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Abstract

We apply a transition matrix in the energy spectrum to analyze the flatness criteria in each energy window
of parallel implementation of the Wang-Landau algorithm. The tunneling time of a random walker in
each window does depend on the position of the window in the energy spectrum and is much less than
the tunneling time of the entire spectrum. Therefore the parallel Wang-Landau algorithm should be more
efficient for larger system sizes. We replace the flatness criterion with the criterion of proximity of the
transition matrixes to stochastic ones. A detailed analysis was carried out on the example of the Ising
model.

1. Introduction

The Wang-Landau (WL) algorithm [1, 2] is a very powerful tool for direct numerical estimation of the
density of states (DOS), which also has a fairly wide application. It overcomes some of the difficulties found
in other Monte Carlo algorithms, such as critical slowing down, and allows calculation of thermodynamic
observables, including free energy, over a wide range of temperatures in a single simulation. A typical
simulation requires at least billions of single Monte Carlo steps even for medium sized systems. Parallel
implementation of the Wang-Landau (WL) algorithm is a possible way to speed up the simulation [3].

The two approaches for the parallel WL algorithm was proposed.
The first approach, proposed in the article [4], is implemented by the authors in a simple parallel version,

which allows each processor to perform calculations in the entire energy space. An update of the total DoS
was performed after some regular simulation intervals, and the updated DoS was used for the next time
interval. The histograms were also merged together to check their flatness. Care should be taken in choosing
the time interval to tune the efficiency of the entire simulation [4]. Another implementation [5] uses the
same energy space parallel simulation approach, but uses parallel threads in shared memory and updates
the shared DoS at every MC step. This version can be efficiently implemented on multi-core processors. In
any case, both approaches are very sensitive to shared memory size and memory access speed.

The second and more complex approach, named replica exchange Wang-Landau algorithm, is proposed
in the articles [6, 7] with the division of the energy space into windows. The trick is that the energy windows
must overlap by some sufficient number of energy levels for the algorithm to work correctly, and appropriate
flatness criteria protocol and general DoS update procedures must be organized. The algorithm allows
simulating very long protein folding models [8].

In this study, we analyze the properties of the replica exchange Wang-Landau (reWL) [6, 7] algorithm.
Our analysis is based on the concept of tunneling time [9] and on the properties of the transition matrix in
energy space [10].

Tunneling time is the time it takes for a random walker to get from one side of the interval to the other
side. The interval in our case is either the entire set of energy level indices, or the set associated with the
width of the energy window. Tunneling time is related to the flatness criteria of the WL algorithm because
it scales the same as the time it takes a walker to cover the entire possible walking interval.

We analyze the tunneling time in the each energy window and found it depends on the window position
in energy spectrum. To clarify our results, we present here a simplified version of the Wang-Landau replica
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exchange (reWL) [6, 7] algorithm. We consider only one replica in each window and choose a DoS merge
with a simple averaging of overlapping levels.

2. Transition matrix in energy spectrum

It was stated in the paper [10] that the flatness criteria can be understood using the transition matrix
in the energy space (TMES)1, whose elements T (Ek, Em) are the probabilities of one step random walk
for the transition from a configuration with energy Ek to any configuration with energy Em. The random
walk in the Wang-Landau algorithm generated after the two preparatory steps. First, the new configuration
chosen using any Markov Chain Monte Carlo algorithm. Second, the new configuration is accepted using
the WL-probability, Expr. (1). Accordingly, the walker moves to the energy level Em or stay at the same
energy level Ek. Therefore, this is a combination of two random processes - the matrix elements are affected
by both the random process of choosing a new configuration state and the WL-probability of accepting a
new state.

It was shown in Ref. [10] that TMES of the WL random walk on true DoS is a stochastic matrix. This
means that the probabilities of visiting all energy levels are equal. The largest eigenvalue λ1 of the stochastic
matrix is equal to one. Therefore, the case of the largest eigenvalue close to one is equivalent to the flatness
of the histogram in the WL algorithm. In addition, it was proposed to use the parameter δ = |1− λ1| as a
control parameter in the WL algorithm, i.e. accuracy parameter [10] for DoS estimation.

In this paper, we extend this approach with calculating the transition matrices Ti(Ek, Em) in each energy
window i = 0, ..., Nw − 1.

3. Walkers in the windows

The articles [6, 7] present a parallel implementation of the Wang-Landau algorithm using the idea of
the Markov chain replica exchange algorithm [12]. At the same time, there are essential difference in the
simulations and in the way of information exchange between replicas.

