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A B S T R A C T

This paper examines the relationship between opacity and frequency dependence of systematic
risk (𝛽), estimated over different horizons using Wavelet Transform, for small and large firms.
The findings provide evidence for the frequency-specific nature of opacity and suggest that
while opacity is positively related to the frequency dependence of beta for large firms at all
frequencies, for small firms the relationship is significant at low (long horizon) and insignificant
at higher (short horizon) frequencies.

. Introduction

Opacity, as defined by Gilbert et al. (2014), is the delay in processing information about the effect of systematic news on firm
alue. A firm is classified as opaque if the stock’s prices adjust to the arrival of new information with a delay and transparent if the
rices reflect information immediately Bloomfield and O’Hara (2000). As shown by Gilbert et al. (2014), this delay in adjusting new
nformation by opaque firms leads to lower volatility at high frequency (daily) and lower systematic risk (𝛽). In contrast, transparent
ssets adjust new information immediately, causing prices to change at high speed, leading to higher volatility and higher beta (high-
requency beta). Gilbert et al. (2014) further provides evidence that as we move toward low frequency (quarterly), information is
ully revealed and reflected in the prices of both opaque and transparent firms. Thus, opaque stocks have a high-frequency beta
ower than their low-frequency beta, and the opposite applies to transparent stocks. In other words, the difference between low and
igh-frequency beta for opaque stocks is negative, and for transparent stocks, it is positive. This difference in beta, in turn, may
ndicate the frequency dependence of systematic risk Bandi et al. (2021).

Although there is abundant literature available on both how information risk and opacity impact the cost of capital and beta of
firm (Barron and Qu, 2014; Barry and Brown, 1985; Barth et al., 2013; Cheynel, 2013; Christensen et al., 2010; Coles et al., 1995;
asley et al., 2002; Francis et al., 2005; Gray et al., 2009; Hughes et al., 2009; Lambert et al., 2007; Riedl and Serafeim, 2011), and
he possible reasons of frequency dependence of beta (Roll, 1981; Hawawini, 1983; Handa et al., 1989; Dimson, 1979; Scholes and

illiams, 1977; Lo and MacKinlay, 1990; Roll, 1984; Blume and Stambaugh, 1983; Longstaff, 1989; Levhari and Levy, 1977), the
ole of opacity and information risk in explaining frequency dependence of beta has not been investigated except by Gilbert et al.
2014). It is the only study that specifically relates the opacity of the firm with the frequency dependence of beta.

Gilbert et al. (2014) provide evidence that beta depends upon the underlying frequency of returns and that the beta estimated
sing daily returns differs from the beta estimated using quarterly returns. In addition, this variation in the values of estimated beta
s explained by the opacity of the given firm. Gilbert et al. (2014) argue that at high-frequency, prices of opaque firms adjust new
nformation with a delay; conversely, transparent firms adjust information immediately. Contrarily, at low frequency, information
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is known and adjusted into the prices for both opaque and transparent firms. This information structure and the opaque nature of
the firm are responsible for the variation in the values of estimated beta over different investment horizons or, in other words, the
frequency dependence of beta.

While Gilbert et al. (2014) provide evidence of a significant relationship between opacity and frequency dependence of beta for
arge and liquid firms, they do not provide any evidence of a similar relationship for small firms. In addition, while investigating
he frequency-dependent behavior of beta, their results are limited to quarterly frequency. They do not consider other frequencies
uch as monthly and weekly; their measure of frequency dependence of beta is based on the difference between quarterly and daily
eta.

Our study contrarily, extends beyond Gilbert et al. (2014) and investigates the relationship between opacity and frequency
ependence of beta over multiple frequencies. In contrast to Gilbert et al. (2014), instead of using time domain techniques (Capital
ssets Pricing Model (CAPM)) to estimate beta, we present a new perspective using wavelet analysis, which allows us to decompose
ata into several time scales without imposing any assumptions on the return series. In addition, unlike Gilbert et al. (2014), our
tudy divides the sample based on both size and opacity to conduct a thorough investigation of the size and opacity dynamics in
elation to the frequency dependence of beta. This study helps to deepen the understanding of the true nature of the relationship
etween opacity and frequency dependence of beta over different time scales. The results therefore should be of interest to both
ndividual investors with either short or long investment horizons, and to long-term investors such as superannuation funds and
nsurance companies.

. Data

The sample includes US-based common stocks traded on the New York Stock Exchange (NYSE), the American Stock Exchange
AMEX), and NASDAQ, and it covers a period of 32 years from 1991 through 2023 inclusive. Stock returns data for the year is
ompiled from the Data Stream daily database. Following the literature, REITs, American Depository Receipts (ADRs), closed-end
unds, and other securities are excluded. As a common practice, regulated utilities and financial firms are also excluded. Financial
irms are excluded because the assets and liabilities of these firms do not have the same meaning as non-financial firms and the high
everage that is normal for these firms most likely indicates distress in non-financial firms. Moreover, the CRSP daily value-weighted
ndex is used as a proxy for the market portfolio, which consists of all securities in the CRSP database, excluding ADRs.

