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Abstract

This paper investigates two approaches to determining the leader of a coalition parti-
tion: the individual and the collective. In the first approach, each coalition in the partition
chooses a representative, and then the leader is chosen from among all the representat-
ives. In the second approach, the leading coalition in the partition is chosen, and then
the leader from among members of that coalition is chosen. The leader and the leading
coalition are chosen with a certain probability, which is guided by the weight rule or the
ranking rule. Both approaches can be encountered in contests, sports competitions, and
political elections. The paper delivers results on the existence of Nash-stable partitions
depending on the approach and the probability of determining the leader. Cases where
the number of coalitions in the partition is fixed and arbitrary are studied. The existence
of an equilibrium in weakly dominant strategies is proved for the collective approach and
the weight rule, and the necessary and sufficient conditions for a Nash-stable partition to
exist were found for the ranking rule. The sufficient conditions for a Nash-stable partition
to exist were found for the individual approach and the corresponding probabilistic rules.

Keywords: coalition formation, leader problem, Nash stability

1. Introduction

Agents can form coalitions with each other to achieve their goals in many spheres. Collaboration
is a way to get a result an agent cannot accomplish alone. This paper examines the problem of
coalition partitioning where each agent is interested in becoming the leader among all agents.
Two procedures for determining the leader are examined. Each of the procedures begins with
agents breaking up into groups and consists of two steps.

The first procedure for determining the leader is the following. A candidate for the leadership
position is selected within each group of agents; the leader is then chosen from among these
candidates. In the second procedure, the leading group is chosen and then the leader from
among members of that group is chosen. The choice of the leadership candidates, the leading
coalition, and the leader among candidates happens with a certain probability. We term the
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first and the second procedures as the individual and the collective models for determining the
leader of the coalition partition, respectively (Fig. 1).

Fig. 1. The individual (left) and the collective (right) models of determining the leader

These models for determining the leader apply to a wide range of human activities. For
instance, the individual model often occurs in multiple branch organizations. First, a represent-
ative is chosen for each branch, and then the principal representative is appointed from among
branch representatives. The collective model of determining the leader is applied in political
elections. In the first step, the leading party is determined and in the second step, one of its
members is elected to become the leader. Both the collective and the individual models are
applied in sports.

Leadership in the economy, politics, or sports largely depends on the agents themselves, but
in many cases it is impossible to tell exactly who will become the leader. It is not uncommon
that a potential leader is left behind or that luck is on a novice’s side. In our study, any agent
can become the leader of a coalition partition with some probability.

Suppose we have decided on a model for determining the leader and agents are asked to
break up into coalitions. This gives rise to strategic behavior in agents. Each of them is
interested in joining a coalition within which they can get into the second round and become
the leader at the second step. What kind of a partition will we get depending on the leadership
choice model? In the individual model, for instance, each strong agent, i.e. an agent with high
weight, hierarchical status, would want to team up with the weakest agents at the first step. In
that case, the strong agent has a higher probability of getting into the second round. Realizing
this, weak agents may team up with each other in order to raise their individual probabilities of
getting into the second round. In the collective model of leadership, however, weak candidates
would want to team up with strong agents to ensure that their whole team gets into the second
round. Strong agents are aware of that and can team up with other strong agents. In this case,
however, the second step will be played among strong agents only and becoming the leader
will be a challenge. It is not obvious how candidates should band together depending on the
this model. How do agents cooperate with each other depending on the model for determining
the leader? How does the probability distribution influence the coalition partition? To answer
these questions, we investigate the existence of stable coalition partitions depending on the
probability of winning each of the two steps and on the leadership choice model.
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If a stable partition does exist, then the impact of the leadership choice model on the
cooperation of agents will be reflected in its form. Based on the model-specific form of stable
partitions, we can figure out which model can be used in sports events, elections, etc. It turns
out there are partitions that are stable in different leadership choice models under some of the
probabilities of winning.

1.1 The weight and ranking rules

This article investigates the existence of a stable partition of agents into coalitions for the
individual and the collective leadership choice models. This question is approached by using
game theory. Collective and individual coalition partition games are introduced. Each of the
games models the respective procedure for determining the leader. The player’s payoff in the
individual and the collective games is their expected chances of becoming the leader. The
games are formally defined in Section 2.

We consider cases where the probability of a player becoming the coalition’s leader and
the probability of a coalition becoming the leading one in the coalition partition are calculated
according to the weight and the ranking rules. In the following, we describe these rules.

Let N = {1, 2, ..., n} be the set of players. For the weight rule, the probability that the
player i becomes the leader in the coalition K,K ⊆ N, i ∈ K is

pi(K) =
wi∑

j∈K
wj

,

where wj > 0 is the weight of the player j.

The ranking rule implies there is a rank order of candidates 1 ≻ 2 ≻ ... ≻ n, and the
probability that the player i is the leader in the coalition K is

pi(K) =
λRi(K)

|K|∑
j=1

λj

,

where λ1 > λ2 > ... > λn > 0 and Ri(K) = 1 + #{j|j ≻ i, j ∈ K}. The number Ri(K) is
the player’s ranking in the game K. Note that i ≻ j ⇔ Ri(K) < Rj(K) ∀K ⊆ N . We say
here that player i has a higher ranking than player j. The higher the player’s ranking in the
coalition, the higher the chance of them becoming the leader. Our motivation for taking the
ranking rule into consideration is (Dietzenbacher & Kondratev, 2023), in which the ranking
rule is applied to sports.

The probability of the coalition K being the leading one in the partition π = {B1, B2, ..., Bm},
K ∈ π,∪m

j=1Bj = N,Bj ∩ Bl = ∅, 1 ≤ j < l ≤ m for the weight and the ranking rules, respect-
ively, is determined by the following formulas,
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pK(π) =

∑
j∈K

wj∑
j∈N

wj

, pK(π) =

|K|∑
j=1

λj

∑
B∈π

|B|∑
j=1

λj

.

We substitute the formulas for pi(K) and pK(π) into the payoff functions for players of the
individual and the collective games. The resultant games are designated as follows: weighted
collective game; weighted individual game; ranking collective game; and the ranking individual
game. Table 2 gives the corresponding payoff functions. Depending on the leadership choice
model and the probabilistic rule, we get different results regarding the existence of stable
partitions.

1.2 Literature review

Our study is closely related to (Razin & Piccione, 2009), which examines a model in which
social order is built by ranking coalitions of the partition and players within coalitions. The
greater the coalition’s rank weight, the higher its position in the social order. Similarly, the
greater the player’s rank weight, the higher their position in the coalition. Like in (Razin
& Piccione, 2009), the rank weight is determined for each player and coalition in our ranking
collective game. The difference is that a coalition and a player within a coalition can occupy the
top position in the social order with a certain probability which is expressed via rank weights.
In other words, a player in the model in (Razin & Piccione, 2009) maximizes their societal
status, while a player in the ranking collective game maximizes one’s chances of leading the
coalition partition. In the model from (Razin & Piccione, 2009), not all players can attain the
top position in the social order, whereas in the ranking collective game any player can with
certain probability become the leader.

The problem of the coalition partition leader is similar in substance to the problem from
contest theory (Corchón, 2007; Tullock, 2008). As in contest theory, we set the leadership
probability based on the weight rule (Dasgupta & Nti, 1998; Ewerhart, 2017) and record the
expected chances of the player becoming the leader of the coalition partition. The difference
between these problems is that researchers of contest theory focus on finding the agents’ efforts,
while the question of interest in coalition formation theory is the existence of stable partitions.
Papers on alliance formation in contests (Garfinkel, 2004) combine the research interests of
contest theory and coalition formation theory.

Jandoc & Juarez, 2017 consider a resource division model where players first break into
coalitions and then compete with each other over a resource. The winning coalition gets the
entire resource, but in the next step players are eliminated and the players’ powers are recal-
culated depending on the share of the resource. As in (Jandoc & Juarez, 2017), players who
do not make it into the second round of the individual and the collective games drop out. The
differences are that our games are two-step games, the players’ weights are not re-calculated,
and the player’s payoff is their expected chance of becoming the leader. The substantial dis-
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tinction between the models in (Jandoc & Juarez, 2017) and the individual game is that the
second round in the latter is not for coalitions but for coalition leaders.

The paper (Watts, 2007) proposes a coalition formation model where the player’s payoff
depends on their hierarchical status. A finite set of players is distributed among a fixed number
of coalitions. The author explores the existence of a segregated equilibrium. Note that in our
models it is sometimes beneficial for players with the highest and the lowest hierarchical status
to stick together, so the question of segregation is irrelevant in our case. We also consider the
case of a fixed number of coalitions. In contrast to our games, the game in (Watts, 2007) is a
hedonic one.

In the games constructed here, we investigate the existence of a core partition and a Nash-
stable partition. One of the first papers to introduce the concept of the stability of coalition
structures in hedonic games is (Dreze & Greenberg, 1980). Some of the early papers on the
existence of stable coalition structures are (Aumann & Hart, 1992; Greenberg & Weber, 1985).
Greenberg & Weber, 1993 (p. 63) point out the complexity of confirming the existence of
stable coalition structures: “there is only a relatively small number of results that guarantee
the existence of a ‘stable’ coalition structure" . The similarities and distinctions of the types
of stability of coalition structures are explicated in (Bogomolnaia & Jackson, 2002).

1.3 Results

The following results were obtained regarding the existence of a Nash-stable partition with
fixed cardinality (NSPC) and a core partition (CP):

• For the strategic weighted collective game, the existence of an equilibrium in weakly
dominant strategies is proved. In the case where the weights of all players are different,
an equilibrium is shown to exist in dominant strategies, from which it follows obviously
that an NSPC and a CP exist (see Theorem 1).

