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Advective Flow of a Rotating Fluid Layer

in a Vibrational Field

K.G. Shvarts

This paper presents a derivation of new exact solutions to the Navier – Stokes equations in
Boussinesq approximation describing two advective flows in a rotating thin horizontal fluid layer
with no-slip or free boundaries in a vibrational field. The layer rotates at a constant angular
velocity; the axis of rotation is aligned with the vertical axis of coordinates. The temperature is
linear along the boundaries of the layer. The case of longitudinal vibration is considered. The
resulting solutions are similar to those describing the advective flows in a rotating fluid layer with
solid or free boundaries without vibration. In both cases, the velocity profile is antisymmetric.
Thus, in particular, in the absence of rotation, the longitudinal vibration in the presence of
advection can be considered as a kind of “one-dimensional” rotation. The presence of rotation
initiates the vortex motion of the fluid in the layer. Longitudinal vibration has a stronger effect
on the xth component of the velocity than on the yth component. At large values of the Taylor
number and (or) the vibration analogue of the Rayleigh number thin boundary layers of velocity,
temperature and amplitude of the pulsating velocity component arise, the thickness of which is
proportional to the root of the fourth degree from the sum of these numbers.

Keywords: horizontal convection, longitudinal vibration, exact solution

1. Introduction

Advective flows occur in a horizontal layer of an incompressible fluid with a horizontal tem-
perature gradient at its boundaries causing horizontal convection. In the case of linear tempera-
ture distribution, the flow is described analytically, being an exact solution of the Navier – Stokes
equations in Boussinesq approximation [1, 17].
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In [11] G. Z. Gershuni and E. M. Zhukhovitsky deduce a formula describing plane-parallel
advective flow in an infinite horizontal layer at vibration. In [7, 8] it was shown that vibration
increases the stability of advective flow under gravity conditions of practically all types of dis-
turbances, excluding flat thermal waves, whose existence area moves towards small values of the
Prandtl number. In [9] R. V. Birikh described advective flow that occurs in a zero-gravity situa-
tion under the action of linear high-frequency oscillations, and the hydrodynamic instability of
this flow is studied in [2]. In [15, 16] the advective flow, which is formed in a vertical magnetic
field, has a velocity profile similar to the flow profile in a vibration field [11]. The paper [3]
presents a new class of exact solutions describing advective flows in a horizontal fluid layer with
nonlinear temperature distribution at the boundaries. The study of vibration effects in solids is
presented in [6, 10].

The monograph [4] presents a procedure for obtaining exact solutions of Navier – Stokes
equations describing closed advective flows in a rotating horizontal layer of incompressible fluid.
On its basis, the new solutions describing the advective flow in a rotating layer in a vibration
field are constructed.

2. Exact solution

Let us consider a thin infinite horizontal layer of an incompressible fluid with flat boundaries
z = ±h that have a linear temperature distribution along the axis Ox (Fig. 1). The layer rotates
at a constant angular velocity Ω0, and the axis of rotation is aligned with the vertical axis of
coordinates Oz. Let us consider the situation where the Froude number Fr = Ω2

0l/g 	 1 [12],
l being a characteristic horizontal scale, and g the acceleration of gravity. Following [13, 14], the
dimensionless equations for averaged velocity and temperature fields in the presence of vibration
are written in a rotating coordinate system. By choosing as the units of length x, y, z, time t,
velocity �v = (vx, vy, vz), temperature T and pressure P , respectively, the half-thickness of the

layer h, h2/ν, gβAh2/ν, Ah, ρ0gβAh
2 (here ν is the kinematic viscosity, β is the coefficient of

thermal expansion, ρ0 is the average density, A is a constant horizontal temperature gradient
at the boundaries of the layer), the initial equations in dimensionless form have the following
representation:

∂�v

∂t
+Gr(�v∇)�v +

√
Ta(�iz × �v) = −∇P + Δ�v + T �iz +

RaV
GrPr

(�w∇)(T�n− �w), (2.1)

div�v = 0, div �w = 0, rot �w = ∇T × �n, (2.2)

∂T

∂t
+Gr�v∇T =

1

Pr
ΔT, (2.3)

where �w is the amplitude of the pulsating component of velocity, (its unit here coincides with

the unit of temperature measurement), �n = (nx, ny, nz) is the axis of vibration, �iz = (0, 0, 1),

Ta =
(
2Ω0h

2/ν
)2

is the Taylor number, Gr = gβAh4/ν2 is the Grashof number, Pr = ν/χ is

the Prandtl number, where χ is the coefficient of thermal diffusivity, Rav =
(
βbωAh2

)2
/2νχ

is the vibrational analogue of the Rayleigh number (the Gershuni number),b is the amplitude
of displacement, ω is the circular frequency of harmonic oscillations in the gravity field, per-
formed by non-isothermal fluid layer, the Laplace operator Δ ≡ ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2,
∇ is a gradient.