Following Gilbert et al. (2014), arithmetic (multiplicative) returns have been calculated and used for empirical estimations and
tatistical testing instead of logarithmic (additive) returns. With logarithmic (additive) returns, market betas estimated across all
he different frequencies should be identical, provided there are no estimation errors. In addition, the excess return of security 𝑖 in

year 𝑡 is calculated as the return of stock 𝑖 in year 𝑡 minus the return of the risk-free security in year 𝑡. The risk-free rate of return
o calculate excess returns for securities and market is taken from the Kenneth French data library1. Following Gilbert et al. (2014),
e omit stocks that do not have at least 75% of the total observations in each year. In addition, for the calculation of abnormal
ccrual variance, data on receivables, revenue, total assets, plant property, and equipment is also obtained from Data Stream.

. Methodology

We use the Wavelet Transform proposed by Gencay et al. (2003) to estimate horizon-specific systematic risk. The Wavelet
ransform is based on two sets of functions, known as wavelet functions and scaling functions, representing high pass and low pass
ilters, respectively. The decomposition of a time series into its different frequency components is achieved by successive high-pass
nd low-pass filtering of the time domain data series. One of the simplest examples of Wavelet Transform is the Haar Wavelet,
hich can perform a multi-scale decomposition of return series such that the sum of decomposed components equals the original

eturns series. Following Gencay et al. (2003), the Haar Wavelet Transform2 is used to obtain a multi-scale decomposition of daily
ompany and market returns. Using these decomposed frequency-specific company and market returns in Eq. (1), 𝛽 for individual
tocks is estimated over six different scales. The interpretation of scales is such that scale one and scale two represent returns over a
orizon of two to four and four to eight days respectively; scale three and scale four are associated with returns over a time interval
f eight to sixteen and sixteen to thirty-two days respectively; scale five and scale-six is associated with returns over a horizon of
hirty-two to sixty-four and sixty-four to one twenty-eight days respectively. Following existing literature, Gilbert et al. (2014), a
ive-year return window is used to estimate betas over different frequencies.

𝛽𝐽 = 𝐸
[𝑥𝑙,(𝐽 )

𝑘∗2𝐽
, 𝑥𝑚,(𝐽 )

𝑘∗2𝐽
]

𝑣[𝑥𝑚,(𝐽 )
𝑘∗2𝑗

]
, (1)

in which, 𝛽𝐽 is the horizon-specific 𝛽, 𝑥𝑙,(𝐽 )
𝑘∗2𝐽

are horizon-specific company returns and 𝑥𝑚,(𝐽 )
𝑘∗2𝑗

are horizon-specific market returns
estimated using Wavelet Transforms.

1 https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
2 Kindly refer to Appendix for a detailed discussion of Haar wavelet transform.
2
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Furthermore, the estimated individual stock beta is then used to calculate the difference between low (scale six) and high (scale

ne) frequency beta, which is defined as

𝛥𝛽𝑖 = 𝛽𝑖,𝐿 − 𝛽𝑖,𝐻 , (2)

in which, 𝛽𝑖,𝐿 is the 𝛽 of the company 𝑖 at low frequency and 𝛽𝑖,𝐻 is the beta at high frequency.
While prior literature demonstrates the importance of time scale issues and horizons, standard methods of estimating beta do

not allow us to estimate horizon-specific systematic risk and it does not accommodate the multi-horizon nature of beta. On the
other hand, wavelet analysis is a natural tool to investigate horizon-specific properties of beta as it allows us to decompose returns
on a scale-by-scale basis. It deals with the limitations of the standard OLS method and accommodates the multi-horizon nature of
systematic risk. Thus, the main advantage of using wavelet analysis is the ability to decompose the data into several time scales
(investment horizons).

Financial securities markets are complex systems, which consist of heterogeneous investors that trade in the stock market and
make decisions over different time horizons depending on their savings and consumption needs. Therefore, the level of systematic
risk for all these heterogeneous investors varies with their investment. For instance, stock traders operate based on every minute,
every hour, every day, every month, or even every year. Thus, because of the different decision-making time scales among traders,
the true dynamic structure of the relationship between the frequency dependence of beta and opacity will vary over different time
scales associated with those different horizons. Economists and financial analysts have long recognized that there are several time
periods in decision-making, whereas economic and financial analyses have been restricted to at most two time scales (the short run
and the long run) because of the lack of analytical tools to decompose data into more than two time scales. However, unlike previous
studies, this paper uses wavelets to produce an orthogonal decomposition of systematic risk over several different time scales. In
particular, this feature of time scale decomposition enables us to examine the relationship between the frequency dependence of
beta and opacity at different investment horizons.

Moreover, to conduct a thorough investigation of the size and opacity dynamics concerning the frequency dependence of beta,
the entire sample is divided into four portfolios formed based on size and 𝛥𝛽. Where 𝛥𝛽 is calculated with the help of Eq. (2).
To construct portfolios, a bi-variate independent-sort procedure is used. In bi-variate independently sorted portfolios, the securities
are ranked separately based on any two attributes, and then, the intersection of two independently formed groups is used to form
portfolios.

Breakpoints are calculated each year based on median size and median 𝛥𝛽. Where based on size breakpoints, securities are
ranked large and small, and using 𝛥𝛽 breakpoints, the same universe of stocks is then ranked independently and divided into
transparent and opaque. Moreover, breakpoints of year 𝑡 − 1 are used to form portfolios for year 𝑡. Each year, stocks having a
value of size greater(smaller) than size breakpoints are categorized as large(small), and stocks with a value of 𝛥𝛽 greater (less) than
𝛥𝛽 breakpoints are grouped as opaque(transparent). Once all stocks are grouped into small, large, opaque, and transparent, four
portfolios are then constructed. Portfolios are constructed such that small-transparent portfolios have stocks at the intersection of
both small and transparent groups. The same is true for small-opaque, large-transparent, and large-opaque portfolios. Furthermore,
these portfolios are re-balanced at the end of each year and value-weighted returns are estimated for each portfolio.