• For the ranking collective game, the necessary and sufficient conditions for the existence
of an NSPC were determined and the existence of a CP was demonstrated (see Theorem
2).

• In the weighted individual game, sufficient conditions for the existence of an NSPCwere
determined for the case where the number of coalitions is fixed, and a Nash-stable partition
(NSP) is shown to exist where the number of coalitions is not fixed (see Theorem 3).

• For the ranking individual game in which the number of coalitions is fixed, the sufficient
conditions for the existence of an NSPC were determined (see Theorem 4).

The main results are presented in Table 1.
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Collective Individual

Weight rule
The existence of a weakly dominant

strategy profile is proved
(Theorem 1)

The sufficient conditions of an NSPC
existence are found

(Theorem 3)

Ranking rule
The necessary and sufficient conditions

of an NSPC existence are found
(Theorem 2)

The sufficient conditions of an NSPC
and an NSP existence are found

(Theorem 4)

Table 1: Main results

2. Games formulation

2.1 Coalition games

Let N = {1, 2, ..., n} be the set of players and Π(N) be the set of all partitions N. A non-empty
subset of the set N is called a coalition. A coalition partition game is a pair (N,H) where
H : Π(N) → Rn. The number Hi(π), where π ∈ Π(N) and i ∈ N, is the payoff of the player
i in the coalition partition π. We write π(i) to denote the coalition containing the player i

in π, i.e. i ∈ π(i) ∈ π. A transversal of the partition π = {B1, B2, ..., Bm} is the coalition
{i1, i2, ..., im}, where ik ∈ Bk,∀k ∈ {1, 2, ...,m}. Let Mi(π) be the set of all transversals of the
partition π that contain the player i.

Let us consider two types of coalition partitions. The harmonious partition is a partition
π = {B1, ..., Bm} where ∀k ∈ {1, ...,m} ∀i ∈ Bk : (i − 1) mod m = k − 1. In particular, let
|π| = 2, then the harmonious partition is π = {O,E} = {{1, 3, 5, ...}, {2, 4, 6, ...}}. A partition
of the form π = {{1}, {2}, ..., {n}} will be denoted as a degenerate partition.

The notation pK(π), K ∈ π denotes the probability that the coalition K is the leading one
in the partition π. The number pi(K), K ⊆ N, i ∈ K is the probability than the player i is the
leader in the coalition K. It follows from the probability properties that ∀π ∈ Π(N) we have

∀K ∈ π : pK(π) ≥ 0,
∑
K∈π

pK(π) = 1 and

∀K ⊆ N, i ∈ K : pi(K) ≥ 0,
∑
i∈K

pi(K) = 1.

A collective game is a coalition partition game (N,HC) in which the payoff of the player i

is
HC

i (π) = pπ(i)(π) · pi(π(i)).

In collective games, players break up into non-intersecting coalitions, i.e. form a certain
partition π. The coalitions then play against each other and the leading coalition is determined.
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The leader is determined among members of the leading coalition and that agent is recognized
as the π leader. The payoff of a player in the collective game is their expected chances of leading
the coalition partition.

An individual game is a coalition partition game (N,HI) in which the payoff of the player
i is

HI
i (π) =

∑
K∈Mi(π)

pi(K) ·
∏
j∈K

pj(π(j)).

In the individual game, players are also distributed among non-intersecting coalitions. Then,
a representative is chosen from each coalition and the leader of the coalition partition is de-
termined among all the representatives.

The difference between the individual and the collective games is that they model different
two-step procedures for determining the leader of the coalition partition π. Let us consider
particular cases of the collective and the individual games.

Definition 1. A weighted collective game is a collective game (N,HWC) in which the player’s
payoff is

HWC
i (π) =

wi∑
j∈N

wj

.

Definition 2. A ranking collective game is a collective game (N,HRC) in which the player’s
payoff is

HRC
i (π) =

λRi(π(i))∑
B∈π

|B|∑
j=1

λj

.

Definition 3. A weighted individual game is an individual game (N,HWI) in which the player’s
payoff is

HWI
i (π) =

wi∏
B∈π

∑
j∈B

wj

·
∑

K∈Mi(π)

∏
j∈K

wj∑
l∈K

wl

.

Definition 4. A ranking individual game is an individual game (N,HRI) in which the player’s
payoff is

HRI
i (π) =

λRi(π(i))

|π|∑
j=1

λj ·
∏
B∈π

∑
j∈B

λj

·
∑

K∈Mi(π)

λRi(K)

∏
j∈K\{i}

λRj(π(j)).

Games from Definitions 1 and 3 are derived from the collective and the individual games,
respectively:

pi(K) =
wi∑

j∈K
wj

, pK(π) =

∑
j∈K

wj∑
j∈N

wj

,
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and games from Definitions 2 and 4 are derived from the respective games:

pi(K) =
λRi(K)

|K|∑
j=1

λj

, pK(π) =

|K|∑
j=1

λj

∑
B∈π

|B|∑
j=1

λj

.

We distinguish four games, the payoff functions for which are given in Table 2. Note that
instead of players’ payoffs in the weighted collective game, Table 2 gives the payoffs of players
in the strategic weighted collective game described in Section 3.1.

Collective Individual

Weight rule ui(s) =
wisi∑

j∈N
wjsj

HWI
i (π) =

wi∏
B∈π

∑
j∈B

wj
·
∑

K∈Mi(π)

∏
j∈K

wj∑
l∈K

wl
.

Rank rule HRC
i (π) =

λRi(π(i))∑
B∈π

|B|∑
j=1

λj

HRI
i (π) = λRi(π(i))

∑
K∈Mi(π)

λRi(K)

∏
j∈K\{i}

λRj(π(j))

|π|∑
j=1

λj·
∏
B∈π

∑
j∈B

λj

Table 2: Players’ payoff functions in the games in question.

Since every player is interested in becoming the leader of the coalition partition, players can
migrate between coalitions to augment their payoffs. The question arises as to whether there
exists a coalition partition that is stable. The main types of stability investigated in this paper
are stated below.

Let A,B ∈ π,A ̸= B. Denote π−A = π \ {A}, π−A,B = π \ {A,B}. Introduce the sets
Di(π), i ∈ N consisting of coalition structures:

Di(π) = {π} ∪ {{π(i) \ {i}, A ∪ {i}, π−π(i),A} | A = ∅ or A ∈ π−π(i)}.

The coalition structure π is called a Nash-stable partition (NSP) in (N,H) if ∀i ∈ N :

Hi(π)−Hi(ρ) ≥ 0 ∀ρ ∈ Di(π).

Introduce the sets D̊i(π)

D̊i(π) = {π} ∪ {{π(i) \ {i}, A ∪ {i}, π−π(i),A} | π(i) ̸= {i}, A ∈ π−π(i), A ̸= ∅}.

The coalition structure π is called a Nash-stable partition with fixed cardinality (NSPC) in
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(N,H) if ∀i ∈ N :

Hi(π)−Hi(ρ) ≥ 0 ∀ρ ∈ D̊i(π).

2.2 Simple examples

Let us show how the players’ payoffs in the above games can be calculated. Suppose N =

{1, 2, 3, 4}, and the players are to break up into two coalitions. Then, the possible coalition
partitions are π1 = {{1, 2}, {3, 4}}; π2 = {{1}, {2, 3, 4}}; π3 = {{2}, {1, 3, 4}} etc.

In the weighted collective game with the weights w1 = 4, w2 = 3, w3 = 2, w4 = 1, the payoff
of the player i = 1 in the coalition structure π1 = {{1, 2}, {3, 4}} is

HWC
1 (π1) =

w1

w1 + w2 + w3 + w4

=
4

10
.

In the weighted individual game with analogous weights, the payoff of the first player in the
coalition structure π1 will be

HWI
1 (π1) =

w1

(w1 + w2)(w3 + w4)
·
(

w3 · w1

w3 + w1

+
w4 · w1

w4 + w1

)
=

128

315
.

Note that the coalition structure π1 is an NSPC (see Statement 3, point 2).
In the ranking collective game with the ranking constants λ1 = 4, λ2 = 3, λ3 = 2, λ4 = 1 in

the coalition structure π1, that player’s payoff is

HRC
1 (π1) =

λ1

λ1 + λ2 + λ1 + λ2

=
2

7
.

This partition is not an NSPC, since it is more profitable for the player i = 1 to move to
the coalition {3, 4}.

In the ranking individual game with analogous ranking constants, we get

HRI
1 (π1) =

λ1

(λ1 + λ2)(λ1 + λ2)(λ1 + λ2)
· (λ1 · λ1 + λ2 · λ1) =

16

49
.

The payoffs of all players in the above games for the partition π1 are given in Table 3.

The player Weighted Collective Weighted Individual Rank Collective Rank Individual
1 0.4 0.4063 0.2857 0.3265
2 0.3 0.2786 0.2143 0.2449
3 0.2 0.2413 0.2857 0.2449
4 0.1 0.0738 0.2143 0.1837

Table 3: Payoffs of players in the partition {{1, 2}, {3, 4}}.
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3. Existence of Nash-stable partitions

3.1 Weighted collective game

According to Definition 1, in the weighted collective game, the payoff of the player i ∈ N in
the partition π ∈ Π(N) is

HWC
i (π) = pπ(i)(π) · pi(π(i)) =

wi∑
j∈π(i)

wj

·

∑
j∈π(i)

wj∑
j∈N

wj

=
wi∑

j∈N
wj

.

The payoff HWC
i (π) does not depend on the coalition partition π. Hence, any partition in

the weighted collective game is an NSP. Next, we examine the normal-form strategic game
which is an alternative to the weighted collective game.

