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Abstract. The interpretation of deep learning models is a rapidly growing field,
with particular interest in language models. There are various approaches to this
task, including training simpler models to replicate neural network predictions and
analyzing the latent space of the model. The latter method allows us to not only
identify patterns in the model’s decision-making process, but also understand the
features of its internal structure. In this paper, we analyze the changes in the internal
representation of the BERT model when it is trained with additional grammatical
modules and data containing new grammatical features (polypersonality). We find
that adding even a single grammatical layer causes the model to separate the new
and old grammatical systems within itself, improving the overall performance on
perplexity metrics.

Keywords: BERT · Latent Space · Interpretation of the Language Model ·
Topological data analysis

1 Introduction

A common approach to many NLP tasks nowadays is to fine-tune pre-trained lan-
guage models based on the Transformers architecture [1]. As a result, the attention
of researchers is highly attracted to their ability to generalize with only relatively small
amounts of data from a specific domain. In the case of large language models, we can
talk not only about small amounts, but also missing data, since models like ChatGPT
are known to be capable of solving problems that were not directly encountered during
the learning phase. For example, Wei and co-authors used it to solve the problem of
extracting information in a zero-shot setting [2] and found that ChatGPT is sometimes
capable of outperforming full-shot models in such tasks.

ChatGPT is sometimes capable of outperforming full-shot models in such tasks.
In addition to the widespread use of Transformers in solving applied problems,

another consequence of such interest is a large number of studies dedicated to the prob-
lem of understanding a model’s decision-making process and its representative internal
geometry. For example, Anelli and co-authors [3] investigated the characteristics of the
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latent space inside the BERT model from the point of knowledge graphs in order to
understand the type and form of information contained in the model.

One of the areas in research on the geometry of language models’ internal space is
the study of their adaptation to new or unusual grammatical situations and categories. For
example, Chistyakova and Kazakova, in their work [4], investigated changes in BERT
learning process and performance in a scenario with a “broken” version of Russian,
where there is no gender agreement between adjectives. They found that although the
quality of the “broken” model slightly decreases according to the goal metric, it is still
capable of adaptation to new data properties.

In our work, we aim to investigate the change of a model’s latent space w.r.t. an
unexpected new grammatical feature. We will do this by adding a new feature consistently
and logically to the textual data, rather than contrasting a “broken” and “normal” model.
Our goal is to leave the model with the opportunity to learn a new system, and to explore
the learning outcomes in terms of a target metric and internal geometry of the latent
space. By selecting a specific grammatical category and consistently changing it in the
data while keeping everything else unchanged, we will be able to fine-tune a selected
model (it is also BERT as we are following the stream of aforementioned research) and
draw conclusions about its ability to adapt to the new grammatical context.

2 Literature Review

2.1 Interpretable Machine Learning

The field of interpretable machine learning (IML), also known as explainable artifi-
cial intelligence, has a long history. Despite this fact even the definition of these terms
remains debatable. For example, Murdoch with co-authors [5] defines IML as the abil-
ity to extract “relevant knowledge” from the machine-learning model (where relevant
means providing an essential insight appropriate for the particular audience). Another
definition can be found in the paper of Doshi-Velez and Kim [6] where they under-
stand interpretability as “the ability to explain or to present in understandable terms to
a human”. It is easy to see that while the first variant has nothing to do with the ground
causes of concrete decisions; the second one operates with the terms of explanations and
understanding. However, there are many researches postulating the latter to be a separate
concept named “explainability”.

Although the variety of definitions makes utilizing such concepts difficult, there
is much research dedicated to this topic written throughout the lifetime of machine
learning. In the beginning they were mostly connected to the statistical origin of the
“classical” machine learning methods such as linear regression or SVM. Then it was
the interpretability that provided the reason for using models due to their ability to
discover connections undetectable by humans. Although such models are initially inter-
pretable, there have been several studies on ways to keep them so in cases of manipula-
tion with data or model structure. For example, Flanders with co-authors [7] provides a
method of interpreting results of linear regression models in case of dependent variable
transformation.

