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We set out to explore the possibility of investigating the critical behavior of systems with first-
order phase transition using deep machine learning. We propose a machine learning protocol with
ternary classification of instantaneous spin configurations using known values of disordered phase
energy and ordered phase energy. The trained neural network is used to predict whether a given
sample belong to one or the other phase of matter. This allows us to estimate the probability
that configurations with a certain energy belong to the ordered phase, mixed phase, and disordered
phase. From these probabilities, we obtained estimates of the values of the critical energies and the
latent heat for the Potts model with 10 and 20 components, which undergoes a strong discontinuous
transition. We also find that the probabilities can reflect geometric transitions in the mixed phase.

Introduction. — The application of deep neural net-
works for supervised machine learning [1] to study the
critical behavior of models with second-order phase tran-
sition allows us to estimate the critical temperature [2, 3]
and the critical exponent of the correlation length [4].
Examples include the study of Ising model, the Baxter-
Wu model, the Potts model and the XY model, and per-
colation problem and many others [3–10]. The approach
proved to be quite robust also in the study of the Ising
model with non-trivial diagonal anisotropy [11] and in
cross-training between universality classes [12]. This ap-
proach is based on binary classification of Monte Carlo-
generated instantaneous configurations of the model into
ferromagnetic and paramagnetic phases during training
and the application of a trained neural network to pre-
dict whether the tested instantaneous configurations gen-
erated at a known temperature belong to one of these
two phases. In this way, the probability distribution in
sample space at temperature T of belonging to the ferro-
magnetic or paramagnetic phase is estimated. Finite-size
analysis of this function and its variation allows us to esti-
mate with satisfactory accuracy the critical temperature
and the exponent of the critical correlation length [3, 4].

In the case of phase transitions of the first kind, the
phase transition temperature can also be estimated by a
learning/testing approach similar to the one mentioned
above, using learning relative to a known critical temper-
ature. However, with this approach, it is not possible to
estimate the values of the critical energies and hence the
magnitude of the latent heat, i.e., the difference between
the energies of the ordered eo and disordered ed phases
at the phase transition temperature. A neural network
trained on binary classification cannot capture the mixed
phase, which is a hallmark of systems with phase tran-
sition of the first kind. A different approach is required.
In this letter, we propose a new method for solving such
a problem.

The method is based on supervised learning, but in-
stead of binary classification, a ternary classification of
instantaneous spin configurations is used. The classifi-
cation is performed relative to known critical values of

energies eo and ed: OS - ordered phase for samples with
energy e < eo, MS - mixed phase for samples with energy
eo < e < ed, DS - disordered phase for samples with en-
ergy e > ed [13]. In the testing phase, a snapshot of the
spin configuration obtained at a certain energy e is fed
to the input of the neural network, and the network pro-
duces three numbers corresponding to predictions that
the tested configuration with energy e may belong to one
of the three phases. Based on testing a large number of
configurations at the same value of energy e, we obtain
an estimate of the probability that the tested snapshots
with energy e belong to one of the three phases.

The application of such a method requires a large num-
ber of uncorrelated sample data sets with a certain en-
ergy value for training and testing the neural network.
Modeling such datasets usually takes a large amount of
time [14, 15]. Fortunately, a microcanonical population
annealing (MCPA) [16, 17] algorithm has recently been
developed that generates a large number of replicas of
the system under study using parallel acceleration on
GPUs and filters a fraction of the replicas at a given
energy [16, 17]. We simulated 217 replicas for the Potts
model with 10 and 20 components [18]. Detailed analysis
showed good qualities of the method both in compari-
son with another microcanonical Wang-Landau method
and with known exact results [19]. In the simulation,
at each step of the algorithm, we randomly selected at
each energy value 213 = 8192 replicas from the current
replica pool and used them for training the neural net-
work and for testing and analysis. The density of states
in the neighborhood of critical energies is a decreasing
function of energy, and when applying the MCPA ceil-
ing algorithm step with decreasing energy [16] most of
the population of 217 configurations will be concentrated
near the energy ceiling. Furthermore, all replicas are ran-
domly “equilibrated” on a lattice of size L × L with an
MCMC step number of 10L2. Thus, it is hoped that there
are no observable correlations between configurations in
the chosen small fraction of replicas. Indeed, our results
support this assumption.