Let S = {1, 2, ...,m} be the set of places where coalitions can be formed. The strategy si

of the player i consists in choosing the place from the set S. The players who have chosen the
same strategy form a coalition. The weight of the player i ∈ N for the position j ∈ S is the
number wij > 0. We denote the strategy profile as s = (s1, s2, ..., sn).

Definition 5. A strategic weighted collective game is a normal-form game (N,S, {ui}i∈N) in
which the payoff of the player i is

ui(s) =
wisi∑

j∈N
wjsj

.

The weight wij1 of the player i in the place j1 can be different from the weight wij2 of the
player i in the place j2. The player is interested in choosing a place where their chances of
becoming the leader are the highest. Note also that if the weight wij does not depend on j,

then the strategic weighted collective game is equivalent to the weighted collective game.
Let us introduce some definitions. The strategy si is called dominant for the player i in the

game (N,S, {ui}i∈N) if ui(si, s−i) > ui(s
′
i, s−i) ∀s′i ∈ S, s′i ̸= si, ∀s−i ∈ Sn−1. The strategy si is

called weakly dominant for the player i if ui(si, s−i) ≥ ui(s
′
i, s−i) ∀s′i ∈ S, ∀s−i ∈ Sn−1 and at

least one of the inequalities is strict.
The normal-form game (N,S, {ui}i∈N) is called an ordinal potential game (Monderer &

Shapley, 1996) if there exists a function P : Sn → R such that ∀i ∈ N :

ui(si, s−i)− ui(s
′
i, s−i) > 0 ⇔ P (si, s−i)− P (s′i, s−i) > 0 ∀si, s′i ∈ S ∀s−i ∈ S−i.

The first main result is Theorem 1.
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Theorem 1. The following is true for the strategic weighted collective game:

1. An equilibrium of weakly dominant strategies exists in the game.

2. The game is an ordinal potential game with the ordinal potential function

P (s) =
∑
i∈N

wisi .

The proof of Theorem 1 is given in the Appendix. To illustrate the meaning of this theorem,
we suppose that the set S is a set of sports clubs and that each player has a weight specific
in each club. Which club should the player choose to become the leader of in the collective
contest model?

It follows from the proof of point 1 of Theorem 1 that irrespective of the strategy choices
of players in the set N \ {i} the player i ∈ N should choose the club where their weight is the
greatest. Choosing the club in which the weight of the player i is the greatest is their weakly
dominant strategy. If there is only one club for the player i in which their weight is the greatest,
then choosing such a club is the dominant strategy of the player i.

Point 2 of Theorem 1 asserts that the strategic weighted collective game is an ordinal
potential game. This means it is acyclic, which does not follow from the existence of players’
weakly dominant strategies. Acyclicity is important for applications. Suppose the players have
erroneously chosen a club in which their weight is not maximal. In that case, due to acyclicity,
any sequence of best answers is finite, which means equilibrium will be attained within a finite
number of steps.

The papers (Bilò et al., 2023) and (V. Gusev et al., 2024) study a normal-form game in
which the player’s payoff is determined as:

ui(s) =
wisi∑

j∈Ksi (s)

wjsj

· r(si),

where Ksi(s) is the set of the players in the profile s who have chosen the strategy si. If
r(si) = 1 for any strategy si, then the player’s payoff is their expected chances of becoming
the leader in their coalition. What makes the current paper different is that it examines a
two-step procedure for determining the leader, while the game from (Bilò et al., 2023) and (V.
Gusev et al., 2024) models a one-step procedure. The key distinction is that we demonstrate
the existence of an equilibrium in dominant and weakly dominant strategies.

Example 1. Let us consider the strategic weighted collective game where N = {1, 2, 3} and
the weight matrix has the formw11 w12 w13

w21 w22 w23

w31 w32 w33

 =

4 1 7

3 9 2

1 2 3

,
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where wij is the weight of the i-th player in choosing the strategy j. The only equilibrium
in this game is the profile (3, 2, 3); i.e. the first and the third players chose strategy 3, and
the second player chooses strategy 2. Since all the weights on each line of the matrix are
different, this equilibrium is an equilibrium in dominant strategies. The strategy profile (3,2,3)
is matched by the ordered coalition structure ({∅}, {2}, {1, 3}).

3.2 Ranking collective game

By Definition 2, in the ranking collective game, the payoff of the player i ∈ N in the partition
π ∈ Π(N) is

HRC
i (π) =

λRi(π(i))∑
B∈π

|B|∑
j=1

λj

.

In the ranking collective game, the leading coalition is determined by the ranking rule and
then the leader of the coalition partition is chosen from among members of that coalition, also
following the ranking rule. The payoff of that player is their expected chances of becoming the
leader of the coalition partition.

Theorem 2 formulates the necessary and sufficient conditions for the existence of an NSPC.
To prove Theorem 2, we formulate Lemma 1.

Lemma 1. If we suppose that π is an NSPC in the ranking collective game, then the following
statements are true:

1. The player i = 1 is a member of the coalition with the greatest power.

2. For the player i = n, i ∈ B1 ∈ π, |B2| ≥ |B1| − 1 is fulfilled for ∀B2 ∈ π.

3. For any Bl, Br ∈ π such that Bl ̸= Br there is |Bl| ≠ |Br|.

4. |N | is an odd number, |π| = 2, π = {B1, B2} and |B1| = |B2|+ 1.

5. No player can raise their ranking by moving to another coalition, i.e. ∀i ∈ N Ri(π(i)) <

Ri(ρ(i)), where ρ ∈ D̊i(π).

Lemma 1 characterizes the NSPC structure. Thus, the strongest player in an NSPC, i.e.
the player with the lowest index, is always a member of the coalition with the greatest power.
As the following will show, the strongest and the weakest players are always members of the
same coalition in an NSPC (see point 1 of Theorem 2). Another property characteristic of an
NSPC is the condition of a non-increase in ranking. Let us consider examples for Lemma 1.

Example 2. Considering π = {{2, 3, 5}, {1, 4}} we see that this partition satisfies points 2, 3,
4, and 5 of Lemma 1, but violates point 1. The partition π is not an NSPC since H1(π) <

H1(ρ), ρ = {{1, 2, 3, 5}, {4}}, i.e. the player 1 would benefit from moving to the other coalition.
Indeed,

12



HRC
1 (π) =

λ1

3∑
k=1

λk +
2∑

k=1

λk

<
λ1

4∑
k=1

λk + λ1

= HRC
1 (ρ).

Example 3. Consider the partition π = {{1, 4, 7}, {2, 5}, {3, 6}}. This structure satisfies points
1, 2, and 5 of Lemma 1, but violates points 3 and 4. Player 2 would benefit from moving to
the coalition {3, 6}, i.e. HRC

2 (π) < HRC
2 (ρ), ρ = {{1, 4, 7}, {5}, {2, 3, 6}}. Indeed,

λ1

3∑
k=1

λk +
2∑

k=1

λk +
2∑

k=1

λk

<
λ1

3∑
k=1

λk + λ1 +
3∑

k=1

λk

.

Example 4. Now consider the coalition structure π = {{1, 2, 3}, {4, 5}}. The condition from
point 5 of Lemma 1 is violated for π. Players 2 and 3 can attain a higher ranking by moving
to the coalition {4, 5}. Let us demonstrate that the partition π is not an NSPC, i.e. HRC

3 (π) <

HRC
3 (ρ), ρ = {{1, 2}, {3, 4, 5}}. Indeed,

λ3

3∑
k=1

λk +
2∑

k=1

λk

<
λ1

2∑
k=1

λk +
3∑

k=1

λk

.

We can now characterize the set of NSPCs in the collective ranking game. For an odd n,

we define the set of coalition structures Θ as follows:

π ∈ Θ ⇔ |π| = 2,∀B ∈ π : {2i− 1, 2i} ̸⊂ B, |π(1)| ≥ |B| ∀i = 1, 2, ..,
n− 1

2
.

For example, the coalition structures π1 = {{1, 3, 5}, {2, 4}}, π2 = {{1, 4, 5}, {2, 3}} belong
to Θ, while the structures π3 = {{1, 2, 5}, {3, 4}} and π4 = {{1, 3, 5}, {2, 4, 6}} do not.

Lemma 2. If π is an NSPC in the ranking collective game, then π ∈ Θ.

It follows from Lemma 2 that any NSPC can be derived from some NSPC by swapping

players from the pairs {2i− 1, 2i} ∀i = 1, 2, ..,
n− 1

2
. Thus, due to Lemma 2, the partition

π1 = {{1, 3, 5, 7}, {2, 4, 6}} is an NSPC. Swapping the third and the fourth players, we again
get a Nash-stable partition, i.e. π2 = {{1, 4, 5, 7}, {2, 3, 6}} is an NSPC. Lemma 1 and Lemma
2 help prove the uniqueness of an NSPC and the necessary and sufficient conditions for its
existence. The following theorem applies.

Theorem 2. The following is true in the ranking collective game:

1. Suppose an NSPC exists, then |N | is odd and an NSPC is a harmonious partition {O,E}.

2. An NSPC exists iff the ranking constants λi, i = 1, ..., n meet the condition

2
(n−3)/2∑
k=1

λk + λn−1
2

+ λ (n+1)
2

+ λ (n+3)
2

2
(n−3)/2∑
k=1

λk + λ (n−1)
2

+ λ (n+1)
2

+ λn−1
2

≥ max
j=1,...,(n−1)/2

(
λj+1

λj

)
.

13



3. For any λi, i = 1, .., n an NSP does not exist.

It follows from Theorem 2 that a harmonious partition in a ranking collective game with
an odd number of players and two coalitions is an NSPC. On the other hand, if the number
of coalitions is not fixed, then there is always a player who would gain from moving out to an
empty coalition (see proof of point 3 of Theorem 2 in the Appendix). In practice, this means
that agents are not interested in collaborating.