IML has been a popular topic since the very beginning of machine learning. However,
it has become particular importance since the dramatic increase in development of neural
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networks and especially large language models. Nowadays models are often treated
as black boxes with an unexplainable decision-making logic that contradict the main
ideas of IML. For this reason, there is an increasing demand in research devoted to the
interpretation and identifying the boundaries of awareness of such models. For example,
Clark with co-authors [8] made an attempt to provide attention mechanism interpretation
and Hewitt and Manning [9] probed BERT for its syntax understanding.

2.2 Latent Space Geometry

The study of latent space geometry is a broad field of research concerned with finding
model internal structures that guide the model learning and “thinking” process. However,
these structures can be arbitrarily complex and noisy – especially when the model is not
regularized and has less intrinsic biases.

Therefore various techniques that aim to explore these representations’ geometry
have been proposed. Cai et al. [10] explores the isotropy of contextual embeddings
layerwise and find that although transformer embeddings tend to clusterize within a
cone [11], they keep locally isotropic, and their further regularization and whitening
improves their quality even further [12]. Coenen and co-authors [13] find evidence that
BERT fine-grained representations of semantics and syntax are encoded in a different
manner. While semantics are encoded in a low-dimensional space, syntax tends to be
expressed in a tree-structure encoded via associating directions in the latent space with
the respective syntactic relations.

There have also been various attempts to study contextual language models’ rep-
resentations using algorithms from topological data analysis. Rathore and co-authors
[14] explore the change in embeddings on various layers during fine-tuning and find that
“fine-tuning changes the topological structures of embeddings in higher layers more than
in lower layers” which is in line with attributing the main interpreting function to them
while lower layers serve as a feature encoder and selector. Meirom and Bobrowski [15]
encode multilingual sentences in terms of their equivalent translated sentence distance
matrices where each matrix encodes distances between embeddings of the respective
words, and show that “geometric and topological structures of sentences are preserved
to a significant level across languages”.

3 Experiments

3.1 Model Architecture

We experimented with two models. The first model consists of two blocks. The first
block is RuBERT pre-trained on the standard version of the training corpus in advance.
This block is frozen during training as we do not want RuBERT to acquire information
about polypersonality.

The second block is an MLM head with two linear layers (projection matrix and
an output embedding layer namely) with a GeLU activation function and a layer norm
in between. The output embedding weights are tied to the RuBERT input embeddings,
with only the bias term being trained. According to Inan et al. [16], the projection of
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model representations onto the embedding matrix from the first layers does not cause a
decrease and may even improve the model performance in deep autoregressive language
models while keeping the number of parameters less by a substantial amount. This helps
make the training process more efficient, significantly reducing memory usage.

The second model includes an extra layer placed in between the BERT and the
projection matrix. It is an LSTM layer, which is supposed to model and interpret infor-
mation about polypersonality better than general MLP. It is present only in the second
model, as we wanted to see if it is necessary to train a more complex model or training
a model with just one linear layer before the output embeddings would be sufficient.
It also provides us with a comparison for change in representation geometry between
various model layers given the same input.

3.2 Data

To conduct our experiments, we created a set of minimal pairs. These pairs consist of an
example from a standard language and an example that has been generated by adding a
grammatical feature to it.

The first step in our study was to determine which grammatical category to add.
To draw confident conclusions about feature localization, this feature has to be marked
unambiguously and be absent from the language. Moreover, the addition of this category
should not result in creation of new tokens as this requires training a new tokenizer. As
a result, we chose adding polypersonal agreement to Russian.

In languages with polypersonal agreement, the verb agrees with more than one
of its arguments. To create a modified version of the Russian language that includes
polypersonal agreement, we have added an affix to each transitive verb that has a direct
object. The affix is present only if the object is expressed as a noun or pronoun.

The affix is chosen based on the person and number of the object. For example, to
add polypersonality to the sentence она слышала каждое слово (ona slishala kazhdoje
slovo) (tr. She heard every word),we add affix -ет (-jet) as a suffix: она слышалает
каждое слово (ona slishalajet kazhdoje slovo).

These affixes vary depending on the conjugation of the verb. Before choosing the
affixes, we analyzed the behavior of the BERT-Small tokenizer and found a paradigm
that causes minimal changes to the tokenization of verbs, which turned out to be the first
conjugation paradigm.