Following the conclusions of [11], we restrict ourselves to the case of longitudinal vibration:
�n = (1, 0, 0). In a flat rotating layer of an incompressible fluid, a stationary advective flow
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Fig. 1. A sketch of the geometry of the infinite horizontal fluid layer for the case of solid boundaries.

homogeneous in the plane x, y is formed:

vx = u0(z), vy = v0(z), vz = 0, T = x+ τ0(z), P = p0(x, y, z),

wx = wx(z), wy = wz = 0.
(2.4)

Two problems with symmetric boundary conditions will be considered which will allow us
to find an exact solution quite easily. It is a rotating horizontal layer with no-slip and with free
boundaries.

2.1. A layer with solid boundaries

On the horizontal boundaries of the layer at z = ±1:

�v = 0, T = x, wx = 0. (2.5)

Substituting Eq. (2.4) into the system of equations (3.1)–(2.3), (2.5), we obtain the equations
for finding the velocity, temperature and pressure:

∂p0
∂z

= T, −
√
Tav0 = −∂p0

∂x
+ u′′0 +

RaV
GrPr

wx,

√
Tau0 = −∂p0

∂y
+ v′′0 , Gru0

∂T

∂x
=

1

Pr
τ ′′0 , w′

x =
∂T

∂z
.

(2.6)

Let us add boundary conditions

u0(±1) = 0, v0(±1) = 0, τ0(±1) = 0, wx(±1) = 0 (2.7)

and closed-loop conditions
1∫

−1

u0dz = 0,

1∫
−1

v0dz = 0 (2.8)

and let us start looking for an exact solution to this problem.
The first equation of the system (2.6) is integrated to determine the pressure:

p0 = ph + x(z + 1) +

z∫
−1

τ0(ζ)dζ, (2.9)

RUSSIAN JOURNAL OF NONLINEAR DYNAMICS, 2019, 15(3), 261–270



264 K.G. Shvarts

where ph is the pressure at the lower boundary. The velocity, temperature and the amplitude
of the pulsating component of velocity are obtained by substituting Eq. (2.9) into Eqs. (2.6)

u′′0(z) +
√
Tav0(z) =

∂ph
∂x

+ (z + 1) − RaV
GrPr

wx(x),

v′′0 (z) −
√
Tau0(z) =

∂ph
∂y

,

τ ′′0 (z) = Rau0(z), w′
x = τ ′0(z).

(2.10)

With the help of the first equation of (2.10) v0(z) is defined as v0(z) =
1√
Ta

[∂ph
∂x

+(z+1)−

− u′′0(z)− RaV
GrPr

wx(x)
]
, then from the second equation

√
Tau0(z) = −∂ph

∂y
+

1√
Ta

[
− uIV0 (z)−

− RaV
GrPr

w′′
x(z)

]
, in addition, w′′

x = τ ′′0 = GrPru0(z). As a result, to find the first component of

the velocity, an ordinary differential equation of the fourth order is found, which has the form

uIV (z) + (Ta+RaV )u0(z) +
√
Ta

∂ph
∂y

= 0. (2.11)

Taking into account the boundary conditions (2.7), we obtain

u0(±1) = 0, u′′0(−1) =
∂ph
∂x

, u′′0(1) =
∂ph
∂x

+ 2. (2.12)

From the condition of flow closure (2.8)
∂ph
∂y

= 0 and
∂ph
∂x

+ 1 = 0.

The second component of the velocity v0(z) is found using the third equation of (2.6) and
the corresponding conditions (2.7) and (2.8).

