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Abstract. Electroencephalography (EEG) is a valuable tool for the clinical local-
ization of interictal spike sources. Typically, clinicians need to manually analyze
and annotate all the data, a process that is time-consuming and prone to a high
rate of false negatives. Recent advancements in mathematical algorithms and deep
learning offer the possibility to automate this process. This work focuses on devel-
oping an algorithm using Fast Parametric CurveMatching (FPCM) filters to assist
clinicians in classifying EEG data and detecting interictal spikes. The proposed
method was trained on each FPCM coefficient, achieving an average ROC AUC
of 0.967 ± 0.015, PR AUC of 0.9224 ± 0.021, and accuracy of 0.935 ± 0.012.
These results suggest that while themethod has potential, further development and
optimization of themodel architecture are necessary to fully realize its capabilities.

Keywords: Electroencephalography (EEG) · Epilepsy · Interictal spikes · Spike
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1 Introduction

Electroencephalography (EEG) is the gold standard for diagnosing epilepsy [1, 2].When
a person experiences an event resembling a seizure, either through description or video
evidence, especially if it occurs during sleep, EEG monitoring is crucial. The patient
undergoes a video EEG monitoring session, including overnight sleep. If spikes are
detected in specific regions, it suggests epileptiform activity. This finding prompts fur-
ther investigation with magnetic resonance imaging (MRI) using epilepsy protocols
to identify structural abnormalities like hippocampal sclerosis or tumours for instance
[3, 4].

Typically, a recording of sufficient duration is enough for diagnosis. However, an
automated detection system that processes data immediately would significantly reduce
the workload for clinicians, allowing them to focus on reviewing marked spikes.

In more complex cases, patients might undergo multi-day video EEG monitoring
to identify the cause of seizures, which may not be evident in structural MRI findings.
Federal centers, which also conduct research, might register spikes over several days to
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analyze various factors like the effect of medication withdrawal on epileptiform activity
or changes in spike morphology.

The variability of interictal spikes presents a significant challenge for routine auto-
matic detection. Interictal spikes can vary greatly in their morphology, amplitude, and
frequency,making it difficult for standard detection algorithms to perform reliably across
different patients and recordings.

To address this issue, it is suggested to personalize autodetection systems by incor-
porating additional training on annotated data specific to the patient. For instance, if a
patient requires two or more routine day recordings, it could be beneficial to annotate
only the first day’s recording. Using this annotated data, a deep learning model can be
trained and then its performance can be validated on subsequent days’ recordings. This
approach aims to leverage the personalized nature of the data, potentially improving
detection accuracy and reliability. Model training has to be personalized so training data
is limited by the data neurologist collected. In this paper, we attempt to solve exactly
this task.

This problem has been explored by various research groups, leading to the devel-
opment of different architectures to address it. Several conventional machine learning
methods have been proposed for the automatic detection of interictal epileptiform dis-
charges (IEDs) by extracting features from EEG signals in both time and frequency
domains [5–7].

Most deep learning-based methods employ convolutional neural networks (CNNs)
[8–10, 16], recurrent neural networks (RNNs) [11–13], and hybrid approaches [8, 11,
14] to detect IEDs in both scalp and intracranial EEG recordings; combined template-
matching with CNN approaches [15].

Prasanth et al. [17] uses convolutional neural networks (CNNs) with a combination
of raw EEG and frequency sub-bands. They arrange these sub-bands as a vector for one-
dimensional CNN or a matrix for two-dimensional CNN to detect interictal epileptiform
discharges (IEDs) effectively. Prasanth et al. (2020) tried to train the model using band-
pass filters but in the current paper we would like to suggest the way of filtering which
is very close to template. To enhance the training process, we apply the Fast Parametric
Curve Matching (FPCM) method for feature extraction. The FPCMmethod, as detailed
by Kleeva et al. [18], involves constrained parametric morphological model based on
peak-wave shape parametrization to efficiently identify interictal spikes (picture 1). This
technique enables the formation of spline coefficients that effectively capture the char-
acteristic shapes of epileptiform spikes in EEG data. The specific spline coefficients c1,
c2, c3, c4, c5, and c6 are defined as follows:

• c1 and c3 determine the left and right slopes of the peak, respectively;
• c2 and c4 are the intercepts for these linear segments;
• c5 scales the parabolic curve that approximates the wave part of the interictal

discharge, while c6 acts as the wave’s intercept.

These features are then used to train a deep learning model tailored to the patient’s
specific EEG patterns. The algorithm proposed in current paper is also inspired by the
SincNet model developed by Hung et al. [19]. SincNet leverages parameterized sinc
functions to learn the band-pass filters, effectively reducing the complexity and the
learnable parameters within the convolutional layers of a neural network. This approach
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demonstrates that using learned filters instead of traditional manually defined ones can
lead to better feature extraction from raw audio signals with fewer parameters.