Model. — We consider the Potts model on a square
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FIG. 1. Typical spin configurations for the 10-state Potts
model on the L = 30 lattice at energies from left to right:
e = −1.9 in the ordered phase, e = −1.4 in the mixed state,
and e = −0.9 in the disordered state. The upper panel is the
raw RD dataset RD and lower panel is the majority/minority
MD dataset.

lattice L × L with periodic boundaries; spins si ∈
{0, . . . , q−1}; summation over all pairs of spins (si, sj)
with Hamiltonian H = −

∑
<i,j> δsi,sj . The critical

values of the ordered and disordered phases are known
exactly [18] and values are eo ≈ −1.664252 and ed ≈
−0.968203 for 10-state Potts model and eo ≈ −1.820684
and ed ≈ −0.626529 for 20-state Potts model. Hereafter,
we will refer to these models as PM-10 and PM-20 for
short.

Sample generation. — The MCPA method [16, 17] is
used to obtain samples. Details and performance of the
algorithm in the application to the Potts model with 10
and 20 states can found in the paper [19]. At each energy
value, the 8192 configurations are divided in a 3:1 ratio,
i.e., 6144 spin configurations are used for training and
2048 configurations are used for predictions and proba-
bility estimation. The energy of the samples varied in
the range −2 < e < −0.5.

Data preprocessing. — Typical PM-10 configurations
corresponding to ordered, mixed and disordered states
are shown in the figure 1, the color scale on the right
corresponds to the instantaneous spin values. There are
two ways to represent spin configuration for Potts model,
which we marked with the abbreviations: RD - the raw
data and MD - in each configuration the spins belonging
to the largest component m in q = 0, 1, . . . q−1 is marked
as +1 and the rest of spins with the -1. The second
line of figure 1 illustrates the result of the top line with
raw RD configurations mapped to majority/minority MD
configurations in all three phase states. This representa-
tion is inspired by the way the magnetisation is calcu-
lated in the Potts [20] model with spin m majority by
M = (qNm/L2 − 1)/(q − 1), where Nm is the number of
sites i with si = m. The dependence of magnetization of
average magnetization < m >, calculated over all config-

FIG. 2. Magnetization < m > for lattice sizes L = 30, 40, 50
and 60 (colored lines go from top to bottom) and for two
models calculated with RD datasets: left panel with PM-10
and right panel with PM-20.

urations with energy e, is plotted in Figure 2 for several
values of L and for two models, PM-10 and PM-20. In
Figure 1, the green color in the bottom panel reflects ma-
jority spins, which corresponds to m = 7 in the left and
middle pictures of the top panel, and m = 5 in the right
picture.

Training. — We use CNN neural network [21] with bi-
nary cross-entropy loss function and Adam optimization
algorithm [22] with parameters α = 10−3, β1 = 0.9 , β2 =
0.999, ε = 10−8. The NN(L) network is trained for each
lattice size L and each RD and MD dataset separately.
The spin configuration labelled as OS, MS or DS is fed
to the NN for ternary classification training into ordered,
mixed and disordered states. The network is trained in
one epoch [23]. The total number of configurations used
in training NN(L) is several million.

Predictions and phase probabilities. — The remaining
25% of the samples are used for predictions. Each config-
uration i of size L×L sampled in MCPA simulations with
energy e is fed to the input of a trained network NN(L).
The network outputs three numbers predicting member-
ship of the ordered phase piOS(e), mixed phase piMS(e),
and disordered phase piDS(e). The sum of these three
numbers is equal to one. We repeat this process over the
sample space, containing Ntest = 2048 samples with the
given energy e. We calculated estimates of the probabili-
ties PxS(e) averaging predictions pixS(e) over the sample

space, PxS(e) =
∑Ntest

i=1 pixS(e)/Ntest, where xS stands
for one of the three phases, OS,MS, orDS. Thus, we ob-
tain probability functions POS(e), PMS(e), and PDS(e),
with POS(e) + PMS(e) + PDS(e) = 1.