The temperature component τ0(z) is based on the boundary-value problem

τ ′′0 (z) = GrPru0(z), τ0(±1) = 0. (2.13)

The solution of the problem (2.11)–(2.13) subject to condition (2.8) has the following rep-
resentation:

u0(z) =
1√

Ta+RaV
Im f1(z), v0(z) =

√
Ta

Ta+RaV
[z − Re f1(z)],

τ0(z) = wx(z) =
GrPr

Ta+RaV
[z − Re f1(z)],

(2.14)

where f1(z) = sinh
1 + i√

2
λz
/

sinh
1 + i√

2
λ, i =

√−1, λ = 4
√
Ta+RaV . The profiles of the

components of the velocity and temperature coincide, up to a multiplier, with the corresponding
profiles of advective flow in a rotating fluid layer with solid horizontal boundaries described
in [4, 5]. It can be expected that the properties of the solution [14] are similar to those of the
flow described in [4, 5]. In particular, the temperature profile τ0(z) and the amplitude of the
pulsation velocity component wx(z) coincide, up to a multiplier, with the profile of the second
velocity component v0(z).

RUSSIAN JOURNAL OF NONLINEAR DYNAMICS, 2019, 15(3), 261–270



Advective Flow of a Rotating Fluid Layer in a Vibrational Field 265

2.2. A layer with free boundaries

On the horizontal boundaries of the layer at z = ±1:

∂vx
∂z

=
∂vy
∂z

= vz = 0, T = x,
∂wx
∂z

= 0, (2.15)

The system of equations (2.6) is used to find velocity, temperature and pressure by adding
the boundary conditions

u′0(±1) = 0, v′0(±1) = 0, τ0(±1) = 0, w′
x(±1) = 0 (2.16)

and the closed-loop conditions (2.8).
To find the first component of the velocity, the ordinary differential fourth-order equa-

tion (2.11) is solved using the boundary conditions (taking into account Eqs. (2.16))

u′0(±1) = 0, u′′′0 (±1) = 1. (2.17)

From the condition of flow closure (2.8)
∂ph
∂y

= 0 and
∂ph
∂x

= 0.

The second component of the velocity v0(z) is found using the third equation of (2.6) and
the corresponding conditions, Eqs. (2.16) and Eq. (2.8).

The temperature component τ0(z) is found from the boundary problem (2.13).
The solution of the problem, Eq. (2.11) and Eq. (2.17), taking into account the condition

of closure (2.8) has the following representation:

u0(z) = − 1

2λ3

[
1 + i√

2

sinh 1+i√
2
λz

cosh 1+i√
2
λ

+
1 − i√

2

sinh 1−i√
2
λz

cosh 1−i√
2
λ

]
,

v0(z) = − 1

2λ3

√
Ta

Ta+RaV

[
sinh 1+i√

2
λz

1+i√
2

cosh 1+i√
2
λ

+
sinh 1−i√

2
λz

1−i√
2

cosh 1−i√
2
λ

]
.

(2.18)

Given the antisymmetric profile of the first component of the v0(z)

τ0(z) = GrPr[v0(z) − v0(1)z], (2.19)

wx(z) = GrPrv0(z). (2.20)

3. Properties of the exact solution

3.1. A layer with solid boundaries

In the absence of rotation at Ta = 0 the advective flow (2.14) coincides with [11], having
one component of velocity u0(z). In the absence of vibration at RV = 0, the solution coincides
with the description of advective flow in the rotating fluid layer with solid boundaries [4], having
two components of velocity u0(z) and v0(z). The longitudinal vibration affects the advective
flow like a kind of “one-dimensional” rotation. For all nonzero values of the Taylor number and
the vibrational analogue of the Rayleigh number, vortex motion is formed in the layer (Fig. 2).
At the same time, the effect of longitudinal vibration has a stronger effect on the xth component
of the velocity than on the yth one (Fig. 2b, Fig. 2d).
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Fig. 2. Hodographs of the flow velocity at (a) Ta = 100, RaV = 100, (b) Ta = 100, RaV = 10000,
(c) Ta = 10000, RaV = 100, (d) Ta = 10000, RaV = 10000.