Furthermore, panel data regression with time and firm fixed effects are used to investigate whether opacity explains the observed
difference in betas across different frequencies. The underlying proposition of this relationship is that opaque firms have higher 𝛥𝛽
(𝛽𝐿 - 𝛽ℎ) and transparent firms have lower 𝛥𝛽. The choice of panel data regression is guided by the availability of data on the
relevant frequency and is consistent with existing literature Gilbert et al. (2014). The dependent variable is 𝛥𝛽 and the independent
variable is opacity measured using AAV (abnormal Accruals Variance).

AAV is measured at an annual frequency (Gilbert et al., 2014; Jones, 1991). Other proxies that have been used in the existing
literature include co-variance of changes in earnings with stock returns Barth et al. (2013), managerial discretion (Hambrick and
Abrahamson, 1995), analyst following Lang et al. (2012), forecast accuracy Lang and Lundholm (1996) and choice of auditor Teoh
and Wong (1993). However, this study chooses AAV as the main proxy because it is extensively used in the existing literature and
its use is consistent with the recent literature on the subject Gilbert et al. (2014)3.

AAV is measured as the five-year rolling variance of discretionary accruals (DA). Theoretically, total accruals can be decomposed
into discretionary and non-discretionary Accruals as follows:

𝑇𝐴𝑖,𝑡 = 𝐷𝐴𝑖,𝑡 +𝑁𝐷𝐴𝑖,𝑡 (3)

DAi,t and NDAi,t refer to discretionary and non-discretionary accruals respectively. In addition, the non-discretionary accruals
are assumed to be explained by the model in Eq. (4) while the residuals represent discretionary accruals. The model borrows
from Dechow et al. (1995) also known as the Modified Jones model and is given in Eq. (4).

𝑇𝐴𝑅𝑖,𝑡 = 𝛼0 + 𝛽1(𝛥𝑅𝑒𝑣𝑖,𝑡 − 𝛥𝑅𝑒𝑐𝑖,𝑡)∕𝑇𝐴𝑖,𝑡−1 + 𝑃𝑃𝐸𝑖,𝑡∕𝑇𝐴𝑖,𝑡−1 + 𝜖𝑖,𝑡 (4)

in which 𝛥Revi,t is the change in revenue (sales), 𝛥Reci,t is the change in receivables, and PPEi,t is the value of property, plant, and
equipment for firm 𝑖 in year 𝑡. The residuals 𝜖i,t from the regression in Eq. (4) is the measure for DAi,t . Thus, the measure of AAV
is obtained by taking the five-year rolling variance of the DAi,t .

3 For robustness, managerial discretion was also used as a proxy of opacity. Results are found to be consistent with AAV.
3
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The empirical literature suggests other factors that may significantly influence a firm’s risk–return relationship. Therefore, the
anel regression analysis has included such factors as control variables. These include size (Sz) measured as the natural log of the
arket value of equity (MCap) of the firm 𝑖 in year 𝑡 − 1 (i.e., Szi,t−1 = ln(Mcapi,t−1)), average returns measured as yearly average

f scale two returns, and the difference of returns (i.e., 𝛥Ri,t−1) measured as scale six(scale five, scale four) returns minus scale
ne returns. Similarly, Amihud’s illiquidity measure-Illiquidity (ILLQ)- is used to control for firm-level differences in liquidity. This
easure is calculated based on yearly frequency.

Volume Turnover (TO) for each stock has also been used as a control variable for firm-level differences in liquidity. TO is the
atural log of the monthly average volume turnovers over 12 months in any sample year. Furthermore, before 2001, the stock
rices were quoted in fractions. However, after 2001 as a result of ‘‘decimalization’’, stocks were now required to be quoted in
ecimals. This change led to a tighter bid–ask spread and reduced transaction costs. To capture the effects of decimalization4 on
he relationship between opacity and frequency dependence of beta, an interaction term D×𝑂𝑝𝑎𝑐𝑖𝑡𝑦𝑖,𝑡−1 has been added to the panel
egression.

The empirical specification for the panel regression is given as follows:

𝛥𝛽𝑖𝑡 = 𝛼 + 𝛾1𝑂𝑝𝑎𝑐𝑖𝑡𝑦𝑖,𝑡−1 + 𝛾2𝐷 × 𝑂𝑝𝑎𝑐𝑖𝑡𝑦𝑖,𝑡−1 + 𝛾3𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑖,𝑡−1 + 𝜇𝑡 + 𝜇𝑗 + 𝜖𝑖,𝑡 (5)

here 𝛼 is the intercept term, 𝛾1, 𝛾2 and 𝛾3 are the estimated coefficients from the panel regression, D is the dummy variable which
akes a value of 1 if the year is < 2001 and 0 otherwise, 𝜇𝑡, 𝜇𝑗 represent time and firm fixed effects and 𝜖𝑖,𝑡 is the random error
erm with zero mean and constant variance.