The Markov chain replica exchange method simulates M replicas with a common Hamiltonian H and
at different temperatures and exchanges two replicas with a probability that satisfies the detailed balance
of the replica ensemble [12]. Instead, the reWL [6, 7] algorithm simulates kM independent random walkers
in M windows of the energy spectrum and exchanges the randomly chosen walkers in two energy windows
with a probability based on Wang-Landau probability of acceptance energy level [1, 2]. Both methods are
very popular and intensively used in simulations.

Our goal is to shed light on the relaxation processes occurring in the energy windows of the Wang-Landau
algorithm and their influence on the accuracy of the global DoS estimate. It is based on the connection
between the parameters of the Wang-Landau algorithm and the characteristic times of random walks in the
energy spectrum based on the Wang-Landau probabilities of accepting transitions from one energy level to
another [13, 9].

There are two characteristic times of the Wang-Landau algorithms, the tunneling time and the mixing
time.

3.1. Tunneling time

The Wang-Landau method for estimating the density of energy states [1, 2] can be interpreted as a biased
one-dimensional random walk over energy levels [13, 10]. It is known that an unbiased one-dimensional
random walk can cover to the distance ∝

√
n from the starting point after n steps [14]. Therefore, the

time required to visit all N energies grows in proportion to the square of the number of levels, i.e. ∝ N2.
Obviously, in the case of a biased walk, this time will grow faster due to local obstacles in the path of the
random walk. Moreover, the randomness in the probabilities could cause a random walker to be trapped in

1Do not confuse the TMES matrix with the matrix associated with the transition matrix Monte Carlo method [19, 20].
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Figure 1: Left: Probability density of tunneling time in the Wang-Landau algorithm for the Ising model on a square lattice
with linear size L = 16, averaged over 104 random walks. The result of the fit using the lognormal distribution 2 is shown as
a yellow line. Right: Dependence of the mean (blue) and median (red) of the tunneling time distribution on the linear size L
of the square Ising model. Dashed lines are fittings (see text).

some kind of random walls, and time would be unlimited [15]. This fact may be a likely explanation for the
unsuccessful applications of the WL algorithm to a system with a complex energy landscape.

The time it takes to reach flatness of the histogram is related to the tunneling time of the walker [13, 9].
The distribution of these times has long tails, leading to a spontaneous huge increase in the time of a
particular simulation implementation. This fact may be the next likely explanation for failed applications -
it is known that sometimes the flatness criteria cannot be met and the simulation cannot be completed.

We measure the tunneling time probability distribution for the 2D Ising model by simulating random
walks in energy space using the exact DoS g(E) from Ref. [16] in the Wang-Landau probability acceptance
of new energy [1]

PWL = min [1, g(Eold)/g(Enew)] . (1)

The resulting tunneling time probability distribution is shown in the left panel of Fig. 1 for the Ising model
on a square lattice of linear size L = 16. The distribution looks like a lognormal distribution, in fact it
matches the lognormal distribution

f(x) =
1

xσ
√

2π
exp

(
− (lnx− µ)2

2σ2

)
(2)

very well, as shown in Fig. 1 by the solid line with values σ ≈ 0.83 and µ ≈ 13.0.
The log-normality of distribution means that there are huge fluctuations in the tunneling time, which

leads to huge fluctuations in the accumulation of sufficiently flat histogram during the application of the
WL algorithm. This fluctuations increase with the size of the system, since the median exp(µ) grows with
the size of the system as L2d+0.85(2), and the mean exp (µ+ σ2/2) grows with system size as L2d+0.87(2) as
shown by dashed lines in the right panel of Fig. 1.

This fact of increasing tunneling time can be tried to be used in practice, using the fact that the tunneling
time becomes shorter with fewer energy levels. It can be assumed that the division of the entire energy
window into a sufficiently small part, the simulation of random walkers at smaller intervals corresponding
to the size of the window, will lead to shorter tunneling times.

3.2. Mixing time

The mixing time tmix is characteristic of a Markov process. It is defined as the reciprocal of the spectral
gap G of the stochastic matrix associated with the Markov chain,
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tmix ∝
1

G
=

1

λ1 − λ2
, (3)

where λ1 and λ2 are the two largest eigenvalues of the stochastic matrix, and λ2 < λ1 = 1.
In our case, it is characteristic for the final stage of simulation when the transition matrix in energy

space TMES is sufficiently close to the stochastic, and g(E) is sufficiently close to the desired DoS, which
scaled with the linear size L for two dimensional Ising model [17] as tmix ∝ L2d+0.28(4). The mixing time
grows more slowly than the tunneling time, and the tunneling time can be used as a safe characteristic of
the convergence process. Since the tunneling time is related to the histogram flattening process, one can
expect good convergence properties of the parallel WL algorithm.