Fig. 1. The parametrization of the interictal spike shape (dotted line) with the spline (solid line).

Similar to the strategy used in SincNet, where trainable sinc functions form the core
of the filtering process, the Fast Parametric Curve Matching (FPCM) approach also
revolves around trainable parameters that define the length and shape of filters.

Due to the limited amount of data available at this stage, we present this work as a
preliminary investigation rather than a result of thorough evaluation. We acknowledge
that further validation with larger datasets is necessary to fully establish the reliability
and robustness of the algorithm.

2 Materials and Methods

This study was conducted with approval from the Human Research Ethics Committee
of The Research Center of Neurology, Moscow. EEG recordings and all related data col-
lection were carried out at The Research Center of Neurology. All participants provided
written informed consent in accordance with the Declaration of Helsinki.

2.1 EEG Data and Preprocessing

The EEG data used in this study were recorded during clinical examinations of epilepsy
at the Scientific Center of Neurology from 2023 to 2024. The dataset consists of pairs
of 24-h recording sessions with a stop division between them for each patient.

A bandpass filter with cutoff frequencies of 0.5 Hz and 35 Hz was applied to all data
to reduce noise. Additionally, the data was downsampled from 256 Hz to 125 Hz.

To create the training, validation and testing dataset, the recordings were split into
two classes: normal EEG (class 0) and interictal spikes (class 1). The data for class 0
were taken from healthy patients, while the data for class 1 were taken from epilepsy
patients as annotated windows by neurologist. This approach ensured that the class 0
dataset was “clean” from the pathological abnormalities.
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The process of preparation for class 0 and class 1 differs. For the creation of class
1, a neurologist annotated the centers of interictal spikes. After that, 1-s windows were
created with 0.5-s steps to the right and left from the center.

To address the class imbalance and enhance the dataset, various data augmentation
techniques were applied:

• Jittering: Each window was jittered by 50 samples to both sides to introduce
variability and reduce overfitting.

• Filtering: The windows were filtered using different frequency bands to generate
additional data and capture various signal characteristics.

• Synthetic DataGeneration: Synthetic EEG epochs were generated using a lead field
matrix to simulate realistic EEG signals and further augment the dataset.

Before augmentation, we utilized 106 annotated patterns from one patient: 94 pat-
terns from day 1 for training/validation and 12 patterns from day 2 for testing. The
augmentation process allowed us to increase the amount of training data to 9494 patterns.

Training epochs for class 0were created by randomly selectingwindows fromhealthy
patients, in quantities twice as large as those for class 1, without augmentation and
overlapping. Thus, the total count for class 0 of training dataset is 19,000 1-s patterns.

For the testing data of class 1, only jitteringwas applied as augmentation, considering
that the auto analyzer could potentially observe patterns with different shifts from the
center of the pattern. This increased the amount of testing data to 1200 samples for
class 1. Jittering provides a probabilistic picture of pattern detection. Additionally, 5000
samples from day 2 recordings were taken as class 0 for testing, without overlapping.

To make the dataset more consistent, class 0 was aligned with class 1 [20], followed
by Z-normalization of all windows. Alignment process can be described as following.
Assume we have two data matrices X1, X2 representing EEG recordings from two
different EEG windows, normalized to have zero mean. Our task is to make X2 dataset
share the same properties as X1. Then covariance matrices C1,C2 for each dataset are
calculated as following:

C1 = 1
size(X1[2])

∗ X1 ∗ X T
1 , (1)

C2 = 1
size(X2[2])

∗ X2 ∗ X T
2 . (2)

Then for each covariance matrix, the matrix square root is computed using eigenvalue
decomposition:

sqrtC2 = E1L
1
2
1 E

T
1 , (3)

sqrtC2 = E2L
1
2
2 E

T
2 , (4)

where L is the diagonal matrix of eigenvalues and E is the matrix of eigenvectors. And
the last step of alignment is following:

X2aligned = sqrtC1 ∗ inv(sqrtC2) ∗ X1 (5)
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It’s valuable to note that the X1 matrix was built as the concatenation of all interictal
spikes from the training dataset. X2 represents any 1-s epoch that we want to align to X1,
such as epochs from the second day’s recording. This method helps us align the data to
the interictal spikes.

After alignment all the data goes through the process of Z-standardization by the
formula:

x0 = xi−μ√
σ 2

, (6)

where xi and x0 represents the filtered data and the standardized output data accordingly.
μ and σ 2 are the mean and variance calculated based on the training data and are used
directly for the test data.