. Empirical results

This section provides empirical evidence and documents a frequency-specific relationship between opacity and frequency
ependence of beta, where the relationship between opacity and 𝛥𝛽 holds true for large firms at all frequencies. For small firms, it
s significant at low and insignificant at high frequency.

We begin with the empirical analysis by examining whether market betas for small, large, opaque, and transparent firms change
s a function of the frequency of underlying returns. Drawing upon the findings of prior research, it is predicted that as we transition
rom high to low frequency, the market beta of small(opaque) firms will rise and that of large (transparent) firms will fall. This is
ecause large firms are generally more intensively traded, are followed by more analysts, and release information timely. Frequent
rading, extensive analyst coverage, and timely release of information, often lead to the transparency of firms. According to Gilbert
t al. (2014), prices of transparent firms adjust to new information immediately. Immediate adjustment of prices to new information
ill lead to higher fluctuations in stock prices at high frequency and, in turn, higher volatility. This high volatility will result in a
ecreasing beta for large firms whereas the opposite applies to small firms.

Five portfolios based on size and five based on 𝛥𝛽 are formed and rebalanced yearly from 1991 to 2023. The maximum number
f stocks in each size portfolio is 1337 and the minimum is 603, with the average number of stocks being 914. The maximum,
inimum, and average number of stocks for 𝛥𝛽 portfolios are 909, 491, and 710, respectively. Furthermore, value-weighted daily

eturns of these portfolios are calculated using individual daily returns recorded from the Data Stream. Implementing Wavelet
ransform on a scale of 1 to 6, using the past five years’ portfolio and market returns, frequency-specific beta is estimated for all
en portfolios. Three-dimensional graphs of average horizon-specific beta (averaged across time) for both size and 𝛥𝛽 portfolios are
iven in Figs. 1(a) and 1(b).

As seen from Fig. 1 , the systematic risk of opaque and small firms increases and that of transparent and large firms decreases
onotonically as we move from high to low frequency. These findings broadly support evidence from previous studies (Gilbert et al.,
014; Hawawini, 1983; Bandi et al., 2021). Moreover, the horizon-specific systematic risk varies not only across the delta beta and
ize dimension but also across the frequency dimension, and the change across both dimensions is significant. Small and opaque
tocks are sensitive to market fluctuations at low frequencies and large and transparent stocks are the opposite. As the systematic
isk at low-frequency capture fluctuations over a horizon of 64 to 128 days(i.e., longer than two months), the results suggest that
mall and opaque stocks are relatively more affected by the long-run dynamics.

Furthermore, Table 1 reports summary statistics for the stocks included in the five-size sorted portfolios. Table 1 shows that as
he market capitalization (size) increases, the delta beta of the firms in portfolios decreases. Based on evidence from Gilbert et al.
2014), a small value of delta beta indicates transparency and large value opacity. Therefore, this means that, in general, small
irms tend to be opaque and large firms transparent. Even though both Tables 1 and Fig. 1(a) indicate that small firms are opaque
nd large firms transparent, it can be seen from the 1st and 99th percentiles of 𝛥𝛽 given in Table 1, that there is substantial 𝛥𝛽
ariation within all size-based portfolios. Portfolio 1 (small) includes firms with significant negative 𝛥𝛽 and portfolio 5 (large) with
ignificant positive 𝛥𝛽. This variation confirms the existence of firms that are small(large) and transparent (opaque) at the same
ime.

Therefore, keeping in view the existence of firms that are both small and transparent (large and opaque) at the same time,
he entire sample is divided into four median portfolios double sorted based on size and 𝛥 𝛽 (i.e., small transparent [ST], small

4 The sample includes the significant event of the implemented rule of ‘‘decimalization’’ in 2001 when the U.S. Securities and Exchange Commission (SEC)
equired stocks to be quoted in decimals, such as $0.01 increments. This shift had impact on the financial markets and we conjecture if decimalization had
4

mpact on the link between opacity and 𝛥𝛽.
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Fig. 1. Horizon specific 𝛽 of portfolios based on size and 𝛥𝛽: This figure shows horizon specific 𝛽 of portfolios based on size and 𝛥𝛽. Where figure(a) shows
a three-dimensional plot of horizon specific 𝛽 for quintile portfolios that are sorted based on size and figure(b) shows a three-dimensional plot of horizon specific
𝛽 for quintile portfolios that are sorted based on 𝛥𝛽 for the sample period of 1991 to 2023. Quintile portfolios are constructed using market capitalization and
𝛥𝛽 of individual stocks. Where portfolio one in size-based portfolios consists of small and portfolio five comprised of large stocks. Moreover portfolio one of 𝛥𝛽
portfolios consists of Transparent and portfolio five comprised of Opaque stocks. Using past daily returns of 60 months, horizon-specific 𝛽 is then estimated for
all 10 portfolios with the help of the below-given equation.

𝛽𝐽 = 𝐸
[𝑥𝑙,(𝐽 )𝑘∗2𝐽 , 𝑥

𝑚,(𝐽 )
𝑘∗2𝐽 ]

𝑣[𝑥𝑚,(𝐽 )𝑘∗2𝑗 ]
.

opaque [Sop], large transparent [LT], and large opaque [Lop]). Table 2 reports the summary statistics (pooled averages) of the
stocks included in the mentioned portfolios. In general, while 𝛥 𝛽 takes a negative value for both small and large transparent, it
is positive for opaque firms. Overall, variations in values of 𝛥 𝛽 with the changing scale are observed for constituents of all four
portfolios. This provides evidence for the frequency-specific nature of 𝛥 𝛽.