3.3 Weighted individual game

According to Definition 3, the payoff of the player i ∈ N in the partition π ∈ Π(N) in the
weighted individual game is

HWI
i (π) =

wi∏
B∈π

∑
j∈B

wj

·
∑

K∈Mi(π)

∏
j∈K

wj∑
l∈K

wl

.

In the weighted individual game, a representative is chosen from each coalition according
to the weight rule, and then the leader of the coalition partition is chosen from among these
representatives, also following the weight rule.

The weighted individual game has several features in common with weighted congestion
games (Harks & Klimm, 2012, 2015; Milchtaich, 1996), but the player’s payoff in the weighted
individual game depends not only on the sum of weights of players from one coalition but
also on the entire coalition partition. Let us formulate the definition of the potential coalition
partition game.

The potential game is a game (N,H) for which there exists a potential function P : Π(N) →
R such that ∀i ∈ N ∀π ∈ Π(N) :

Hi(π)−Hi(ρ) = P (π)− P (ρ) ∀ρ ∈ Di(π).

The definition of the potential game for normal-form games was given in (Monderer &
Shapley, 1996). The potential-game nature of coalition partition games was investigated in
(V. V. Gusev, 2021).

Statement 1. The following statements are true:

1. Let |N | = 3 and |π| = 2. Then, an NSPC exists in the individual game.

2. Let |N | = 4. Then, the partition π = {A,B} in the weighted individual game is an NSPC
iff |A| = |B|.

3. If we have ∀i, j ∈ N wi = wj in the weighted individual game, then this game is a potential
game with the potential function of the form:

P (π) =
1

|π|
∑
K∈π

|K|∑
i=1

1

|i|
.
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Let us explore the existence of an NSPC in the weighted individual game for |π| = 2. It is
possible to prove the following lemma.

Lemma 3. We denote
fi(x) =

x

x+ wi

,

where x > 0 and wi > 0 is the weight of the player i, which does not depend on x. In that case,
an NSPC in the weighted individual game with two coalitions exists iff there exists an NSPC in
the coalition partition game (N, {ui}i∈N) with two coalitions, where

ui(π) =

fi

( ∑
i∈π(i)\{i}

wi

)
∑

i∈π(i)\{i}
fi(wi)

.

Example 5. Suppose {{1, 3, 5}, {2, 4, 6}} is an NSPC in the weighted individual game. Hence,
for player 1 the condition u1({{1, 3, 5}, {2, 4, 6}}) ≥ u1({{3, 5}, {1, 2, 4, 6}}) is satisfied iff

f1(w3 + w5)

f1(w3) + f1(w5)
≥ f1(w2 + w4 + w6)

f1(w2) + f1(w4) + f1(w6)
,

and for player 2 the condition u2({{1, 3, 5}, {2, 4, 6}}) ≥ u2({{1, 2, 3, 5}, {4, 6}}) is satisfied iff

f2(w4 + w6)

f2(w4) + f2(w6)
≥ f2(w1 + w3 + w5)

f2(w1) + f2(w3) + f2(w5)
.

The same inequalities must be fulfilled for all players in the coalition partition {{1, 3, 5}, {2, 4, 6}}.

Be reminded that the harmonious partition for |π| = 2 is π = {O,E}, where O = {1, 3, 5, ...}
and E = {2, 4, 6, ...}. The following theorem applies.

Theorem 3. The following is true for the weighted individual game:

1. Let |π| = 2 and ∀i, j, k ∈ N wi + wj ≥ wk. If n is even, then the harmonious partition
is an NSPC. If n is odd, then π is an NSPC.

2. A degenerate partition is an NSP.

Note that according to point 1 of Theorem 2, an NSPC in the ranking collective game is
a harmonious partition for an odd number of players. According to point 1 of Theorem 3,
a harmonious partition in the weighted individual game is an NSPC for an even number of
players. The condition wi + wj ≥ wk, ∀i, j, k ∈ N means that the total weight of a two-player
coalition is not smaller than the weight of each individual player.

3.4 Ranking individual game

By Definition 4, in the ranking individual game, the payoff of the player i ∈ N in the partition
π ∈ Π(N) is
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HRI
i (π) = λRi(π(i)) ·

∑
K∈Mi(π)

λRi(K)

∏
j∈K\{i}

λRj(π(j))

|π|∑
j=1

λj ·
∏
B∈π

∑
j∈B

λj

.

In the ranking individual game, a representative is chosen from each coalition according
to the ranking rule, and then the leader of the coalition partition is chosen from among these
representatives, also following the ranking rule.

Statement 2. In the ranking individual game with two coalitions an NSPC exists iff an NSPC
exists in the game (N,H) with two coalitions where

Hi(π) =
λRi(π(i))

|π(i)|∑
k=1

λk

·


|π(i)|−1∑
k=1

λk

∑
l∈π(i)\i

|π(i)|−1∑
k=1

λkλRi(i,l)

 .

Statement 2 demonstrates that the study of an NSPC in the ranking individual game comes
down to exploring an NSPC in a coalition partition game where the player’s payoff depends only
on the coalition of which that player is a member. The corresponding fact was demonstrated
above for the weighed individual game in Lemma 3.

Theorem 4. The following is true for the ranking individual game:

1. A harmonious partition {O,E} is an NSPC if

|O|∑
j=1

λj · λRi(i,j)

|O|∑
j=1

λj

≥

|E\{i}|∑
j=1

λj · λRi(i,j)

|E\{i}|∑
j=1

λj

is fulfilled for ∀i ∈ E.

2. A degenerate partition is the only possible NSP. For an NSP to exist it is necessary and
sufficient that ∀λi we have

|N |−1∑
k=1

λk

|N |∑
k=1

λk

≥ λ2

λ1 + λ2

·max
i

(
λi−1

λi

)
∀i ∈ N.

Theorem 4 asserts that only a degenerate partition can be an NSP, which also demonstrates
the unwillingness of players to cooperate. The condition in point 1 of Theorem 4 is sufficient
but not necessary.
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4. Core partition

This section investigates the existence of a core partition in the games in question.
Let π = {B1, B2, ..., Bm} and K ⊆ N,K ̸= ∅. We denote πK = {K,B1\K,B2\K, ..., Bm\K}.

The coalition K is said to be blocking for π in the game (N,H) if Hi(πK) > Hi(π) ∀i ∈ K. The
coalition structure for which no blocking coalition exists will be called a core partition (CP).

Let (N,S, {ui}i∈N) be a normal-form game, s ∈ Sn, K ⊆ N,K ̸= ∅, x ∈ S. The profile
s′ = s′(K, x) is derived from the profile s by changing the strategies of players in the coalition
K to the strategy x. We say that the profile s is blocked by the coalition K and the strategy x

if ui(s) > ui(s
′) ∀i ∈ K ∪Kx(s), where Kx(s) is the set of players who have chosen the strategy

x in the profile s. The core strategy profile is a strategy profile without blocking coalitions and
strategies.

One of the sufficient conditions for the existence of a CP is the top-coalition property
introduced in (Banerjee et al., 2001). However, the method of finding the top coalition was
applied in an earlier paper (Farrell & Scotchmer, 1988). The top-coalition property is used in
the analysis of hedonic games, and it was shown in (Gallo & Inarra, 2018) that noncircular
hedonic games fulfill this property. The games examined in our paper are not hedonic, so the
existence of a CP was demonstrated without the top-coalition property. The following theorem
is true for the games here.

Theorem 5. The following statements are true:

1. In the strategic weighted collective game, there exists a core-strategy profile for which each
player chooses a strategy that maximizes their weight.

2. A degenerate partition is a CP in the ranking collective, weighted individual, and ranking
individual games.

Point 1 of Theorem 5 shows that in the strategic weighted collective game, the weakly
dominant strategy profile is a core strategy profile. Point 2 of Theorem 5 implies that a
degenerate partition is a CP. This means cooperation is not beneficial for players. Furthermore,
a degenerate partition is also an NSP in problems with a non-fixed number of coalitions.

5. A comparison between the games in relation to harmo-

nious partition

There are some essential differences between the collective and the individual games. The
question arises of what advantages one of the games may have over the other. Let us introduce
the game comparison criterion. Suppose the strongest player is the player 1, 1 ∈ N . We say
that the coalition partition game Γ = (N, {Hi}i∈N) dominates the game Γ′ = (N, {H ′

i}i∈N)
in the partition π if H1(π) > H ′

1(π). We denote this fact as Γ ≻π Γ′. In other words, the
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partition-dominant game is the one that maximizes the strongest player’s chances of becoming
the leader.

As demonstrated in Theorems 2, 3, and 4, a harmonious partition is either always or under
certain conditions an NSPC in the weighted collective, ranking collective, weighted individual,
and ranking individual games. Let us study the necessary and sufficient conditions for the
weighted individual game to dominate the weighted collective game and for the ranking indi-
vidual game to dominate the ranking collective game in a harmonious partition.

Let us consider the functions

ϕ(K) =

∏
j∈K

wj∑
l∈K

wl

, ϕN(π) =

∏
B∈π

∑
j∈B

wj∑
j∈N

wj

.

Statement 3. The following is true:

1. The weighted individual game dominates the weighted collective game in the partition π

iff

∑
K∈M1(π)

ϕ(K) ≥ ϕN(π).

2. Let |N | be odd. In this case, the ranking individual game dominates the ranking collective
game in a harmonious partition iff

(n−1)/2∑
k=1

λk

(n+1)/2∑
k=1

λk

≥ λ2

λ1

.

Point 2 of Statement 3 suggests the number of players is odd since it follows from point
1 of Theorem 2 that a harmonious partition can be an NSPC only with an odd number of
players. It follows from point 2 of Statement 3 that where the number of players is sufficiently
large, the ranking individual game dominates the ranking collective game. Since a CP in the
ranking individual and collective games is a degenerate partition, the question arises of game
domination in this partition. However, the payoff probabilities of all players in this coalition
structure coincide, so the games do not dominate each other in a CP.