4. Toy parallel Wang-Landau algorithm

There are two possible gains from the parallel Wang-Landau algorithm. The first advantage is related
to the ability to reduce the computation time by increasing the number of energy windows when simulating
parallel walkers. The second advantage is related to the possible reduction in tunneling time in each window
due to the shorter walking distance.

We simplify the replica exchange Wang-Landau (reWL) algorithm [6, 7] to test these two possibilities
directly and introduce a toy parallel Wang-Landau (tpWL) algorithm. We argue that the main results can
be valid for any variants of parallel algorithms that use the Wang-Landau probability for a random walk in
the energy spectrum. The main differences between the tpWL algorithm and the parallel reWL algorithm
are: 1) An independent single random walk is performed inside each window; 2) An additional element has
been introduced: the transition matrix T (EK , Em), calculated in each window. 3) No replica exchange;
4) the Wang-Landau 1/t-algorithm [18] is used; 5) After N -steps, the global DoS is calculated using the
expression

g(Ei) =
1

l

l∑
j=0

gj(Ei), (4)

where l is the number of windows containing the energy level Ei, and gj(Ei) is the value of the density of
states at the level Ei, accumulated in window j.

The formal description of the toy parallel Wang-Landau (tpWL) algorithm is formulated as follows.
In the Algorithm 1 Wang-Landau step is the original Wang-Landau step [1, 2] supplemented by calculation

of transition matrices Ti(Ek, Em) in each window i = 0, ..., Nw − 1 and by 1/t-WL algorithm [18] at the
second stage of simulation.

5. Tunneling times in windows

In this section, we analyze tunneling times in windows by simulating the Ising model on a square lattice
with linear size L = 16 and splitting the energy spectrum into 12 windows with a window overlap of 75%, as
recommended in [6, 7]. The partition is shown in the left panel of fig. 2 along with the exact DoS g(E) [16].
We use the same partition size in test simulations and initialize all walkers in the ground state, so all walkers
start at the left end of the energy spectrum.

It is constructive to take a closer look at the parallel windowed simulations: there are two extreme stages
of simulation.

The first stage is the initial part of the simulation, it starts with flat g(E) and a random position of the
walker in the windows. The walker’s initial position can be at any energy level, and for a typical energy
window, one must wait until the walker enters a particular window. This can happens on the left side of the
window or on the right side of the window. Therefore, we estimate the tunneling time starting from the left
edge of the window and measure the time it takes for the vagrant to reach the right edge of the window by
updating the current g(E) according to the Wang-Landau algorithm. This will be the tunneling time from
left to right, tinLR. The superscript in means initial stage tunneling time. We estimate the tunneling time
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Figure 2: The solid blue line is log g(E), where g(E) is the exact density of states of the two-dimensional Ising model on a
square lattice, linear size L = 16. Number of local spin updates between histogram check is 106. Number of runs is 240. The
walkers initialized at the ground state – at the left edge of the spectrum. Left: An example of partition the energy spectrum
into 12 intersecting windows. Right: Tunneling times ttun in energy windows with the right scale. Mean values marked with
triangles and median values are marked by the horizontal internal line. The bottom edge of the rectangle is the first quartile
Q1 of distribution and upper edge is the third quartile Q3. The outgoing bars outside the box represent the boundaries of the
data scatter within the interquartile range, defined as the difference between Q3-Q1.
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Figure 3: The solid blue line is log g(E), where g(E) is the exact density of states of the two-dimensional Ising model on a
square lattice, linear size L = 16. Number of runs is 240 with the flat initial histogram g(E) for each run. Left: Tunneling
times tinLR in energy windows. Right: Tunneling times tinRL in energy windows. Mean values marked with triangles and median
values are marked by the horizontal internal line. The bottom edge of the rectangle is the first quartile Q1 of distribution and
upper edge is the third quartile Q3. The outgoing bars outside the box represent the boundaries of the data scatter within the
interquartile range, defined as the difference between Q3-Q1.
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Algorithm 1 – Toy parallel Wang-Landau (tpWL) algorithm with Transition matrix