In addition, this section estimates horizon-specific beta and the difference in beta across different frequencies for all four
portfolios. The plots are given in Fig. 2. Figs. 2(a) and 2(b), based on wavelet beta, reveal that as we move from high to low
frequency, there has been a marked increase in the magnitude of systematic risk for opaque firms, both large and small, whereas
a considerable decrease for large transparent firms. What stands out is the general pattern of systematic risk for small transparent
firms. Where, in contrast to theory and expectation, instead of decreasing, the beta value significantly increased as we transitioned
from high to low frequency.

Furthermore, Table 3 reports 𝛽 and 𝛥𝛽 for all four portfolios across different frequencies. Based on empirical evidence provided
by Gilbert et al. (2014), a negative 𝛥𝛽 for transparent and positive 𝛥𝛽 for opaque firms is expected. Consistent with the expectation,
5
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Table 1
Summary statistics of size portfolio constituents: This table reports summary statistics for the constituents of five portfolios based
on size. The portfolios are re-balanced annually, and 𝛽 is estimated for different scales with the help of a wavelet transform using
past five-year returns. Where 𝛽1 corresponds to scale one and 𝛽6 to scale six 𝛽, 𝛥𝛽1 = scale six minus scale one 𝛽; 𝛥𝛽2 = scale
five minus scale one 𝛽 and 𝛥𝛽3 = scale four minus scale one 𝛽 and Mcap represents market capitalization of the Constituents of
the size portfolios.

Summary statistics for constituents of size portfolio
Small Q2 Q3 Q4 Large

Small Q2 Q3 Q4 Large
# of firms 914 914 914 914 914
𝛽1 0.40 0.71 0.96 1.04 1.08
𝛽2 0.45 0.75 0.98 1.08 1.12
𝛽3 0.53 0.82 1.04 1.14 1.14
𝛽4 0.62 0.91 1.10 1.18 1.16
𝛽5 0.72 0.96 1.14 1.18 1.16
𝛽6 0.84 1.10 1.30 1.34 1.24
𝛥𝛽1 0.44 0.39 0.34 0.30 0.15
𝛥𝛽2 0.32 0.24 0.18 0.14 0.08
𝛥𝛽3 0.22 0.19 0.14 0.14 0.08
Mcap ($mil) 17 80 245 748 9862
𝛥𝛽1:1st −1.63 −1.36 −1.21 −1.05 −0.92
50th 0.45 0.37 0.31 0.27 0.13
99th 2.48 2.25 1.98 1.79 1.30

Table 2
Summary statistics for the Constituents of double sorted portfolios based on 𝛥𝛽 and size: This table reports
summary statistics for the constituents of size and 𝛥𝛽 portfolios. Where 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5 and 𝛽6 are the 𝛽
estimated using scale one, scale two, scale three, scale four, scale five and scale six returns respectively, 𝛥𝛽1 is a
difference of scale six and scale one 𝛽, 𝛥𝛽2 difference of scale five and scale one 𝛽, 𝛥𝛽3 difference of scale four
and scale one 𝛽, ST is a portfolio which comprised of firms that are both small and transparent, SOp is small
Opaque, LT large Transparent and LOp large Opaque.

Summary Statistics for constituents of double sorted portfolios based on 𝛥𝛽 and size
ST SOp LT LOp

ST Sop LT Lop
# Firms 476 699 804 576
Mcap($mil) 106 83 6922 3618
𝛽1 0.90 0.73 1.11 1.13
𝛽2 0.84 0.78 1.11 1.20
𝛽3 0.90 0.87 1.12 1.25
𝛽4 0.97 1.00 1.15 1.30
𝛽5 1.01 1.10 1.14 1.32
𝛽6 0.70 1.95 0.94 2.07
𝛥𝛽1 −0.20 1.22 −0.17 0.95
𝛥𝛽2 0.10 0.37 0.03 0.19
𝛥𝛽3 0.07 0.27 0.03 0.17
𝛥𝛽1: 1st −2.29 0.13 −1.42 0.06
50th −0.09 1.03 −0.11 0.79
99th 0.51 3.97 0.51 3.10

small and large opaque firms recorded positive whereas large transparent firms documented negative 𝛥𝛽. However, small transparent
irms surprisingly reported a positive value for 𝛥𝛽 across all horizons instead of a negative value. Further, Table 3 also confirms
he horizon-specific nature of opacity revealed by Table 2 where 𝛥𝛽 for all given portfolios changes with the varying frequency of
eturns.

Based on the results discussed above and findings of Gilbert et al. (2014), it can be said that the beta for transparent firms
opaque) will increase (decrease) as we transition from high to low frequency. Similarly, for large firms’ the value of beta will rise
nd for small it will fall as we move from high to low frequency. In the case of large firms, the plots given in Fig. 2 are consistent
ith the findings of Gilbert et al. (2014) (i.e., beta is overall increasing for large opaque and decreasing for large transparent as
e move from high to low frequency). However, surprisingly, for small firms, whether opaque or transparent, their beta follows

he same increasing trend as we move from high to low frequency. Consistent with the expectations, if opacity was the driving
orce behind the frequency dependence of beta, then the beta of small transparent firms should have decreased from high to low
requency. Thus, these somewhat contradictory findings imply that in the case of small firms, opacity may not be responsible for
he frequency dependence of beta.