6. Discussion

Theorems on the existence of an NSPC in the weighted collective, ranking collective, weighted
individual, and ranking individual games were formulated in this paper. These games model
the political and economic processes of group formation.
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It was shown for the strategic weighed collective game that the profile in which players choose
the strategy that maximizes their weight is an equilibrium in weakly dominant strategies. This
means that agents should choose the team in which they will be valued the most, i.e. where
their weight is the greatest. Suppose, e.g., economic agents are choosing a company, then the
agent’s strategy is to choose one company out of their finite set. The objective of each agent is to
maximize their expected chances of becoming the most successful employee among all employees
of all companies. Each company appraises agents differently depending on their professional
qualities. The more agents with high professional qualities there are in the company, the higher
are its chances of becoming the market leader. In real life, many people want to be employed
by the largest company, i.e. the one with the greatest total weight. Theorem 1 asserts that
agents should not pay attention to the size of the company and its employees, but only take
into account the agent’s value in each specific company.

In the general case of the ranking collective game in the general case, an NSPC does not
necessarily exist. We described the necessary and sufficient conditions for the existence of an
NSPC—only a harmonious partition with an odd number of players and two coalitions can be
an NSPC. In practice, this fact strongly limits the use of the ranking rule. Thus, organizers
of a group contest guided by the collective ranking rule must always invite an odd number
of players and allow only two teams to participate. Otherwise, any such partition will not be
an NSPC. Furthermore, an NSP does not exist in the ranking collective game. This happens
because in any partition π, |π| < n there will be a coalition B, |B| ≥ 2 such that cooperation
will not be beneficial for a player i ∈ B. A degenerate partition in that case is not an NSP
either.

For the weighted individual game, if |π| = 2 and the sum of the weights of any two players
is greater than the weight of a third player, then an NSPC exists. Otherwise, if all the weights
are equal, the game is a potential game. A degenerate partition is an NSP and a CP.

The sufficient condition for a harmonious partition to be an NSPC was found for the ranking
individual game. Only a degenerate partition can be an NSP.
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Appendix

Proof of Theorem 1.

1. We represent the payoff of the player i as follows,

ui(s) =
wisi∑

j∈N
wjsj

=
wisi

wisi +
∑

j∈N\{i}
wjsj

=
wisi

wisi + c(s−i)
,

where c(s−i) =
∑

j∈N\{i}

wjsj does not depend on the strategy of the player i. We denote

s∗i ∈ argmax
j∈S

wij. Let us show that ∀i ∈ N s∗i is a weakly dominant strategy of the player

i. Due to monotonicity of the function f , where f(x) =
x

x+ α
, where α does not depend

on x, and since s∗i ∈ argmax
j∈S

wij ∀i ∈ N we have

ui(s
∗
i , s−i) =

wis∗i

wis∗i
+ c(s−i)

≥ wisi

wisi + c(s−i)
= u(si, s−i) ∀s−i ∈ Sn−1 ∀si ∈ S.

Hence, ui(s
∗
i , s−i) ≥ ui(si, s−i) ∀s−i ∈ Sn−1 ∀si ∈ S. Then, by definition, s∗i is a weakly

dominant strategy of the player i.

2. We transform the difference of the payoffs of the player i,

ui(si, s−i)− ui(s
′
i, s−i) =

wisi

wisi + c(s−i)
−

wis′i

wis′i
+ c(s−i)

=
wisi + c(s−i)− c(s−i)

wisi + c(s−i)
−

wis′i
+ c(s−i)− c(s−i)

wis′i
+ c(s−i)

= c(s−i) ·
(

1

wis′i
+ c(s−i)

− 1

wisi + c(s−i)

)

=
c(s−i)

(wis′i
+ c(s−i)) · (wisi + c(s−i))

·
(
wisi + c(s−i)− wis′i

− c(s−i)
)

=
c(s−i)

P (si, s−i) · P (s′i, s−i)
(P (si, s−i)− P (s′i, s−i)) .

In other words, ∀i ∈ N ∀si, s′i ∈ S ∀s−i ∈ Sn−1

ui(si, s−i)− ui(s
′
i, s−i) =

c(s−i)

P (si, s−i) · P (s′i, s−i)
(P (si, s−i)− P (s′i, s−i)) .

Since ∀i ∈ N ∀si, s′i ∈ S ∀s−i ∈ Sn−1
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c(s−i)

P (si, s−i) · P (s′i, s−i)
> 0,

then

ui(si, s−i)− ui(s
′
i, s−i) > 0 ⇔ P (si, s−i)− P (s′i, s−i) > 0.

This means, by definition, that the strategic weighted collective game is an ordinal po-
tential game.

Proof of Lemma 1. Firstly, we remark that the partition π in the ranking collective game is an
NSPC iff ∀B1 ∈ π ∀i ∈ B1 ∀B2 ∈ π : B1 ̸= B2 the inequality|B1|−1∑

k=1

λk +

|B2|∑
k=1

λk +
∑

B∈π\{B1,B2}

|B|∑
k=1

λk

(λRi(B1) − λRi(B2∪{i})
)
≥ λRi(B2∪{i})·λ|B1|−λRi(B1)·λ|B2|+1

is fulfilled. Indeed, let π be an NSPC and π = {B1, B2, ..., Bm}. Without loss of generality, we
assume |B1| ≥ 2, i ∈ B1, ρ = {B1 \ {i}, B2 ∪ {i}, B3..., Bm}. Since π is an NSPC, then

HRC
i (π) ≥ HRC

i (ρ) ⇔
λRi(B1)

|B1|∑
k=1

λk +
|B2|∑
k=1

λk + ...+
|Bm|∑
k=1

λk

≥
λRi(B2∪{i})

|B1|−1∑
k=1

λk +
|B2|+1∑
k=1

λk + ...+
|Bm|∑
k=1

λk

,

where λRi(B1) is the ranking constant before the migration of the player i to another coalition,
and λRi(B2∪{i}) is the ranking constant after the migration. This leads us to

λRi(B1)

λ|B2|+1 +

|B1|−1∑
k=1

λk +

|B2|∑
k=1

λk +
∑

B∈π\{B1,B2}

|B|∑
k=1

λk


≥ λRi(B2∪{i})

λ|B1| +

|B1|−1∑
k=1

λk +

|B2|∑
k=1

λk +
∑

B∈π\{B1,B2}

|B|∑
k=1

λk

 ,

|B1|−1∑
k=1

λk +

|B2|∑
k=1

λk +
∑

B∈π\{B1,B2}

|B|∑
k=1

λk

(λRi(B1) − λRi(B2∪{i})
)
≥ λRi(B2∪{i})·λ|B1|−λRi(B1)·λ|B2|+1.

Proceeding from this inequality, we prove the validity of points 1 — 5 of this lemma.

1. Let i = 1, i ∈ B1 ∈ π and the player i moves to the coalition B2 ∈ π. Observe that the
player i preserves his/her ranking in any coalition, wherefore we have|B1|−1∑

k=1

λk +

|B2|∑
k=1

λk +
∑

B∈π\{B1,B2}

|B|∑
k=1

λk

 (λ1 − λ1) ≥ λ1 · λ|B1| − λ1 · λ|B2|+1.
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Hence, λ|B2|+1 ≥ λ|B1|, but this is possible if and only if |B1| > |B2| ∀B2 ∈ π,B2 ̸= B1 is
fulfilled for the player i.

2. Let i = n, i ∈ B1 ∈ π, then|B1|−1∑
k=1

λk +

|B2|∑
k=1

λk +
∑

B∈π\{B1,B2}

|B|∑
k=1

λk

(λ|B1| − λ|B2|+1

)
≥ λ|B2|+1 · λ|B1| − λ|B1| · λ|B2|+1.

Hence, λ|B1| ≥ λ|B2|+1, but this is possible if and only if |B2| ≥ |B1| − 1 is fulfilled for the
player n, i.e. the power of the coalition B2 cannot be greater than B1 by more than 1.

3. Let π = {B1, B2, ..., Bm}. Without loss of generality, we show that |B1| > |B2| > |B3| >
... > |Bm| is fulfilled. Let us suppose the opposite. Say there are two coalitions of equal
powers Br and Bl, so that |Br| = |Bl|. Let j be the player with the lowest index (the
strongest) among all players of the coalitions Br and Bl. If j ∈ Br, then we find that j

would benefit from moving to the coalition Bl and if j ∈ Bl, then the player would gain
from moving to Br. Indeed, without loss of generality, we suppose that j ∈ Br, hence
Rj(Br) = 1 and Rj(Bl ∪ {j}) = 1. Then|Br|−1∑

k=1

λk +

|Bl|∑
k=1

λk +
∑

B∈π\{Bl,Br}

|B|∑
k=1

λk

 (λ1 − λ1) ≥ λ1 · λ|Br| − λ1 · λ|Bl|+1.

This means that λ|Bl|+1 ≥ λ|Br|, and |Br| > |Bl|, which contradicts the supposition
|Br| = |Bl|.

4. Let π = {B1, B2, ..., Bm} be an NSPC. We will show that |π| = 2. Let us suppose the
opposite, i.e. |π| > 2. As a consequence of point 1 of Lemma 1, 1 ∈ B1, where B1

is the coalition of the greatest power, and from point 3 of Lemma 1 it follows that all
coalitions in the partition π have different powers. Let us examine the payoff function for
the weakest player j ∈ B1, whose ranking is |B1|. We will show that the player j gains
from moving to the coalition with the lowest power Bm. Since π is an NSPC, then|B1|−1∑

k=1

λk +

|B2|∑
k=1

λk +
∑

B∈π\{B1,B2}

|B|∑
k=1

λk

(λ|B1| − λ|Bm|+1

)
≥ λ|Bm|+1 ·λ|B1|−λ|B1| ·λ|Bm|+1.