Energy and latent heat estimations. — To estimate
the energy of the ordered phase eo, we chose several (in
fact we stopped at seven) points belonging to each set
POS(e) and PMS(e) in the neighborhood of their inter-
section, and approximated these points by two straight
lines, respectively. The intersection of these straight lines
gives an estimate of eo. Similarly, the estimate for ed is
obtained from the sets PMS(e) and PDS(e). The result-
ing estimates are presented in the tables.

Tables I and II present estimates of critical energies
eo and ed and latent heat for the 10-component Potts
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FIG. 3. Probabilities of phases Px(E) for L = 60 for 10-state
Potts model, PM-10. Left panel is the training/testing with
the raw dataset RD and right panel is the training/testing
with the majority/minority dataset MD.

FIG. 4. Probabilities of phases Px(E) for L = 60 for 20-state
Potts model, PM-20. Left panel is the training/testing with
the raw dataset RD and right panel is the training/testing
with the majority/minority dataset MD.

model, PM-10. Each row of critical energy estimates is
followed by a row with the ratio of the deviation of the
estimated critical energy to the statistical error to show
the quality of the estimate. We find no noticeable finite-
size corrections.

In the case of a continuous transition driven by thermo-
dynamic fluctuations, we see that finite-size analysis of
machine learning probabilities reflects these fluctuations
and leads to a reasonable estimate of the critical length
exponent [3, 4]. In the case of a discontinuous phase
transition, the correlation length does not diverges, and
the dependence on the finite size may be different. It
is known that finite-size corrections to thermodynamic
quantities in the Potts model are very sensitive to the
way they are estimated and depend on the quantities of
interest. In two-dimensional space, the corrections can
be proportional to 1/L or 1/L2 or even 1/L4 [19, 24–26].

The phase prediction probability of a neural network is
not a thermodynamic function, but at the same time its
fluctuations can somehow reflect thermodynamic fluctua-
tions, which may lead to the visible finite-size corrections.
The correlation length is finite and approximately equal
to 10.6 for the PM-10 model [24]. Interestingly, even
moderate sizes of the studied systems compared to the
correlation length allow us to estimate the critical values
of the energies, and through them the latent heat, with
an accuracy not worse than few percent.

Tables III and IV present estimates of critical energies

L 30 40 50 60 Exact

eo -1.650(20) -1.667(6) -1.667(6) -1.663(6) -1.66425. . .
∆eo
σo

0.7 0.5 0.5 0.2

ed -0.952(28) -0.977(1) -0.954(5) -0.974(1) -0.96820. . .
∆ed
σd

0.6 8.8 2.8 5.8

L 0.698(48) 0.690(7) 0.713(11) 0.689(7) 0.696049. . .

∆L 0.0002 -0.006 0.017 -0.007

TABLE I. Estimates of the critical energies and latent heat
for PM-10 using raw data set RS.

L 30 40 50 60 Exact

eo -1.665(17) -1.669(21) -1.666(3) -1.666(7) -1.66425. . .
∆eo
σo

0.0 0.2 0.6 0.2

ed -0.983(5) -0.992(9) -0.962(2) -0.969(3) -0.96820. . .
∆ed
σd

3.0 2.6 3.1 0.3

L 0.682(22) 0.677(30) 0.704(5) 0.697(10) 0.696049. . .

∆L -0.014 -0.019 0.008 0.001

TABLE II. Estimates of the critical energies and latent heat
for PM-10 using majority/minority data set MS.

eo and ed and latent heat for the 20-component Potts
model, PM-20. The quality of estimates is as good as
those in the case of the PM-10 model. Again, our data
show no noticeable dependence of the estimates on the
system size. In this case, the correlation length in the
critical point is much smaller at about 2.7 [24], and yet
we see no finite-size corrections in our estimates. In con-
trast, in our recent study on PM-10 and PM-20 [19] us-
ing the Wang-Landau algorithm in simulations and the
same MCPA algorithm as in the present research, the
finite-size corrections to the critical energies estimated
from the energy probability distribution show 1/L cor-
rections, as predicted by the analytics [25, 26].