We also experimented with another approach when the same affix is added as the
prefix of the verb, for example, она етслышала каждое слово (ona jetslishala kazhdoje
slovo). We suppose that as the number of words that start with verb subject affixes is
low, it may present rather more unusual setting for the model both in terms of tokeniza-
tion, sequence length and linguistic preferability (both phonetically and syntactically as
inflectional categories are generally encoded suffixally in Russian) while expressing the
same linguistic category.

Note that we could have experimented with any other grammatical feature. However,
we aimed to seek for changes in resulting BERT latent space geometry without changing
its tokenizer but still providing it with a completely new grammatical feature for the
selected language. That is why we found polypersonal agreement as a suitable option
for our purposes.
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The data we used were obtained from a collection of fiction texts from the Internet.

3.3 Experiment Design

At first, in order to adapt the model to our data, RuBERT was pretrained for 10 epochs
with all the layers unfrozen on MLM task using regular Russian sentences and modified
polypersonal Russian sentences mixed in equal amounts. To localize modeles’ knowl-
edge and change in its representations of the selected grammatical feature, we propose
an experiment.

We design settings that differ by a parameter and take measurements in each of
them respectively: base and polypersonal sentences with another split in the position of
polypersonal affix – at the very beginning of the word (prefix position) or at the end
(suffix position). It should be noted that suffix and prefix settings are represented by
the independent models trained on the respectively preprocessed texts. The equality of
training parameters, architecture and the training set besides difference in polypersonal
agreement marking lets us compare them both in terms of perplexity and representations.

After training we measured the pseudo-perplexity of the obtained model on a 10.000
sentence sample from a test dataset using PLL-word-l2r scorer [17] where the perplexity
of the words tokenized into multiple parts is measured with the right parts masked. As
noted in [17], it provides a more accurate estimate of perplexity on multi-token and low-
frequency words. This is crucial for us as most of our target words are indeed multi-token.
The estimated perplexity of a sentence is an average of its constituent tokens.

We also sample 1000 sentences from the test dataset to estimate a difference in vector
representations between settings and outputs of model layers. We suppose that the trained
block is capable of better differentiating base and polypersonal sentences in terms of
their representations in its latent space. The estimate of layer-setting difference is given
by the bottleneck distance [18] between persistent diagrams сonstructed using Vietoris-
Rips filtration [19] for each token vector representation taken after the respective layer.
We compare them against each other together with the pretrained model outputs before
polypersonal fine-tuning. The final estimate is given by averaging over all the sentences.

The bottleneck distance gives us an estimate on the max norm difference of layer-
setting topology that is persistent with respect to small perturbations and noise in the
internal latent space [18].

Also, 2000 samples were chosen for layer-wise analysis of polypersonal inflection
prediction using Ecco [20]. In this experiment, models’ inference was performed on
samples with masked polypersonal inflections. Each layer outputs were passed through
either:

a) fine-tuned MLM head,
b) combination of LSTM and MLM head.

We analyzed the probability and rank of the correct inflection token for prediction
in each setup.
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4 Results

4.1 Perplexity

In terms of perplexity (results are summarized in Fig. 1 below), there is a general pattern
across all variants of the model, including the initial checkpoint: perplexity in texts
with polypersonality is higher than in standard Russian. However, for models fine-tuned
within the framework of the experiment, the difference between the metrics has been
reduced, which, along with a decrease in standard deviation, allows us to speak about a
successful, although incomplete, adaptation of the model to a new category.

The results are generally consistent with our assumptions. LSTM is capable of iden-
tifying polypersonality and prefix marking tends to be more difficult for models to
process.