Hence, |Bm| ≥ |B1| − 1. It follows from point 1 of Lemma 1 that |B1| ≥ |B|+ 1 ∀B ∈ π.
Then, |B1| ≥ |Bm| + 1. Thus, |Bm| = |B1| − 1. If |π| > 2 and |Bm| = |B1| − 1, then
coalitions of equal power exist in the partition π. However, according to point 3 of Lemma
2, all coalitions have different powers. We have a contradiction. Hence, |π| = 2.

We will now show that N is odd. Let us suppose the opposite, i.e. |N | is odd. We have
proved previously that |π| = 2. Let 1 ∈ B1. It follows from point 1, point 3 of Lemma 1
and the parity of |N | that |B1| > |B2| + 1. Note that the weakest player j ∈ B1 would
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benefit from moving to B2. Indeed, applying the necessary conditions for an NSPC, we
get that|B1|−1∑

k=1

λk +

|B2|∑
k=1

λk

(λ|B1| − λRj(B2∪{j})
)
≥ λRj(B2∪{j}) · λ|B1| − λ|B1| · λ|B2|+1.

Since λ|B1| < λRj(B2∪{j}), then the left-hand side of the inequality is negative, which means
the right-hand side of this inequality is also negative, i.e. λRj(B2∪{j}) ·λ|B1| < λ|B1| ·λ|B2|+1.
If follows that λRj(B2∪{j}) < λ|B2|+1. We have a contradiction.

5. It follows from point 4 of this lemma that |N | is an odd number and |π| = 2. Let
π = {B1, B2} and |B1| = |B2|+1. Suppose there happens to be a player i ∈ B1 for whom
Ri(B1) < Ri(B2 ∪ {i}). Then, we have|B1|−1∑

k=1

λk +

|B2|∑
k=1

λk

(λRi(B1) − λRi(B2∪{i})
)
≥ λRi(B2∪{i}) · λ|B1| − λRi(B1) · λ|B2|+1.

Since λRi(B1) − λRi(B2∪{i}) < 0, the left-hand side of the inequality is a negative number.
The right-hand side of the inequality however is a positive number. Indeed, point 4 of
Lemma 1 gives us that λ|B1| = λ|B2|+1. Hence, considering that λRi(B2∪{i}) > λRi(B1), we
get that

λRi(B2∪{i}) · λ|B1| > λRi(B1) · λ|B2|+1.

Thus, the right-hand side of the inequality is a positive number and the left-hand side is
a negative number. We have a contradiction.

Next, we suppose there is a player j ∈ B2 for whom Ri(B2) < Rj(B1 ∪ {j}). We apply
the inequality|B2|−1∑

k=1

λk +

|B1|∑
k=1

λk

(λRj(B2) − λRj(B1∪{j})
)
≥ λRj(B1∪{j}) · λ|B2| − λRj(B2) · λ|B1|+1.

Since λRj(B2) − λRj(B1∪{j}) < 0, the left-hand side of the inequality is a negative number.
The right-hand side of the inequality however is a positive number. Indeed, point 4 of
Lemma 1 gives us that λ|B1|+1 < λ|B2|. Hence, considering that λRj(B1∪{j}) > λRj(B2), we
get that

λRj(B1∪{j}) · λ|B2| > λRj(B2) · λ|B1|+1.

Thus, the right-hand side of the inequality is a positive number and the left-hand side is
a negative number. We have a contradiction.
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Proof of Lemma 2. Let π be an NSPC. Suppose that π /∈ Θ. This means that within one

coalition of the partition π there will be a pair of players {2i−1, 2i} for some i ∈ {1, 2, .., n− 1

2
}.

It then follows from point 1 and point 4 of Lemma 1 that in the second coalition of the partition

π there will be a pair {2j − 1, 2j} where i ̸= j, j = 1, 2, ..,
n− 1

2
. Without loss of generality,

we suppose that i > j. Note that by joining the opposing coalition, the player 2i can raise one’s
ranking, since 2i < 2j − 1 < 2j. However, this contradicts point 5 of Lemma 1. Consequently,
π ∈ Θ.

Proof of Theorem 2.

1. It follows from Lemma 2 that any an NSPC π belongs to the set Θ. Let π∗ be a har-
monious partition. Note that π∗ ∈ Θ. Let us suppose that the set Θ has an NSPC
π = {A,B}, |A| = |B| + 1, π ̸= π∗. Then, ∀j ∈ B HRC

j (π) ≥ HRC
j (ρ) is true for

ρ ∈ D̊j(π), i.e.

λRj(B)

|A|∑
k=1

λk +
|B|∑
k=1

λk

≥
λRj(A∪{j})

|B|−1∑
k=1

λk +
|A|+1∑
k=1

λk

,

λRj(B)

2
|A|−2∑
k=1

λk + λ|A| + λ|A|−1

≥
λRj(A∪{j})

2
|A|−2∑
k=1

λk + λ|A| + λ|A|+1

.

Since π ̸= π∗, then the coalition B will contain a player i whose ranking will be preserved
when moving to the coalition A, i.e. λRi(B) = λRi(A∪{i}), and the numerator in the
inequality above can be cancelled out. Hence,

1

2
|A|−2∑
k=1

λk + λ|A| + λ|A|−1

≥ 1

2
|A|−2∑
k=1

λk + λ|A| + λ|A|+1

.

However, λ|A|−1 > λ|A|+1, so the left-hand fraction is strictly smaller than the right-hand
fraction. We have a contradiction. Consequently, the only possible an NSPC in the set
Θ is a harmonious partition.

2. If we suppose that an NSPC exists, then it follows from point 1 of Theorem 2 that |N |
is odd and the an NSPC is a harmonious partition of the form π = {O,E}. Note that
not a single player i from the coalition O would want to move to the coalition E, since
this would not change their payoff. Indeed, any player i ∈ O keeps one’s ranking upon
moving and, since |O| = |E|+ 1, the equality

HRC
i (π) =

λRi(O)

|O|∑
k=1

λk +
|E|∑
k=1

λk

=
λRi(E∪{i})

|O|−1∑
k=1

λk +
|E|+1∑
k=1

λk

= Hi(ρ)

24



applies. Thus, a harmonious partition is an NSPC iff no player j from the coalition E

would want to move to the coalition O, i.e. it is necessary and sufficient that

λRj(E)

2
|O|−2∑
k=1

λk + λ|O| + λ|O|−1

≥
λRj(O∪{j})

2
|O|−2∑
k=1

λk + λ|O| + λ|O|+1

or

2
|O|−2∑
k=1

λk + λ|O|−1 + λ|O| + λ|O|+1

2
|O|−2∑
k=1

λk + λ|O|−1 + λ|O| + λ|O|−1

≥
λRj(O∪{j})

λRj(E)

.

In a harmonious partition, however, ∀j ∈ E λRj(E) = λRj(O∪{j})−1. Since the inequality
above is fulfilled for ∀j ∈ B, it is necessary and sufficient that

2
|O|−2∑
k=1

λk + λ|O|−1 + λ|O| + λ|O|+1

2
|O|−2∑
k=1

λk + λ|O|−1 + λ|O| + λ|O|−1

≥ max
j=1,...,|E|

(
λj+1

λj

)
.

This gives us that

2
(n−3)/2∑
k=1

λk + λn−1
2

+ λ (n+1)
2

+ λ (n+3)
2

2
(n−3)/2∑
k=1

λk + λ (n−1)
2

+ λ (n+1)
2

+ λn−1
2

≥ max
j=1,...,(n−1)/2

(
λj+1

λj

)
.

3. Consider an arbitrary non-degenerate partition π = {B1, ..., Bm} where a certain coalition
B1 fulfills |B1| > 1. Let us show that the player i ∈ B1 with the ranking f will benefit
from moving out to an empty coalition, i.e. HRC

i (π) < HRC
i (ρ), where ρ = {{i}, B1 \

{i}, B2, ..., Bm}. But HRC
i (π) < HRC

i (ρ) ⇔

λ|B1|

λ|B1| +
|B1|−1∑
k=1

λk +
|B2|∑
k=1

λk + ...+
|Bm|∑
k=1

λk

<
λ1

λ1 +
|B1|−1∑
k=1

λk +
|B2|∑
k=1

λk + ...+
|Bm|∑
k=1

λk

.

The left-hand and right-hand sides of the inequality represent a monotonically increasing
function f(x) =

x

x+ c
, where c does not depend on x. Since λ|B1| < λ1, the inequality is

fulfilled. Hence, any coalition B such that |B| > 1 will contain a player willing to move
out to an empty coalition. Thus, the only possible an NSP is the degenerate partition
{{1}, ..., {n}}. However, it is not an NSP, since it is profitable for player 1 to join player
2. Indeed,

HRC
1 ({{1}, {2}, ..., {n}}) < HRC

1 ({{1, 2}, ..., {n}}) ⇔ λ1

nλ1

<
λ1

λ1 + λ2 + (n− 2)λ1

.
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The inequality is true since λ1 > λ2. Thus, ∀λi, i = 1, ..., n an NSP does not exist.

Proof of Statement 1.

1. Let N = {i, j, k}. We will show that π = {{i, j}, {k}} is an NSPC. Since only coalition
structures with two coalitions are permissible, only the player i or j can join the player
k. We have

HI
i ({{i, j}, {k}}) = pi({i, j}) · pi({i, k}) = HI

i ({{j}, {i, k}}),

HI
j ({{i, j}, {k}}) = pj({i, j}) · pj({j, k}) = HI

j ({{i}, {j, k}}).