L 30 40 50 60 Exact

eo -1.820(12) -1.821(11) -1.813(2) -1.821(15) -1.82068. . .
∆eo
σo

0.1 0.0 3.8 0.0

ed -0.616(3) -0.652(6) -0.606(26) -0.638(3) -0.626529. . .
∆ed
σd

3.5 4.2 0.8 3.8

L 1.204(15) 1.169(17) 1.207(28) 1.183(18) 1.19415. . .

∆L 0.010 -0.025 0.013 -0.011

TABLE III. Estimates of the critical energies and latent heat
for PM-20 using raw data set RS.

Discussion. — In contrast to binary classification in
the case of a phase transition of the second kind, our ap-
proach is based on ternary classification, using for train-
ing exactly known energies of the ordered phase eo and
disordered phase ed. To do this, we need to train the
neural network on samples modeled at a certain value
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L 30 40 50 60 Exact

eo -1.818(2) -1.824(17) -1.821(31) -1.819(8) -1.82068. . .
∆eo
σo

1.3 0.2 0.0 0.2

ed -0.632(1) -0.638(12) -0.657(7) -0.636(3) -0.626529. . .
∆ed
σd

5.5 1.0 4.4 3.2

L 1.186(3) 1.186(29) 1.164(38) 1.183(11) 1.19415. . .

∆L -0.008 -0.008 -0.030 -0.011

TABLE IV. Estimates of the critical energies and latent heat
for PM-20 majority/minority data set MS.

FIG. 5. Enlarged details of the left panel of the figure 4
showing small probability values with some features discussed
in the Discussion section. Potts model with 20 components,
PM-20 with grid size L = 60.

of energy e. For this purpose, we use the microcanoni-
cal population annealing algorithm (MCPA) [16, 17, 19],
which anneals a large population of the modeled system
in energy space. The trained network is used to classify
all samples taken at a given energy e into those that are
more likely to be in ordered, disordered, or mixed phase.
Thus, we can estimate the probability that a given sam-
ple belongs to one of the three phases. This protocol al-
lows us to estimate critical energies and latent heat with
reasonable accuracy.

At the same time, we found that the estimated proba-
bilities contain some information about the details of the
mixed phase. It is widely believed that there are four
phase transitions in the mixed phase, which is a random
mixture of ordered and disordered phases [14, 16]. In the
case of the Potts model, these are blobs that reflect the
ordered and disordered phases [27].

In the figure 5, the solid orange line corresponds to the
mixed phase probability PMS , the dotted green line cor-
responds to the disordered phase probability PDS , and
the dashed blue line corresponds to the ordered phase
probability POS . The rightmost peak of POS can be as-

sociated with the transition at energy e1(L) using the
notations of Rose and Machta [16]. It is associated with
the fluctuating droplets of OS phase within the DS sea,
which vanishes at ed. It is the precursor of the phase
transition from disordered phase DS to mixed phase MS,
as e1(L) → ed in the thermodynamic limit. By analogy,
the leftmost peak of POD can be associated with the tran-
sition at energy e4(L) and reflects DS droplets within the
emerging sea of OS phase. Again, e4(L) → eo and the DS
droplets completely vanishes at eo. So, the transitions at
e1(L) and e4(L) can be obtained only in the systems of
finite size, and are not real phase transitions.

More interesting is the presence of small extrema on
the DS and OS curves in the middle of the mixed phase.
They can be related to the wrapping clusters when DS
or OS droplets reach opposite boundaries of the system
and due to the periodic boundaries will “wrap” around
the torus. It is argued [14, 16, 27] that the transitions
at e2 and e3 < e2 associated with the wrapping droplet
OS and wrapping droplet DS, respectively, exist in the
thermodynamic limit. Note that the extrema shown in
our figure 5 are qualitatively similar to the extrema of
a very different function, the integrated autocorrelation
time shown in the Fig. 5 of the article [16].

It would be interesting to apply the phase probability
estimation method proposed in the Letter to a regular
analysis of the above pattern. With a possible demon-
stration of regular limits of e1(L) and e4(L) with increas-
ing L, and also a clear idea of droplet↔wrapping cluster
transitions.

The simulation was carried out using the high-
performance computing resources of the National Re-
search University Higher School of Economics.
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