Parallel segment:
1: while F > ffinal do

2: i=0
3: repeat
4: Wang-Landau step
5: i← i+ 1
6: until i < M

7: if H(E) - “flatness” in all Nw windows then
8: Calculate the largest eigenvalue λ1 of the transition matrices Ti(Ek, Em)
9: if (F > NE/t) then . update parameter F

10: F ← F/2
11: else F ← NE/t
12: end if
13: H(E)← 0

14: g(Ei)← 1
l

∑l−1
j=0 gj(Ei), where l is the number of windows with energy Ei

15: gh(Ei)← g(Ei)

16: T (Ek, Em) = 1
l

∑l−1
i=0 Ti(Ek, Em) . Calculate global transition matrix

17: end if
18: end while

End of parallel segment

19: Calculate global DoS: g(Ei)← 1
l

∑l−1
j=0 gl(Ei), where l is the number of windows with energy Ei

starting from the right edge of the window and measure the time it takes for the vagrant to reach the left
edge of the window by updating the current g(E) according to the Wang-Landau algorithm. This will be
the tunneling time from right to left, tinRL. We repeat the simulation 240 times and measure the averages of
tinLR and tinRL and analyze some properties of their distributions presented in the table 1. The distributions
are almost symmetrically reflected.

The second stage is the final part of the simulation, with DoS close to the desired one. We estimate the
typical tunneling time with the walker simulated with the exact DoS and without any updates of g(E). The
rest of parameters are the same as used for the estimation of tinLR and tinRL and results are shown in fig 4.

The averages of tfinLR and tfinRL together with standard deviation and median are presented in the table 2.
Reflective symmetry still exists in the final stage. In this case, the time distribution is also symmetrical to
the maximum DoS penalty. This is due to the special DoS symmetry for the Ising model. Indeed, DoS is
not symmetric for Potts models with more than two components and the tunneling time in the windows will
be asymmetric. In addition, the figures 3 and 4 give an idea why the tunneling time of a random walker
with the Wang-Landau probability is larger than that of a simple symmetric one-dimensional random walk.

Indeed, figures 5 compares the accuracy of sequential simulation equivalent to one windows simulation
with parallel simulation in twelve windows. The typical realization is shown. The relative deviation of DoS
∆ changes almost in the same way at the final stage of simulation close to the exact DoS. It is noteworthy
that ∆ fluctuations are smaller in parallel simulations, which can possibly be explained by smaller tunneling
time fluctuations in shorter windows. It should be noted that the frequency of flatness checks in the first
step of the simulation algorithm reported so far is 106, which is greater than the mean and median tunneling
times in windows. A shorter frequency interval for L = 16 will result in less accurate simulations.
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from Left to Right from Right to Left
window tinLR STD Median tinRL STD Median
0 48 5 47 79498 24891 74399
1 60 10 58 44533 17614 39082
2 79 14 77 26382 5936 26049
3 125 30 120 17487 3331 17217
4 298 177 249 10601 2596 10111
5 1571 857 1316 5583 1419 5451
6 5615 1267 5469 1518 871 1402
7 10438 2004 10385 310 216 239
8 16974 2942 16476 118 25 115
9 25762 6268 25407 79 15 77
10 41989 14580 37776 60 10 60
11 81558 24177 79489 49 8 48

Table 1: Average tunneling times tinLR and tinRL, their standart deviations STD and Median for the simulation with the flat
initial g(E) = 0.
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Figure 4: The solid blue line is log g(E), where g(E) is the exact density of states of the two-dimensional Ising model on a

square lattice, linear size L = 16. Number of runs is 240 with exact DoS. Left: Tunneling times tfinLR in energy windows.

Right: Tunneling times tfinRL in energy windows. Mean values marked with triangles and median values are marked by the
horizontal internal line. The bottom edge of the rectangle is the first quartile Q1 of distribution and upper edge is the third
quartile Q3. The outgoing bars outside the box represent the boundaries of the data scatter within the interquartile range,
defined as the difference between Q3-Q1.
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from Left to Right from Right to Left

window tfinLR STD Median tfinRL STD Median
0 56633 42428 48419 67291 54025 50178
1 41708 34767 33984 68969 74175 42146
2 30664 21417 27973 54986 40153 52141
3 13971 8323 11858 21779 16512 21709
4 8932 5989 7676 12332 9256 10609
5 5663 4907 3167 8735 6723 5877
6 7119 5392 4968 7097 5609 5808
7 9737 9258 6040 6842 5097 5275
8 16638 15551 10983 11671 7717 9981
9 34294 38112 20000 24513 16937 23797
10 52976 44701 39800 51734 36773 47565
11 67397 61348 48948 48095 42765 29110