Hence, the payoffs of the players i and j will not change if they move to another coalition.
This means that π is an NSPC.

2. Let N = {i, j, k, l}. We will show that π = {{i, j}, {k, l}} is an NSPC. Since only coalition
structures made up of two non-empty coalitions are permissible, then HWI

i ({{i, j}, {k, l}}) ≥
HWI

i ({{j}, {i, k, l}}) ⇔

wi

wi + wj

( wk

wk + wl

· wi

wi + wk

+
wl

wk + wl

· wi

wi + wl

)
≥ wi

wi + wk + wl

· wi

wi + wj

.

Hence,
wk

wk + wi

+
wl

wl + wi

≥ wk + wl

wk + wl + wi

.

The latter inequality if fulfilled according to point 1 of Lemma 3. Similar reasoning is
applied to the players j, k, l.

3. Let ∀i, j ∈ N wi = wj = w. Then, ∀π ∈
∏
(N) ∀i ∈ N ∀ρ ∈ D̊i(π)

HWI
i (π)−HWI

i (ρ) =
wi∏

B∈π

∑
j∈B

wj

·
∑

K∈Mi(π)

∏
j∈K

wj∑
l∈K

wl

− wi∏
B∈ρ

∑
j∈B

wj

·
∑

K∈Mi(ρ)

∏
j∈K

wj∑
l∈K

wl

=
w

w|π|
∏
B∈π

|B|

 ∑
K∈Mi(π)

w|K|

w|K|

− w

w|ρ|
∏
B∈ρ

|B|

 ∑
K∈Mi(ρ)

w|K|

w|K|



=
1

|π(i)||π|
− 1

|ρ(i)||ρ|
=

1

|π|
∑
K∈π

|K|∑
i=1

1

|i|
− 1

|ρ|
∑
K∈ρ

|K|∑
i=1

1

|i|
= P (π)− P (ρ).

Hence, by definition, this game is a potential game.
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Proof of Lemma 3. Let N = {1, 2, ..., n}, π = {B1, B2}. For a fixed player i the partition π can
be given in the form π = {π(i), ρ(i) \ {i}}. When the player i moves in the partition π from
one coalition to another, we get the partition ρ = {ρ(i), π(i) \ {i}}. Simplifying the player’s
payoff, we get

HWI
i (π) =

∑
j∈ρ(i)\{i}

wi

wj + wi

· wi∑
l∈π(i) wl

· wj∑
l∈ρ(i)\{i}wl

=
w2

i∑
l∈π(i) wl ·

∑
l∈ρ(i)\{i}wl

·
∑

j∈ρ(i)\{i}

wj

wj + wi

.

The payoff of the player i in the partition ρ is

HWI
i (ρ) =

w2
i∑

l∈ρ(i) wl ·
∑

l∈π(i)\{i}wl

·
∑

j∈π(i)\{i}

wj

wj + wi

.

Then,

HWI
i (π) ≥ HWI

i (ρ) ⇔

w2
i∑

l∈π(i) wl ·
∑

l∈ρ(i)\{i}wl

·
∑

j∈ρ(i)\{i}

wj

wj + wi

≥ w2
i∑

l∈ρ(i) wl ·
∑

l∈π(i)\{i}wl

·
∑

j∈π(i)\{i}

wj

wj + wi

⇔

∑
l∈π(i)\{i}wl∑
l∈π(i) wl

· 1∑
j∈π(i)\{i}

wj

wj+wi

≥
∑

l∈ρ(i)\{i}wl∑
l∈ρ(i) wl

· 1∑
j∈ρ(i)\{i}

wj

wj+wi

.

We denote fi(x) =
x

x+wi
. In that case, the above inequality is equivalent to the inequality

fi

(∑
l∈π(i)\{i}wl

)
∑

l∈π(i)\{i} fi(wl)
≥

fi

(∑
l∈ρ(i)\{i}wl

)
∑

l∈ρ(i)\{i} fi(wl)
.

Hence, an NSPC in the weighted individual game with two coalitions is an NSPC in the
auxiliary coalition partition game (N, {u}i∈N), where

ui(π) =
fi

(∑
l∈π(i)\{i}wl

)
∑

l∈π(i)\{i} fi(wl)
.

Proof of Lemma 4.

1. Consider the function Fi(x, y) = fi(x)+fi(y)−fi(x+y) where i ∈ N, x > 0, y > 0. Then,

∂Fi(x, y)

∂x
=

wi

(x+ wi)2
− wi

(x+ y + wi)2
> 0

and
∂Fi(x, y)

∂y
=

wi

(y + wi)2
− wi

(x+ y + wi)2
> 0.
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Hence, ∀x, y > 0 monotonicity suggesting that Fi(x, y) > Fi(0, y). Consequently, ∀x, y >

0 we have
fi(x) + fi(y)− fi(x+ y) > fi(0) + fi(y)− fi(0 + y).

Therefore,
fi(x) + fi(y) > fi(x+ y).

It follows from this inequality that

fi

(
m∑
k=1

xk

)
= fi

(
x1 +

m∑
k=2

xk

)
< fi(x1) + fi

(
m∑
k=2

xk

)
= fi(x1) + fi

(
x2 +

m∑
k=3

xk

)

< fi(x1) + fi(x2) + fi

(
m∑
k=3

xk

)
< ... <

m∑
k=1

fi (xk) .

Thus,

fi

(
m∑
k=1

xk

)
<

m∑
k=1

fi (xk) .

Let us consider the functions gi(x1, x2, ..., xm) = fi

(
m∑
k=1

xk

)
and hi(x1, x2, ..., xm) =

m∑
k=1

fi (xk). Then, it follows from point 1 of this lemma that gi(x1, x2, ..., xm) < hi(x1, x2, ..., xm)

∀xk > 0,

k ∈ {1, 2, ...,m}. Note that
∂gi
∂xj

> 0,
∂hi

∂xj

> 0,

where j ∈ {1, ...,m}, and

∂gi
∂xj

=
wi(

m∑
k=1

xk + wi

)2 <
wi

(xj + wi)
2 =

∂hi

∂xj

.

Let us demonstrate that the function gi(xj, x−j)/hi(xj, xi−j) decreases monotonically as
xj increases. Indeed, we can show that

∂

∂xj

(
gi(xj, x−j)

hi(xj, xi−j)

)
=

gi · ∂hi

∂xj
− hi · ∂gi

∂xj

h2
i

< 0.

To do so, it is enough to note that

∂gi
∂xj

· hi −
∂hi

∂xj

· gi < 0.
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Hence, if x′
j < xj, then

fi

(
xj +

∑
k∈K

xk

)
fi(xj) +

∑
k∈K

fi(xk)
<

fi

(
x

′
j +

∑
k∈K

xk

)
fi(x

′
j) +

∑
k∈K

fi(xk)
.

Thence we have

fi

(
m∑
k=1

xk

)
m∑
k=1

fi
(
x

′
k

) =
fi(x1 + x2 + x3 + ...+ xm)

fi(x1) + fi(x2) + fi(x3) + ...+ fi(xm)

<
fi(x

′
1 + x2 + x3 + ...+ xm)

fi(x
′
1) + fi(x2) + fi(x3) + ...+ fi(xm)

<
fi(x

′
1 + x

′
2 + x3 + ...+ xm)

fi(x
′
1) + fi(x

′
2) + fi(x3) + ...+ fi(xm)

< ...

<
fi(x

′
1 + x

′
2 + x

′
3 + ...+ x

′
m)

fi(x
′
1) + fi(x

′
2) + fi(x

′
3) + ...+ fi(x

′
m)

=

fi(
m∑
k=1

x
′

k)

m∑
k=1

fi(x
′
k)

So, if 0 < x
′

k < xk, k = 1, ...,m, then

fi

(
m∑
k=1

xk

)
m∑
k=1

fi (xk)
<

fi

(
m∑
k=1

x
′

k

)
m∑
k=1

fi(x
′
k)

.

2. If follows from point 1 of this lemma that ∀xk > 0, k = 1, ...,m we have

fi(x1 + ...+ xm−1 + xm)

fi(x1) + ...+ fi(xm−1) + fi(xm)
<

fi(x1 + ...+ xm−1 + xm)

fi(x1) + ...+ fi(xm−1 + xm)
.

Since xm−1 < xm−1 + xm, then, applying p. 2 of this lemma, we get that

fi(x1 + ...+ xm−1 + xm)

fi(x1) + ...+ fi(xm−1 + xm)
<

fi(x1 + ...+ xm−1)

fi(x1) + ...+ fi(xm−1)
.

Thus,
fi(x1 + ...+ xm−1 + xm)

fi(x1) + ...+ fi(xm−1) + fi(xm)
<

fi(x1 + ...+ xm−1)

fi(x1) + ...+ fi(xm−1)
.

Since xm−2 < xm−2 + xm−1, then, applying in the same manner p. 1 and p. 2 of this
lemma, we get that

fi(x1 + ...+ xm−2 + xm−1)

fi(x1) + ...+ fi(xm−2) + fi(xm−1)
<

fi(x1 + ...+ xm−2)

fi(x1) + ...+ fi(xm−2)
.
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Continuing this way, we get that

fi

(
m∑
k=1

xk

)
m∑
k=1

fi(xk)
<

fi

(
m−1∑
k=1

xk

)
m−1∑
k=1

fi(xk)

< ... <
fi(x1 + x2)

fi(x1) + fi(x2)
<

fi(x1)

fi(x1)
.

Proof of Theorem 3.

