ourselves to injective functions f : w — Pw with a discrete range when
constructing the sets U, (u). A set W C BX is discrete if there is a partition
{Ap }wew of X such that A, € to for all o € W. Let DF be a set of all
injective functions f : w — Pw with a discrete range. For any ultrafilter
u € Bw and ordinal a > 0 we define the sets V, (1), Veo(U) € Bw/apy:

i Vi) = {r(w)},

ii. for a > 1, we put V,(u) = |J Vs(u) and
B<a

Va(u) = {T(f(u)) : f€DF and (Vi <w)7(f(i)) € Vea(u)}.
We prove that for any positive ordinal o and RK-minimal ultrafilter u € Bw

Ua(u) = Va(u) U {7(0)}. (2)

Finally, we will need the fact that for all functions f, g € DF and ultrafilter
uE€ PBw

J(w) <px g(w) & {i <w: f(i) <rx 9(i)} € u (3)
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(see, e.g., [10]).
Using the facts (1) — (3), the theorem can be easily proved by induction
on «. O

The equivalence relation <¢ N gal on BX/~xy is denoted by ~¢. For
any u € BX, let [ulc = {7(v) : v € BX and 7(v) ~¢ 7(u)}. It is easy to

see that for any RK-minimal ultrafilter u € Bw and non-principal ultrafilter
v <c u we have: u <ggk v and, so,

[0]c U{7(0)} = Conc(u).
Therefore, theorem 1 immediately entails the following corollary.
Corollary 1. Let u,v € Bw. If u is RK-minimal and 7(u) € [v]c then

([0]c, <rx) = olim O.

u,wi

Discussion. Can the poset olim$ be described more explicitly? Note,

u,wi
e.g., that olin% 9 is isomorphic to the ultrapower of (w, <) modulo u where <
u,w+
is the natural ordering of w. Are the posets olim O and olim O isomorphic

u,wi v,w1
for all RK-minimal ultrafilters u, v € Bw? Let us call a C-minimal ultrafilter

v € Bw a normal C-minimal ultrafilter if 7(u) € [b]c for some RK-minimal

ultrafilter u € Bw. Is the statement inverse to Corollary 1 true? In other

words, is it true that the condition “there exists an RK-minimal ultrafil-

ter u € Bw for which ([v]c, <rk) = (zlli)m 97 exactly characterises normal
»W1

C-minimal ultrafilters v € Bw?
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