In the absence of rotation, the advective flow has only one x-component of velocity. When
Ta > 0 and as the Taylor numbers and (or) the vibrational analogue of the Rayleigh number
grow, the maximum of the first velocity component monotonically decreases. With the growth
of Ta > 0 and(or) Rav > 0 the second y-component of the velocity appears, the maximum of
which increases to some values of the Taylor and the Gershuni numbers. A numerical study of
the solution (2.14) has shown that they are determined by using an empirical formula

Ta ≈ 98 + 1.07RaV . (3.1)

For all values of the parameters Ta and RaV the profiles of the components of the velocity
u0(z), v0(z) and temperature τ0(z), as well as the amplitude of the pulsating component of
the velocity wx(z) are antisymmetric (Fig. 3). For Ta � 1, RaV � 1, near both boundaries,
boundary layers of velocity, temperature and amplitude of the pulsating component of velocity

occur, and the relative thickness of the boundary layer is equal λ/
√

2. Figure 3d shows the
pressure graph at x = 0.
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Fig. 3. The profiles of the velocity components (a) u0, (b) v0 and (c) pressure p0 for x = 0 at 1 —
Ta = 100, RaV = 100 and 2 — Ta = 10000, RaV = 10000.

3.2. A layer with free boundaries

Similar to the case with solid boundaries for all nonzero values of the Taylor number and
the vibrational analogue of the Rayleigh number, a spiral motion is formed in the layer (Fig. 4).
In this case, the effect of longitudinal vibration is also stronger on the x-th component of the
velocity than on the y-th.

In the absence of rotation, the advective flow has only one xth velocity component u0(z), at
Ta > 0 the second yth velocity component v0(z) appears. In this case, both components of the
velocity are multidirectional along the layer. In the upper half of the layer u0(z) is directed from
right to left, and in the lower one it is directed from left to right (Fig. 5a). On the contrary, the
second velocity component in the top half is directed from left to right, and that in the bottom
is directed from right to left (Fig. 5b). The temperature profile is similar to the profile of the
second velocity component (Fig. 5c).

At low values of Ta and RaV the velocity component profiles are almost linear (Fig. 5),
their extreme values are located at the boundaries of the horizontal fluid layer. As the values
of these parameters increase, the maximum and the minimum of the second component of the
velocity are shifted to the depth of the layer (Fig. 5b). Similar to the case of the layer with solid
boundaries at Ta � 1, RaV � 1, near the boundaries there are boundary layers of velocity,
temperature and amplitude of the pulsating velocity component, and the relative thickness of
the boundary layer is equal to λ/

√
2 (Fig. 5). Figure 5d shows the pressure graph at x = 0.
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Fig. 4. Hodographs of the flow velocity at (a) Ta = 100, RaV = 100, (b) Ta = 100, RaV = 10000, (c)
Ta = 10000, RaV = 100, (d) Ta = 10000, RaV = 10000.

4. Conclusion

A new exact solution of the Navier – Stokes equations in the Boussinesq approximation
describing the advective flow of a rotating horizontal fluid layer in the presence of longitudinal
oscillations in a rotating horizontal fluid layer for the case of solid boundaries is presented.
In the absence of rotation, a known plane-parallel advective flow in a vibration field with one
horizontal velocity component is obtained [11]. In the absence of vibration, a known advective
flow in the rotating fluid layer is obtained too, described by two velocity components forming the
vortex motion of the fluid. In the newly obtained flow, the velocity and temperature component
profiles are similar to the velocity and temperature profile of the advective flow in the absence
of vibration [4]. It is known [12] that the effect of rotation is largely similar to the effect of the
magnetic field. It can be argued that the effect of longitudinal vibration on the advective flow
is somewhat similar to the effect of rotation. The influence of the longitudinal vibration in this
case can be called “one-dimensional” rotation.

A new exact solution of the Navier – Stokes equations in the Boussinesq approximation
describing advective flows of a rotating horizontal fluid layer in the presence of longitudinal
oscillations in a rotating horizontal fluid layer for the case of free boundaries is presented. The
flow has two horizontal velocity components. The velocity and temperature profiles of the
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Fig. 5. The profiles of the velocity components (a) u0, (b) v0, (c) τ0 and (d) p0 for x = 0 at 1 — Ta = 10,
2 — Ta = 1000, 3 — Ta = 10000.

advective flow as well as for the case of rigid boundaries are antisymmetric. A spiral movement
is formed, with fast rotation and (or) high-frequency longitudinal vibration near the boundaries
of the layer, and thin boundary layers of velocity and temperature are formed.

References

[1] Andreev, V. K., The Birikh Solution of the Convection Equations and Some Its Generalizations,
Preprint No. 1-10, Krasnoyarsk: Inst. Comput. Math. SB RAS, 2010 (Russian).