In addition, the given tables and plots offer compelling proof that, regardless of how transparent or opaque a firm may be, if it
s small, its systematic risk will increase as we move from high to low frequency (i.e., it will have a lower high-frequency beta as
ompared to its low-frequency counterpart and in turn a negative delta beta). According to Gilbert et al. (2014) negative delta beta is
6

ssociated with opaque firms and indicates a delay in adjustment of prices to new information which means small firms will diffuse
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Table 3
Horizon specific portfolio 𝛽 and 𝛥𝛽 based on wavelet transform ; This table shows horizon-specific portfolio 𝛽 and the difference of 𝛽 estimated with the help
of a wavelet transform using daily portfolio returns of the years 1991 to 2023. Where 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5 and 𝛽6 are the 𝛽 estimated using scale one, scale two,
scale three, scale four, scale five and scale six returns respectively, 𝛥𝛽1 is a difference of scale six and scale one 𝛽, 𝛥𝛽2 difference of scale five and scale one
𝛽, 𝛥𝛽3 difference of scale four and scale one 𝛽, ST is a portfolio which comprised of firms that are both small and transparent, SOp is small Opaque, LT large
Transparent and LOp large Opaque.

Horizon specific 𝛽 and 𝛿𝛽 for double sorted portfolios
𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛥𝛽1 𝛥𝛽2 𝛥𝛽3

ST 1.03 1.00 1.05 1.10 1.09 1.06 0.03 0.06 0.07
Sop 0.96 1.00 1.11 1.18 1.19 1.62 0.66 0.23 0.22
LT 1.10 1.08 1.03 1.00 1.03 0.99 −0.11 −0.06 −0.09
Lop 1.16 1.22 1.21 1.25 1.23 1.55 0.39 0.06 0.09

Fig. 2. Wavelet Portfolio Beta: This figure reports the average Wavelet betas for portfolios that are sorted based on size and 𝛥𝛽 as small transparent, small opaque,
large transparent, and large opaque from𝑡 = 1991 to 2023. Firms are first sorted into four portfolios based on both size and 𝛥𝛽 and portfolio 𝛽 is then estimated across
different horizons using wavelet transform.

information at a much slower speed as compared to a large firm. These findings confirm the results of Hong and Stein (1999), who
argue that private information diffuses slowly for small firms; this gradual information diffusion is believed to be the root cause of
under-reaction. In other words, this shows opacity is not relevant for small firms in the context of frequency dependence of beta.
The frequency dependence of beta in small firms is probably because of its small size and not because of opacity.

4.1. Panel regression

To deepen the knowledge of the frequency dynamics of opacity and size-based portfolios and to test the effect of opacity on beta
measured at different frequencies this section now turns to panel regression analysis. Based on median size (log Mcap) and median
opacity (calculated as 𝛥𝛽), the entire sample is first sorted into four portfolios: Small Transparent, Small Opaque, Large Transparent,
and Large Opaque. Where, a small(large) transparent portfolio consists of firms that are both small (large) and transparent, a
small(large) opaque portfolio is made up of firms that are both small(large) and opaque at the same time.

After grouping firms into the aforementioned portfolios, panel regression analysis is performed for each portfolio with the help
of Eq. (5) using three different dependent variables estimated based on Wavelet Transform (i.e., scale-six minus scale-one beta; scale-
five minus scale-one beta; and scale-four minus scale-one beta, henceforth 𝛥𝛽1, 𝛥𝛽2, 𝛥𝛽3). In addition, to account for time-invariant
unobserved heterogeneity, both time and firm fixed effects were used.

The independent variable is opacity, measured as the variance of abnormal accruals with the help of Eq. (4). Following Gilbert
et al. (2014), residuals are first obtained from the estimation of the expected accrual model of Jones (1991) given in Eq. (4). The
five-year rolling variance of these residuals is then estimated and used as a proxy for opacity. It is expected that the higher the
variance of abnormal accruals, the more opaque the firm will be. Moreover, to investigate the effects of decimalization on the
relationship between opacity and frequency dependence of systematic risk, a dummy variable is used. The dummy variable takes a
value of 1 if the year is less than 2001 and 0 otherwise. The primary coefficient of interest in terms of the effects of decimalization
on the relationship of opacity and frequency dependence of beta is 𝛾2. In addition, a set of controls is also used, which is explained
in detail in the methodology section. All variables are winsorized by 1% to minimize the influence of outliers.