Thus, the training data have the picture like structure of batch_size× EEG_channels
× time_series.

2.2 Model Architecture

The valuable part of model architecture is the use of FPCM coefficients which is
implemented as a separate layer in keras python package (Fig. 2).

Fig. 2. Implementation of the FPCM layer

Kleeva et al. (2021) parameterized the shape of the interictal spike using the following
equation:

s(t) =
⎧
⎨

⎩

c1t + c2if − N1 ≤ t ≤ 0,
c3t + c4if 0 ≤ t ≤ N2,

c5t2 + c6ifN2 ≤ t ≤ N2 + N3

, (7)

so that c1 and c3 are the peak’s left and right slopes, c2 and c4 are the corresponding
intercepts, c5 scales the parabolic curve approximating the wave part of the interictal
discharge and c6 is wave’s intercept.
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After that, the authors tried to find a solution to the equation

c(t) = argmin
(||Bc − x(t)||2), (8)

where x(t) = [x(t − N1), x(t − N1 + 1), . . . , x(t + N2 + N3)]T is a single channel data
segment, centered around the peakof the spike’s sharpwave, c(t) = [c1(t), . . . , c6(t)]T is
the vector of resulting spline coefficients for data segment x(t), andB is themorphological
model matrix (Fig. 1).

Omitting details, the solution of Eq. 8 can be found as following:

c(t) = B†x(t). (9)

All in all, the implemented layer extracts morphological coefficients for all EEG data
points, creating a tensor with the size of batch_size × EEG_channels × time_series
(1 s) × coefficient_channels (6 coefficients). After getting the coefficients, they are
concatenated with the original EEG signal, so the tensor gains a 7th channel. Following
this, all channels are flattened into a single sequence along the time axis. The resulting
model structure is represented in Fig. 3.

Fig. 3. Proposed model architecture. The model uses ReLU activation functions in all layers
except the final layer, which uses a sigmoid activation function. The Adam optimizer was used
with a learning rate set to 0.001. The binary cross-entropy loss function was used for training.
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Such a structure is reminiscent of the approach described in the paper “DeepLearning
for Interictal Epileptiform Spike Detection from Scalp EEG Frequency Sub-bands” by
Thangavel Prasanth et al. [17]. In that work, they utilize CNN architectures to process
and analyze EEG sub-bands, demonstrating the effectiveness of combining frequency-
based features for improved spike detection performance. The input to their CNN is a
combination of raw EEG and frequency sub-bands arranged either as a vector for one-
dimensional (1D)CNNor amatrix for two-dimensional (2D)CNN.This approach aids in
leveraging both the spatial and temporal information inherent in EEG signals, enhancing
the detection accuracy of interictal epileptiform discharges (IEDs). Their results showed
a 1D CNN-based IED detector with multiple sub-bands achieving a false positive rate
per minute of 0.23 and a precision of 0.79 at 90% sensitivity, highlighting the potential
of combining different EEG sub-bands for more accurate IED detection.

Since it’s necessary to evaluate the efficiency of the FPCM layer, it’s not needed
to overcomplicate the model structure because it’s enough to delete it for comparison
with the baseline. For the FPCM layer trainable parameters are biases and the lengths
of different morphological structure of matrix B, mentioned in Eqs. 8, 9.

2.3 Training and Evaluation Process

For the training process, we utilized a batch size of 32. Themodelwas trained on a dataset
corresponding to the first day for each patient, while the evaluation was conducted on
the data from the second day.

The training and evaluation were performed using a 5-fold cross-validation method
to ensure robust evaluation. The dataset was divided into five folds, with each fold used
separately for training and validation. The model was built using a custom function
that included the FPCM layer for morphological feature extraction. During training, the
model was fitted with a batch size of 32 for three epochs for each fold.

The model’s performance was assessed using several metrics, including accuracy,
ROC AUC, and Precision-Recall AUC (PR AUC). A confusion matrix was employed to
calculate the number of false positives and false negatives. For each evaluation metric,
the mean and standard error of the mean (SEM) were computed, and a 95% confidence
interval was calculated using the t-distribution.

Additionally, we calculated the false positive rate per minute and the false negative
rate.

3 Results

All the results are presented in the Table 1.
The results indicate that training the model on each coefficient separately does not

lead to a significant increase in performance when concatenated. This suggests that the
chosen architecture may need adjustments to better estimate all coefficients.
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4 Conclusion

This study demonstrates that while the FPCM method provides a promising approach
for feature extraction in EEG data, the current model architecture may require further
refinement to maximize its effectiveness. Future work will focus on optimizing the
architecture and exploring additional methods to enhance the performance of automatic
spike detection algorithms.
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