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Abstract—It is well known that the mapping class group of the two-dimensional sphere  is isomorphic to
the group . At the same time, the class +1(–1) contains all orientation-preserving (orientation-
reversing) diffeomorphisms and any two diffeomorphisms of the same class are diffeotopic, that is, they are
connected by a smooth arc of diffeomorphisms. On the other hand, each class of maps contains structurally
stable diffeomorphisms. It is obvious that in the general case, the arc connecting two diffeotopic structurally
stable diffeomorphisms undergoes bifurcations that destroy structural stability. In this direction, it is partic-
ular interesting in the question of the existence of a connecting them stable arc – an arc pointwise conjugate
to arcs in some of its neighborhood. In general, diffeotopic structurally stable diffeomorphisms of the 2-
sphere are not connected by a stable arc. In this paper, the simplest structurally stable diffeomorphisms
(source–sink diffeomorphisms) of the 2-sphere are considered. The non-wandering set of such diffeomor-
phisms consists of two hyperbolic points: the source and the sink. In this paper, the existence of an arc con-
necting two such orientation-preserving (orientation-reversing) diffeomorphisms and consisting entirely of
source-sink diffeomorphisms is constructively proved.
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1. INTRODUCTION AND FORMULATION
OF RESULTS

Consider the two-dimensional sphere

and denote by  the space of all diffeomor-
phisms of the 2-sphere with the -topology.

A smooth arc in  is a family  of diffeo-
morphisms of the 2-sphere  that form a diffeotopy

, i.e.,

In this case, the arc  is said to connect the diffeo-
morphisms  and .
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Diffeomorphisms  are called topo-
logically conjugate if there exists a homeomorphism

 such that .

A diffeomorphism  is called structur-
ally stable if there is a neighborhood  of
f such that any diffeomorphism  is topologically
conjugate to  f.

The relation of being connected by a smooth arc
defines an equivalence relation on  and
divides it into two equivalence classes consisting of
orientation-preserving and orientation-reversing dif-
feomorphisms, respectively [1]. Each class of maps
contains structurally stable diffeomorphisms (e.g.,
time-1 maps of gradient f lows of generic Morse func-
tions). Obviously, in the general case, an arc connect-
ing two diffeotopic structurally stable diffeomor-
phisms undergoes bifurcations destroying its struc-
tural stability. In this context, an issue of particular
interest is the existence of an arc whose qualitative
properties do not change under small perturbations (of
a stable arc), which is mentioned as problem 33 in the
Palis–Pugh list of fifty most important problems on
dynamical systems [2].
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According to [3], a smooth arc  is called stable if
it is an interior point of the equivalence class with
respect to the following relation: arcs  and  are
called conjugate if there exist homeomorphisms

 such that Htϕt =
, and  depends continuously on t.

Generally speaking, diffeotopic structurally stable
diffeomorphisms of the 2-sphere are not connected by
a stable arc [4]. In this paper, we consider the simplest
structurally stable diffeomorphisms of the 2-sphere,
namely, source–sink diffeomorphisms. Such diffeo-
morphisms have exactly two fixed points, a sink and a
source, while the orbits of the other points tend
asymptotically to the sink in forward time and to the
source in reverse time. Orientation-preserving (orien-
tation-reversing) source–sink diffeomorphisms are
pairwise topologically, but nonsmoothly, conjugate
(see, e.g., [5]).

The main result of this work is a constructive proof
of the following result.

Theorem 1. Any two orientation-preserving (orienta-
tion-reversing) source–sink diffeomorphisms are con-
nected by a smooth arc consisting of source–sink diffeo-
morphisms.

A similar result for orientation-preserving source–
sink 3-diffeomorphisms was obtained in [6]. Note that
the obtained result does not extend straightforwardly
to spheres of dimension higher than three, because
several smooth structures may exist on such spheres.
For example, it was shown in [6] that for  there
are diffeomorphisms of the considered class that can-
not be connected by a stable arc.

2. AUXILIARY FACTS
For any subset X of a topological space , let

 denote the inclusion map.
For any continuous mapping  of arcwise

connected topological spaces X and , let
 denote the homomorphism induced

by .

The -embedding  of a manifold  in a
manifold  is a mapping  such that

 is a -diffeomorphism. Here, the -
embedding is called a topological embedding, while the

-embedding ( ) is called a smooth embedding.
Two continuous mappings  and

 are called homotopic if there exists a con-
tinuous mapping  such that

 and  The mapping  is
said to be a homotopy of  and . If  and  are topo-
logical spaces and the mapping  is an
embedding of  in  for each , then the
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embeddings  and  are called isotopic, the mapping
 is an isotopy, and the one-parameter family of

embeddings  is an arc connecting  and . If 
and  are smooth manifolds and the isotopy  is a
smooth mapping, then  is called a diffeotopy, and the
arc  is called smooth.