The findings reported in Table 4 based on regression Eq. (5), depict that in the case of small transparent and opaque firms,
opacity is positively related to the frequency dependence of beta only at scale six (64 to 128 days). The relationship is insignificant
on both scale five and scale four. Moreover, ILLQ is the only significant (negative) variable for small transparent firms at scales five
7
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Table 4
𝛥𝛽 panel regressions: This table reports results of a panel regression (given below) of annual, firm-level 𝛥𝛽1 𝛥𝛽2 𝛥𝛽3 (i.e.the difference between 𝛽6 and 𝛽1, 𝛽5
and 𝛽1, 𝛽4 and 𝛽1) onto a measure of opacity and lagged controls such as size, volume turnover (TO). where 𝛽6(𝛽5, 𝛽4, 𝛽1) is 𝛽 estimated at the end of every
year (t) using Scale6 (Scale5, Scale4, Scale1) returns over the previous 60 months (i.e. years t4 to t). Ret is the average return estimated over scale 2. Where
scale 2 represents a horizon of 4 to 8 days. AAV stands for Abnormal accrual variance which is the five-year rolling variance (t5 to t1) of the residual from
estimating the expected accrual model by Jones (1991). D is a dummy variable that captures the effect of decimalization on the relationship between opacity
and frequency dependence of beta. It takes a value of 1 if year <2001 and 0 otherwise. ILLQ is the measure of illiquidity from Amihud (2002) and is calculated
based on the previous year (t1). To be included, a stock is required to trade at least 75% of trading days in a year. The sample period is 1993–2024. T-stats
clustered on firm and year are reported in parentheses. Panel (A) reports results for the Small Transparent portfolio and Panel(B), (C), and (D) for Small Opaque,
Large Transparent, and Large Opaque respectively. 𝛥𝛽𝑖 𝑡 = 𝛼 + 𝛾1𝑂𝑝𝑎𝑐𝑖𝑡𝑦𝑖,𝑡−1 + 𝛾2𝐷 × 𝑂𝑝𝑎𝑐𝑖𝑡𝑦𝑖,𝑡−1 + 𝛾3𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑖,𝑡−1 + 𝜇𝑡 + 𝜇𝑗 + 𝜖𝑖,𝑡.

Panel A: Small transparent Panel B: Small opaque Panel C: Large transparent Panel D: Large opaque

𝛥𝛽1 𝛥𝛽2 𝛥𝛽3 𝛥𝛽1 𝛥𝛽2 𝛥𝛽3 𝛥𝛽1 𝛥𝛽2 𝛥𝛽3 𝛥𝛽1 𝛥𝛽2 𝛥𝛽3
AAV 0.042* −0.014 −0.008 0.088** 0.017 −0.004 0.092* 0.079* 0.017 0.084* 0.082** −0.000

(1.65) (−0.65) (−0.57) (2.05) (0.46) (−0.18) (1.82) (1.76) (0.54) (1.76) (2.11) (−0.00)
D ×AAV −0.014 0.029 −0.012 −0.082 −0.020 0.016 −0.081 0.095 −0.107 −0.029 0.019 0.020

(−0.19) (0.52) (−0.30) (−0.68) (−0.26) (0.28) (−0.51) (0.72) (−1.21) (−0.24) (0.19) (0.29)
Size −0.060* −0.022 −0.037* −0.026 −0.044* −0.014 −0.028 −0.022 −0.004 −0.027 −0.003 −0.024

(−1.74) (−0.75) (−1.87) (−0.92) (−1.87) (−0.94) (−1.17) (−1.05) (−0.29) (−0.79) (−0.13) (−1.32)
TO 0.171 0.064 −0.019 0.139** 0.076 0.030 0.219 0.263** 0.162** 0.439*** 0.210** 0.171***

(1.40) (0.65) (−0.28) (2.31) (1.45) (1.08) (1.48) (2.24) (2.02) (3.43) (2.12) (2.70)
ILLQ −0.007 −0.008** −0.006*** 0.001 0.001 −0.002 −0.186 0.577** 0.435** 0.232 0.514* 0.047

(−1.58) (−2.22) (−2.64) (0.40) (0.43) (−1.46) (−0.55) (2.02) (2.42) (0.70) (1.89) (0.25)
Ret −1.033 −1.842 −1.579 2.123 −1.689 0.237 0.154 −5.793** 0.125 −6.134 −2.437 −0.081

(−0.27) (−0.61) (−0.77) (0.73) (−0.73) (0.16) (0.05) (−2.09) (0.07) (−1.58) (−0.87) (−0.04)
𝛥𝑅1 0.027 1.143 −0.406 0.443

(0.02) (1.29) (−0.47) (0.47)
𝛥𝑅2 −0.485 −0.056 −0.346 0.539

(−0.44) (−0.06) (−0.37) (0.49)
𝛥𝑅3 0.291 1.167 0.760 2.961***

(0.27) (1.51) (0.85) (3.08)
Fixed effects YES YES YES YES YES YES YES YES YES YES YES YES
N 8645 8645 8645 9547 9547 9547 9808 9808 9808 8871 8871 8871
adjR2 0.245 0.309 0.276 0.237 0.260 0.260 0.242 0.261 0.282 0.290 0.310 0.280

*** Indicate significance at the 1% level.
** Indicate significance at the 5% level.
* Indicate significance at the 10% level.

and four. Conversely, for large transparent and opaque firms, the coefficient for AAV is positive and significant at scale six and scale
five (32 to 64 days) and insignificant at scale four (16 to 32 days). Furthermore, it is clear from Table 4 that all the coefficients
for the interaction term are insignificant. This means decimalization does not affect the relationship between opacity and frequency
dependence of beta. These results show that, in general, for large firms, opacity is responsible for the frequency dependence of
beta at both low and high frequencies. Whereas for small firms, while opacity leads to the frequency dependence of beta at low
frequencies, at high frequencies, the observed frequency dependence of beta is not caused by opacity but rather stems from liquidity.

A possible explanation for these contradictory results may be that small transparent firms are transparent and small at the same
ime. As they are transparent, there ought to be no information asymmetry for these firms, thus, they should be liquid Jiang et al.
2021). However, their small size makes them less desirable and less frequently traded. Therefore, even though they are transparent
y nature, the information diffuses at a slower speed because of lower volume and lower liquidity. Hence, in small firms, low volume
nd size are generally responsible for the frequency dependence of beta, not the opacity.