Table 2: Average tunneling times tfinLR and tfinRL , their standard deviations STD and Median for the simulation with the exact
DoS.
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Figure 5: Simulation of a two-dimensional Ising model on a square lattice, linear size L = 16. The blue dotted line is the f
parameter and the dotted green line is the average DoS deviation ∆. Left: Sequential simulation of one window. The red line
is the δ accuracy parameter. Right: Parallel simulation with 12 windows schematically shown in fig. 2 and 12 colored lines
corresponds to the δ accuracy parameters in the 12 windows. Window overlap 75%.
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6. Simulation results

When simulating, we start from the ground state of the samples. The random number generator
MT19937 [21, 22] was used to generate two random numbers as the trial spin lattice coordinates and
to generate one random number when deciding to flip the trial spin with Wang-Landau probability.

The right panel of fig. 2 shows the result of the estimated tunneling time ttun and details of the ttun
distribution. The uneven distribution in the windows is visible: a relatively small spread of tunneling times
in the windows with numbers 0 and 5− 8 and a large spread of data in the windows 1− 3 and 10− 11.

The largest mean and median values are in the far right window and are around 75,000. These values
should be compared with the mean and median values of the entire spectrum, which are approximately
600,000 and 450,000 and are 6-8 times larger. Neglecting a significant spread of tunneling times, we can
state the acceleration of real-time simulation, provided that the accuracy of parallel simulation is comparable
to the accuracy of sequential simulation in one window with the entire energy spectrum.

Indeed, figures 5 compares the accuracy of sequential simulation equivalent to one windows simulation
with parallel simulation in twelve windows – the typical realization is shown. The relative deviation of
computed DoS g(Ei)comp from the exact one g(Ei)exact

∆ =
1

NE

NE∑
1

(
1− g(Ei)comp

g(Ei)exact

)
(5)

changes almost in the same way at the final stage of simulation close to the exact DoS. It is noteworthy that
∆ fluctuations are smaller in parallel simulations, which can possibly be explained by smaller tunneling time
fluctuations in shorter windows. It should be noted that the frequency of flatness checks in the first step of
the simulation algorithm reported so far is 106, which is greater than the mean and median tunneling times
in windows. A shorter frequency interval for L = 16 will result in less accurate simulations.

With the number of energy levels NE , the number of energy windows k, and the coefficient of the
intersection length of two windows pcross, the number of energy levels in each window NEw is estimated as

NEw =
NE

1 + (1− pcross)(k − 1)
. (6)

The slowest tunneling time scale (corresponding, for example, to the far right window in fig. 2 is scaled

as N
d+z/2
Ew . The number of WL steps in the energy spectrum required to achieve flatness of the histogram

in each window grows in proportion to the tunneling time. We can calculate the acceleration of parallel
simulations as the ratio of the tunneling time for the entire spectrum to the tunneling time in the slowest
window, and the time acceleration factor is

qaccel ≈
(
NE

NEw

)d+z/2

= [1 + (1− pcross)(k − 1)]
d+z/2

(7)

due to parallel simulation of k windows. For example, for a 2D Ising model with 12 windows and pcross = 3/4
which is shown as the example in Fig. 2, the speedup can reach 20.

7. Discussion

We introduce a simple algorithm for parallel Wang-Landau simulation. It is based on the idea of using
random walks in windows with 75% intersection proposed in [6, 7]. We use one pass in each window without
replicas and combine the global DoS with a simple average, Ref. (4). Despite this simplification, we do not
find any systematic deviations of the specific heat calculations, which bothered the authors of Refs. [6, 7].
Figure 6 shows the specific heat calculated with one paralle DoS simulations are no worse than in serial DoS
simulations.

We would like to emphasize the log-normal behavior of the tunneling times and their large scatter, which
can lead to sporadic deviations in the DoS estimate and long times to flatten the histogram. The conclusion
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Figure 6: Specific heat of a two-dimensional Ising model on a square lattice, linear size L = 16. The blue dotted line corresponds
to parallel simualtion and red solid to the sequenttial simulation. Left: Specific heat C dependence from inverse temperature
β. Right: Relative deviation dev = C(β)/Cex(β) − 1 of calculated specific heat C from the exact Cex.

of this article may explain the simulation difficulties experienced by the community using the Wang-Landau
algorithm. The calculation of TMES and the analysis of the control parameter δ = |1 − λ1| will reveal
sporadic deviations and can help correct and possibly solve the problem.
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