[2] Anisimov, I. A. and Birikh, R. V., Hydrodynamic Instability of Vibration Advective Flow in Micro-
gravity, in Vibrational Effects in Hydrodynamics: Vol. 1, D. V. Lyubimov (Ed.), Perm: Perm. Gos.
Univ., 1998, pp. 17–24 (Russian).

[3] Aristov, S. N. and Prosviryakov, E. Yu., A New Class of Exact Solutions for Three-Dimensional
Thermal Diffusion Equations, Theor. Found. Chem. Eng., 2016, vol. 50, no. 3, pp. 286–293; see also:
Teoret. Osnovy Khim. Tekhnolog., 2016, vol. 50, no. 3, pp. 294–301.

RUSSIAN JOURNAL OF NONLINEAR DYNAMICS, 2019, 15(3), 261–270



270 K.G. Shvarts

[4] Aristov, S. N. and Schwarz, K. G., Vortex Flows of Advective Nature in a Rotating Fluid Layer,
Perm: Perm. Gos. Univ., 2006 (Russian).

[5] Aristov, S. N. and Shvartz, K. G., Stability of the Advective Flow in a Rotating Horizontal Fluid
Layer, Fluid Dynam., 1999, vol. 34, no. 4, pp. 457–464; see also: Izv. Ross. Akad. Nauk. Mekh. Zidk.
Gaza, 1999, vol. 34, no. 4, pp. 3–11.

[6] Bardin, B. S. and Panev, A. S., On the Motion of a Body with a Moving Internal Mass on a Rough
Horizontal Plane, Russian J. Nonlinear Dyn., 2018, vol. 14, no. 4, pp. 519–542.

[7] Birikh, R. V. and Katanova, T. N., Effect of High-Frequency Vibrations on the Stability of Advective
Flow, Fluid Dynam., 1998, vol. 33, no. 1, pp. 12–17; see also: Izv. Ross. Akad. Nauk. Mekh. Zidk.
Gaza, 1998, no. 1, pp. 16–22.

[8] Birikh, R. V. and Katanova, T. N., On Stabilization of Advective Flow by Transverse Vibrations, in
Vibrational Effects in Hydrodynamics: Vol. 1, D. V. Lyubimov (Ed.), Perm: Perm. Gos. Univ., 1998,
pp. 25–37 (Russian).

[9] Birikh, R. V., Vibrational Convection in a Plane Layer with a Longitudinal Temperature Gradient,
Fluid Dynam., 1990, vol. 25, no. 4, pp. 500–503; see also: Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza,
1990, no. 4, pp. 12–15.

[10] Borisov, A. V. and Mamaev, I. S., Isomorphisms of Geodesic Flows on Quadrics, Regul. Chaotic
Dyn., 2009, vol. 14, nos. 4–5, pp. 455–465.

[11] Gershuni, G. Z. and Zhukhovitskii, E. M., Plane-Parallel Advective Flows in Vibrational Field,
J. Eng. Phys., 1989, vol. 56, no. 2, pp. 238–242; see also: Inzh.-Fiz. Zh., 1989, vol. 56, no. 2, pp. 238–
242.

[12] Gershuni, G. Z. and Zhukhovitskii, E. M., Convective Stability of Incompressible Liquid, Jerusalem:
Wiley, 1976.

[13] Gershuni, G. Z., Zhukhovitskii, E. M., and Nepomnyashchii, A. A., Stability of Convective Flows,
Moscow: Nauka, 1989 (Russian).

[14] Gershuni, G. Z. and Lyubimov, D. V., Thermal Vibrational Convection, New York: Wiley, 1998.

[15] Hudoba, A., Molokov, S., Aleksandrova, S., and Pedcenko, A., Linear Stability of Buoyant Con-
vection in a Horizontal Layer of an Electrically Conducting Fluid in moderate and High Vertical
Magnetic Field, Phys. Fluids, 2016, vol. 28, no. 9, 094104, 15 pp.

[16] Kaddeche, S., Henry, D., and Benhadid, H., Magnetic Stabilization of the Buoyant Convection
between Infinite Horizontal Walls with a Horizontal Temperature Gradient, J. Fluid Mech., 2003,
vol. 480, pp. 185–216.

[17] Ostroumov, G. A., Free Convection under the Condition of the Internal Problem (NACA-TM-1407,
Rept-4281), Washington, D.C.: NASA, 1958.

RUSSIAN JOURNAL OF NONLINEAR DYNAMICS, 2019, 15(3), 261–270