. Conclusion

Opacity has gained increasing attention from academics and practitioners over the last two decades to understand the relationship
f opacity to investors’ behavior, asset prices, and welfare Sato (2014). This study examines the relationship of opacity to the
requency dependence of beta. The findings suggest that depending on how opaque or transparent a firm is, the value of its market
isk can increase or decrease across different investment horizons. Contrary to prior literature Gilbert et al. (2014) we provide
vidence that for small firms the relationship between opacity and frequency dependence of beta is insignificant.

We also confirm the positive relationship between liquidity and frequency dependence of beta. A positive relationship means
n increase in the liquidity of a firm leads to an increase in the value of delta beta, where a higher value of delta beta, in turn,
ndicates opacity. This positive relationship between liquidity and opacity observed and documented in this study provides empirical
vidence for the theoretical explanation of Dang et al. (2010). Theoretically, a perfectly opaque asset could be very liquid as there
re no informed traders and in turn, there is no adverse selection problem. In addition, a possible explanation for these results might
e that opacity leads to higher trading volume as because of its opaque nature, investors will have conflicting views regarding the
rue value of the security and will tend to trade more frequently. Therefore, trading volume will have a positive relationship with
8

pacity Flannery et al. (2013).
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Practical implications of our findings suggest that while assessing security or selecting assets for a portfolio, one should consider
he frequency dimension of risk. In the spirit of a CAPM model augmented with a factor based on opacity by Gilbert et al.
2014) we advocate for an investment horizon being important factor in the CAPM. Thus, ignoring this investment horizon factor
reates a misspecified model leading to biased estimates of systematic risk and in turn biased estimates for cost of capital. The
requency-dependent CAPM capturing investment horizon, advocated in this study, is a step toward measuring systematic risk more
ccurately.
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Appendix. Wavelet transform

Haar Wavelet is a filter of length 𝐿 = 2 which consists of wavelet (high-pass) filter coefficients ℎ0 = 1∕
√

2 and ℎ1 = −1∕
√

2 and
scaling (low-pass) filter coefficients 𝑔0 = 1∕

√

2 𝑔1 = 1∕
√

2. Applying wavelet and scaling filters to a data series allows us to separate
the low-frequency components of the data series from its high-frequency (rapidly changing) components. After applying the Haar
Wavelet filter coefficients ℎ0 and ℎ𝑙 to a return series, the following wavelet coefficients are obtained.

√

2𝑤1𝜏 = ℎ0𝑟𝑡 + ℎ1𝑟𝑡−1 (A.1)

When 𝑡 = 0, 1,… , 𝑇 − 1
Where wavelet coefficient 𝑤1𝜏 are the coefficients at level one and time 𝜏 and are the weighted difference between consecutive

blocks of returns. Whereas
√

2 is necessary to preserve the variance of the original data. Moreover, the time in Wavelet Transforms
iffers from the time in the time domain. It represents the shifting of wavelet function in time and is separated by multiples of
𝑗(i.e., 𝜏 = 𝑘× 2𝑗 where k = 1,2,3. . . .). Furthermore, applying Haar scaling filter coefficients 𝑔0 and 𝑔1 to return series produces the
caling coefficients.

√

2𝑣1𝜏 = 𝑔0𝑟𝑡 + 𝑔1𝑟𝑡−1 (A.2)

where 𝑡 = 0, 1,… , 𝑇 − 1
One of the crucial parameters in wavelet analysis is ‘‘Scale’’. Scale is represented by j, which can take values of 1,2. . . . . . J.

High scale (low frequency) corresponds to non-detailed information of a data series that usually spans the entire data series. In
contrast, low scale (high frequency) is related to detailed information about a hidden pattern in the time series that usually lasts
for a relatively short time.

In practice, the Haar Wavelet Transform is implemented using a pyramid algorithm. After applying Haar Wavelet and Haar
Scaling filter coefficients to the original data series, a series of high-frequency and a series of low-frequency components can be
obtained. The idea of the pyramid algorithm is to further decompose the scaling coefficients 𝑣1𝜏 (low-frequency components) into
high and low-frequency components to obtain 𝑤2𝜏 and 𝑣2𝜏 . For instance, in order to obtain wavelet coefficients 𝑤2𝜏 based on
frequencies 1/8< f ≤ 1/4 and scaling coefficient 𝑣2𝜏 based on frequencies 0 ≤ f ≤ 1/8, the Haar wavelet and Haar scaling filters
from Eq. (A.1) and Eq. (A.2) can be applied to scaling coefficient 𝑣1𝜏 (instead of returns). The same procedure can be repeated for
each subsequent scaling coefficient until level J, where J is the largest number of scales or levels for a given wavelet transform. Thus,
the final collection of wavelet and scaling coefficient can be written as W = (𝑤1, 𝑤2, . . . .𝑤𝐽 𝑣𝐽 ). The frequency interval associated

ith wavelet coefficients from level 𝑗 = 1, 2.....𝐽 can be written as 1∕2𝑗+1 < f ≤ 1∕2𝑗 . Whereas, the frequency interval related to the
caling coefficients from level 𝑗 = 1, 2.....𝐽 is denoted by 0 ≤ f ≤ 1∕2𝑗+1.
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