Fig. 1. Perplexity score for described models

4.2 Probing for MLM on Intermediate Layers

Experimental results show several interesting patterns. For fine-tuned heads the proba-
bility of correct polypersonal inflection prediction starts to progressively grow from the
middle layers with an obvious peak at the last for the suffix models. MLP model also
has an interesting peak on earlier layers which is absent for LSTM + MLP (Fig. 2). Pre-
fix models are remarkably different with a rapid growth to high confidence on the sixth
layer with an overall plateau after. As inflectional prefixes of these forms are absent from
Russian we suppose that the system, while being harder for generalization for the whole
language, which is shown by PPL evaluation, provides an easier local verbal subsystem
to learn on the token level. However, the layer distribution with such explosive growth
is notable.
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Fig. 2. Probability of correct token and its rank probed on BERT layers

4.3 Latent Space Geometry

The results of the study of models’ internal space geometry are summarized in two
figures (for models with a linear layer and an LSTM block, respectively). Here, the
types of models are arranged vertically and horizontally: pref/suff - shows whether the
prefix or suffix versions of polypersonality were checked, base/poly - shows whether
the input text was polypersonal, bert/gram - shows whether the outputs of the BERT or
grammar module are used for calculations. It should be noted that the outputs of BERT
are common to all variants of models, which is why it is considered once for specific
characteristics of texts (Fig. 3).

Fig. 3. Comparison between bottleneck distances for model and text pairs, H0 and H1 groups

The most prominent feature that strikes the first is the difference between pre-trained
BERT layer outputs and fine-tuned ones. However, BERT embeddings are quite similar
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within themselves when the input text is polypersonal. This suggests that BERT does
distinguish between different strategies of polypersonality, as indicated by the results of
the perplexity assessment and the non-zero values in its comparisons. However, it does
not seem to do so to a sufficient extent and they tend to be rather similar as the BERT never
actually encountered polypersonal sentences during pretraining. The grammar module,
on the other hand, seems to cope with this by disentangling texts with different grammar
in a rather diverse way. This allows us to conclude that the model, while leaving the
geometry describing standard russian-language texts unchanged, significantly shifted
texts with polypersonality relatively to them.

It should be also noted that despite the aforementioned differences between suffix
and prefix models, they are not that different in terms of topological structure with
a slight higher similarity between suffix and base models against prefix ones. This is
consistent across models. However, the clear identification of the sources is difficult.
We suggest that it may be explained both by tokenization (hence positional encoding
effects) and linguistic improbability for the pretrained model. The extent to which each
factor contributes is prior for further work.

Another striking pattern comes from a comparison between MLP and LSTM layer
taken. Although LSTM is characterized with the same tendency to disjoin polypersonal
representations from base ones, the distances between them are extremely smaller. We
suggest that it may happen due to the need of the recurrent model to preserve some
consistent representations without any of them exploding due to high variance. However,
this idea needs further refinement and research in the future [21].

As a result, we can conclude that the fine-tuning of a certain layer before the pre-
diction head lets BERT learn how to differentiate strategies of polypersonality while
leaving the general understanding of the language mostly unchanged.

5 Conclusion

We studied the geometry of an added fine-tuned layer of a BERT model on a mix of two
languages: general and augmented Russian with the added polypersonal affix, thus dif-
fering by one linguistic parameter. As a result we found several properties characterizing
the process of BERT adaptation to the new context of the input data.

Firstly, BERT with a fine-tuned layer is capable of processing both verbs with
polypersonal affixes and the regular Russian language. Although perplexity on polyper-
sonal text is higher for both fine-tuned and initial models, the difference is greater on
the model without the new layer.

Secondly, we can see that although BERT has some internal capabilities to differ-
entiate between languages varying in one linguistic parameter, fine-tuning layers cre-
ates disentangled and linearly separable representations by changing the representation
topology, thus providing the model with more robust features for further processing.
Furthermore, while the results with both prefixes and suffixes are relatively similar (the
prefix ones differ slightly more), we can see an noticable pattern characteristic for LSTM
layers. The later demonstrates significantlymore clustered geometry.

Thirdly, probing the layers with a classification head attached to them, one by one,
the further you go, the better the performance you get. The average probability of a
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correct token increases, and the rank of the correct answer tends towards 1. This is in
line with what we see in VisBert [19], where the authors say that already the fifth layer
is responsible for establishing connections between words. This looks similar to the
increase we can observe in our data. Since polypersonality is a feature that provides
syntactic connections, this similarity seems to be expected.

Finally, our approach allows enhancing the structure of the BERT model by adding
new blocks independently trained on a new grammatical feature processing. Note that
our approach could not be scaled to other models such as T5 or GPT since perplexity
could not be directly applied to inner layers of mentioned models.
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