The support of the isotopy  (of the arc ) is the set

A smooth arc  is called the smooth product of
smooth arcs  and  such that  if

where  is a smooth monotone map-

ping such that  for  and  for

. We will write

Let  denote the space of all diffeomor-
phisms of a smooth manifold X with the -topology.
If X is an orientable manifold, then  and

 denote the sets of all orientation-preserving
and orientation-reversing diffeomorphisms, respec-
tively, and for any subset  we set

.
Proposition 1 (Thom’s isotopy extension theorem

[7], Theorem 5.8). Let Y be a smooth manifold without
boundary, X be a smooth compact submanifold of Y, and

 be a smooth arc such that  is
the inclusion map of X into Y. Then, for any compact set

 containing the set , there exists a

smooth arc  such that , ϕt|X = 
for every , and .

Proposition 2 ([8], Lemma de fragmentation). Let
 be an open covering of a closed manifold X and

 be a diffeomorphism diffeotopic to the iden-
tity map. Then  can be decomposed into a composition
of finitely many diffeomorphisms diffeotopic to the iden-
tity map,

such that , where 
and  is a smooth arc connecting the identity map to
the diffeomorphism .
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3. MAPPING CLASS GROUPS
The mapping class group of a topological space X is

the group of equivalence classes of homeomorphisms
of X up to isotopy. If X is a smooth manifold, then the
equivalence class group of diffeomorphisms of X up to
diffeotopy is denoted by .

Proposition 3 (see [1]). The mapping class group of
the sphere satisfies . Here, the classes
coincide with the sets  and , respec-
tively.

To prove the main result, we will also need the
mapping class groups of the two-dimensional torus 
and the Klein bottle .

Proposition 4 (see [9]). The mapping class group of the
two-dimensional torus satisfies .

Here, the classes coincide with the sets  :
.

To describe a representative of each class in
, we represent  as a quotient space

, where  and  is
a minimum equivalence relation satisfying the condi-
tion

Let  be the natural projection. The
diffeomorphisms  are defined by the for-
mulas

(1)

Let .
Proposition 5 (see [10]). The mapping class group of

the Klein bottle satisfies . Here,
representatives of each of the four classes are the diffeo-
morphisms , respectively.

4. LOCALLY MODEL DIFFEOMORPHISMS

Recall that  denotes the set of all diffeo-
morphisms of the two-dimensional sphere

By Proposition 3, the group  consists
of two equivalence classes,  and , of
orientation-preserving and orientation-reversing dif-
feomorphisms of the 2-sphere, respectively.
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Let  denote the set of all source–
sink diffeomorphisms and  denote
those of them having a source and a sink at the north
pole  and the south pole , respec-
tively.

The model diffeomorphism  is
defined by the formula

Note that on  the diffeomorphism  is
smoothly conjugate to a linear diffeomorphism of the
plane, , defined by the formula

Specifically, , where 
is the stereographic projection defined by the formula

(2)

A diffeomorphism  is called a locally
model diffeomorphism of the sphere  if there are
neighborhoods  of the points N, S for which

, where . Let Eg 
denote the set of locally model diffeomorphisms of the
2-sphere.

Lemma 1. For any diffeomorphism  there

exists a unique homeomorphism  with the
following properties:

 ;

 ;

  is a diffeomorphism.

Proof. Since any diffeomorphism  coincides

with g in a neighborhood  of the point N, we set
. Since  makes h conjugate to g on the

entire sphere , we have

(3)

For any point , there exists  such
that ; therefore,

(4)

Constructed by continuity, the diffeomorphism
extends to the point S by the condition .
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Let . Denote by  the space of orbits
of the action of  on , and let  denote the
natural projection. By construction, the surface  is

homeomorphic to the Klein bottle  if  and
homeomorphic to the torus  if . Let

 and  be curve on . By con-
struction, the closed curve  is a generator of the fun-
damental group . The generators of the funda-
mental group  are defined as

(5)

The natural projection  induces an epi-
morphism  as follows. Let  be a loop
in  such that . By the monodromy
theorem (see, e.g., [11]), there is a unique path c in V
starting at the point  that is a lift of
the path . Therefore, there exists a unique  such
that  and the mapping  given by
the formula  is well defined (i.e., does not
depend on the choice of a loop in the class ). By
construction,

(6)

For any , let  = {(x1,

, , and Br =

. Then, for any diffeomorphism
, there is a real number  such that

. It follows that

(7)

Relation (7) uniquely defines a diffeomorphism
 commuting with the diffeomorphism g

(8)

and coinciding with  on , i.e.,

(9)

Then (see, e.g., [11], Theorem 5.5), there exists a
unique orientation-preserving diffeomorphism

 for which  is covering, i.e.,

(10)

The following lemma describes the action of the
resulting diffeomorphism on the generators.

Lemma 2. The diffeomorphism  induces an isomor-
phism  with the following proper-
ties:
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phism of the sphere that is the identity outside some
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By construction, , and the following
lemma provides the relation between the diffeomor-
phisms  and .
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Fig. 1. Graph of the function .
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Lemma 4. Any diffeomorphism  is connected

by a smooth arc  with the diffeomorphism g.
Proof. Lemma 1 implies that a homeomorphism 

coinciding on  with a diffeomorphism 
is a diffeomorphism everywhere, except possibly the
point . If  extends smoothly to  so that

, then, by Proposition 3, there exists a
smooth arc  such that , ρ1 = id.
Then the sought arc  is given by the formula

The case where the mapping  is not smooth at S
is divided into two subcases, depending on the diffeo-
topy class of : (I)  is diffeotopic to the
identity map, and (II)  is not diffeotopic to the iden-
tity map.

In case (I), following the line of reasoning used
above, it suffices to construct an arc  connecting 
with a diffeomorphism  such that  is a diffeomor-
phism.

Consider an open covering  of the

orbit space  such that  for some .
By Lemma 2, there exists a decomposition of  into a
composition of finitely many diffeomorphisms

that are diffeotopic to the identity map and such that
, where  and

 is a smooth arc connecting the identity map to
the diffeomorphism .

Let  be a diffeomorphism of the
sphere that is the identity map outside the ring 
and is defined on  by the formula wi, t(x) =

. Without loss of generality, we

assume that the values  are such that

 and . Let us show that

 is the sought arc.
Indeed, by construction,  for any .

By Lemma 3, . This implies

that  for some ; therefore,  is a diffeo-
morphism.

In case (II), following the line of reasoning used
above, it suffices to construct an arc  connecting 
with a diffeomorphism  such that  is diffeotopic to
the identity map. The following two cases are possible:
(i)  and (ii) .
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In case (i), . Proposition 4 and Lemma 2
imply that the isomorphism induced by the diffeomor-

phism  is defined by the matrix ,

where . For a fixed , the diffeomor-

phism  is defined by the formula

In the plane  we introduce polar coordinates
 and define a diffeomorphism  by

the formula

Let . Then 

smoothly extends to  by the condition 
and  is the sought arc.

In case (ii), . Then Proposition 5 and
Lemma 2 imply that the isomorphism induced by the
diffeomorphism  belongs to the class of the mapping .
Then  is the sought arc (the figure shows the

curves  for ).

5. PROOF OF THEOREM 1
Consider orientation-preserving (orientation-

reversing) source–sink diffeomorphisms f, .
Let us show that there exists an arc connecting 

≅ T
2

ĝV
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Fig. 2. Curves  for .

a

a0

Uh
s

Uh
N

�

� �

a a

a1/2 a1

Uh
s Uh

s

Uh
N Uh

N

� �

�

∈
∩∪

N

= ( )n N
t t h

n
a h a U 1= 0, ,1

2
t

that consists entirely of  diffeomorphisms. For
this purpose, in the lemma below, we construct arcs
connecting  with locally model diffeomorphisms

 ( ). Then the sought arc is the
product of the constructed smooth arcs and the arcs con-
necting  with the model diffeomorphism  ( );
the existence of  follows from Lemma 4.

Lemma 5. Any diffeomorphism  is con-
nected by a smooth arc  with a diffeomor-
phism .

Proof. Assume that  and the non-wan-
dering set of f consists of a source  and a sink .
According to [12], there exists a smooth arc

 with the following properties: H0 =

id,  and . Then  is a
smooth arc connecting f with the diffeomorphism

.
In view of what was said above, without loss of gen-

erality, we assume that . Then, to prove
the lemma, it suffices to construct an arc

 connecting  with a diffeo-
morphism . We show how to construct an arc

 connecting  with a diffeo-
morphism  that coincides with  in a
neighborhood of the pole  and with g in a neighbor-
hood of the pole . An arc  connecting

 with  is constructed similarly. Then the

sought arc is .

To construct the arc , we set  =
. Then the diffeomorphism  is a

contraction to a hyperbolic point O. By the Franks
lemma [13, 14], we may assume that the diffeomor-

S
2( )J

, 'f f

+
∈',f f gh h E

−
∈',f f gh h E

',f fh h +g −g

',f fh h

∈ S
2( )f J

φ ⊂ S
2{ } ( )t NS

∈ gh E

∈ S
2( )f J

α ω

+∈ S
2{ Diff ( )}tH

α1( ) = ,H N ω1( ) =H S −1
t tH fH

− ∈ S
1 2

1 1 ( )H fH NS

∈ S
2( )f NS

φ ⊂ S
2{ } ( )t NS ∈ S

2( )f NS
∈ gh E

φ ⊂ S
2{ } ( )S

t NS ∈ S
2( )f NS

∈ S
2( )Sh NS f

N
S φ ⊂ S

2{ } ( )N
t NS

Sh ∈ gh E

φ φ ∗ φ{ = }S N
t t t

φ{ }S
t f

−ϑ ϑ →1 2 2:N Nf R R f
phism  coincides in a neighborhood of O with a lin-
ear mapping  defined by a matrix Q that

is either diagonal or has the form  where

. If , then the lemma is proved.
Otherwise, by Proposition 5.4 from [15], there exists
an arc  consisting of linear contractions
to O defined by matrices  such that 
for any  and . Consider an arc

 connecting the identity map
 with the diffeomorphism . Let

 be positive numbers such that

Then, by Proposition 1, there exists an arc
 such that , ,

and . Then  is the sought
arc.
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