1. Let us consider two cases, where the number of players is even (1.1) and odd (1.2).

1.1 We will show that π = {O,E} is an NSPC in the game (N, {ui}i∈N), where O =

{1, 3, 5, ..., n− 1}, E = {2, 4, 6, ..., n}. We will also show that ∀i ∈ O the inequality

ui(O) =
fi(w1 + w3 + ...+ wi−2 + wi+2 + ...+ wn−1)

fi(w1) + fi(w3) + ...+ fi(wi−2) + fi(wi+2) + ...+ fi(wn−1)

≥ fi(w2 + w4 + ...+ wn−2 + wn)

fi(w2) + fi(w4) + ...+ fi(wn−2 + wn)

is true.

Indeed, suppose that x1 = w1, x′
1 = wn−2 + wn, x2 = w3, x′

2 = w3, etc. Since it
is stipulated that ∀i, j, k wi + wj ≥ wk, then according to point 2 of Lemma 4 the
inequality above is fulfilled. It follows from point 1 of Lemma 4 that fi(wn−2) +

fi(wn) ≥ fi(wn−2 + wn), so the inequality

fi(w2 + w4 + ...+ wn−2 + wn)

fi(w2) + fi(w4) + ...+ fi(wn−2 + wn)
≥ fi(w2 + w4 + ...+ wn−2 + wn)

fi(w2) + fi(w4) + ...+ fi(wn−2) + fi(wn)

is true.

This leads us to the conclusion that ∀i ∈ O

ui(O) =
fi(w1 + w3 + ...+ wi−2 + wi+2 + ...+ wn−1)

fi(w1) + fi(w3) + ...+ fi(wi−2) + fi(wi+2) + ...+ fi(wn−1)

≥ fi(w2 + w4 + ...+ wn)

fi(w2) + fi(w4) + ...+ fi(wn−2) + fi(wn)
= ui(E ∪ {i}).

On the other hand, since w2 < w1, w4 < w3, etc., then it follows from point 2 of
Lemma 4 that ∀i ∈ E

ui(E) =
fi(w2 + w4 + ...+ wi−2 + wi+2 + ...+ wn)

fi(w2) + fi(w4) + ...fi(wi−2) + fi(wi+2) + ...+ fi(wn−2) + fi(wn)

≥ fi(w1 + w3...+ wn−1)

fi(w1) + ...+ fi(wn−1)
= ui(O ∪ {i}).
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Thus, the partition {O,E} in the game (N, {ui}i∈N) is an NSPC. Therefore, accord-
ing to Lemma 3, the partition {O,E} is an NSPC in the weighted individual game
with two coalitions.

1.2 Let us demonstrate that π = {O\{n}, E∪{n}} is an NSPC in the game (N, {ui}i∈N).
It follows from the condition ∀i, j, k wi + wj ≥ wk and points 2 and 3 of Lemma 4
that ∀i ∈ O

ui(O) =
fi(w1 + w3 + ...+ wi−2 + wi+2 + ...+ wn−1)

fi(w1) + fi(w3) + ...+ fi(wi−2) + fi(wi+2) + ...+ fi(wn−1)

≥ fi(w2 + w4 + ...+ wn−1 + wn)

fi(w2) + fi(w4) + ...+ fi(wn−1 + wn)

≥ fi(w2 + w4 + ...+ wn−1 + wn)

fi(w2) + fi(w4) + ...+ fi(wn−1) + fi(wn)
= ui(E ∪ {i}).

On the other hand, it follows from point 2 of Lemma 4 that ∀i ∈ E

ui(E) =
fi(w2 + w4 + ...+ wn−1 + wn)

fi(w2) + fi(w4) + ...+ fi(wn−1) + fi(wn)
≥ fi(w1 + w3...+ wn−2)

fi(w1) + ...+ fi(wn−2)
= ui(O∪{i}).

Thus, the partition {O \ {n}, E ∪ {n}} in the game (N, {ui}i∈N) is an NSPC. Then,
according to Lemma 3, the partition {O \ {n}, E ∪{n}} is an NSPC in the weighted
individual game with two coalitions.

2. Let us show that the degenerate partition π = {{1}, {2}, ..., {n}} is an NSP. Indeed,
HWI

i (π) ≥ HWI
i (ρ) ∀i ∈ N , ρ ∈ Di(π) ⇔ ∀i ∈ N

wi∑
k∈N

wk

≥ wi

wi + wj

· wi∑
k∈N\{j}

wk

∀i ∈ N.

Hence,

∑
k∈N\{j}

wk∑
j∈N

wk

≥ wi

wi + wj

⇔ fj(
∑

k∈N\{j}

wk) ≥ fj(wi).

Since
∑

k∈N\{j}
wk > wi, we can conclude due the monotonicity of the function fj(x) that

the inequality is true. Thus, ∀i ∈ N HWI
i (π) > HWI

i (ρ) ∀ρ ∈ Di(π).

Proof of Statement 2. By definition, an NSPC exists iff ∀i ∈ N Hi(π) − Hi(ρ) ≥ 0 ∀ρ ∈
D̊i(π) ⇔
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λRi(π(i))

|π(i)|∑
k=1

λk

·


∑

l∈ρ(i)\i

|ρ(i)\i|∑
k=1

λkλRi(i,l)

|ρ(i)\i|∑
k=1

λk(λ1 + λ2)

 ≥
λRi(ρ(i))

|ρ(i)|∑
k=1

λk

·


∑

l∈π(i)\i

|π(i)−1|∑
k=1

λkλRi(i,l)

|π(i)−1|∑
k=1

λk(λ1 + λ2)

 .

Therefore,

Hi(π(i)) =
λRi(π(i))

|π(i)|∑
k=1

λk

·


|π(i)−1|∑
k=1

λk

∑
l∈π(i)\i

|π(i)−1|∑
k=1

λkλRi(i,l)

 ≥
λRi(ρ(i))

|ρ(i)|∑
k=1

λk

·


|ρ(i)\i|∑
k=1

λk

∑
l∈ρ(i)\i

|ρ(i)\i|∑
k=1

λkλRi(i,l)

 = Hi(ρ(i)).

Proof of Theorem 4.

1. By definition, the fact that π = {O,E} is an NSPC means that HRI
i (π) ≥ HRI

i (ρ),
∀i ∈ N , ρ ∈ D̊i(π) ⇔

λRi(π(i))

|π(i)|∑
j=1

λj

·


|π\π(i)|∑
j=1

λj · λRi(i,j)

|π\π(i)|∑
j=1

λj · (λ1 + λ2)

 ≥
λRi(ρ(i))

|ρ(i)|∑
j=1

λj

·


|π(i)\{i}|∑

j=1

λj · λRi(i,j)

|π(i)\{i}|∑
j=1

λj · (λ1 + λ2)

 .

Since |π(i)| ≤ |ρ(i)| and ∀i ∈ O λRi(O) = λRi(E)∪{i}, as well as ∀i ∈ E λRi(E) > λRi(O)∪{i},
we have

λRi(π(i))

|π(i)|∑
j=1

λj

≥
λRi(ρ(i))

|ρ(i)|∑
j=1

λj

.

Let us show that the value in parentheses on the left-hand side is greater than the value
in parentheses on the right-hand side, i.e.

|π\π(i)|∑
j=1

λj · λRi(i,j)

|π\π(i)|∑
j=1

λj · (λ1 + λ2)

≥

|π(i)\{i}|∑
j=1

λj · λRi(i,j)

|π(i)\{i}|∑
j=1

λj · (λ1 + λ2)

.

To this end, we will demonstrate that the inequality

|K|+1∑
j=1

λj · λRi(i,j)

|K|+1∑
j=1

λj

≥

|K|∑
j=1

λj · λRi(i,j)

|K|∑
j=1

λj

32



occurs when K ⊂ N , i ∈ N \K.

Indeed, the inequality λRi(i,|K|+1) ≥ λRi(i,j) ∀j ∈ K leads to

λRi(i,|K|+1) ·
|K|∑
j=1

λj ≥
|K|∑
j=1

λj · λRi(i,j).

Therefore,

1 +
λ|K|+1 · λRi(i,|K|+1)

|K|∑
j=1

λj · λRi(i,j)

≥ 1 +
λ|K|+1

|K|∑
j=1

λj

,

|K|+1∑
j=1

λj · λRi(i,j)

|K|∑
j=1

λj · λRi(i,j)

≥

|K|+1∑
j=1

λj

|K|∑
j=1

λj

.

Finally, we get the necessary inequality

|K|+1∑
j=1

λj · λRi(i,j)

|K|+1∑
j=1

λj

≥

|K|∑
j=1

λj · λRi(i,j)

|K|∑
j=1

λj

.

Then, while |π \ π(i)| ≥ |π(i) \ {i}|, we have


|π\π(i)|∑
j=1

λj · λRi(i,j)

|π\π(i)|∑
j=1

λj · (λ1 + λ2)

 ≥


|π(i)\{i}|∑

j=1

λj · λRi(i,j)

|π(i)\{i}|∑
j=1

λj · (λ1 + λ2)

 .

Thus, ∀λi i = 1, ..., n no player from the O coalition will want to join the E coalition.
Let’s show that no one from the E coalition wants to switch to O, i.e. HRI

i (π) ≥ HRI
i (ρ),

∀i ∈ E, ρ ∈ D̊i(π) ⇔

λRi(E)

|E|∑
j=1

λj

·


|O|∑
j=1

λj · λRi(i,j)

|O|∑
j=1

λj · (λ1 + λ2)

 ≥
λRi(O∪{i})
|O∪{i}|∑
j=1

λj

·


|E\{i}|∑
j=1

λj · λRi(i,j)

|E\{i}|∑
j=1

λj · (λ1 + λ2)

 .

Since λRi(E) > λRi(E) and |E| < |O ∪ {i}|, then
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λRi(E)

|E|∑
j=1

λj

>
λRi(O∪{i})
|O∪{i}|∑
j=1

λj

.

According to the condition of this theorem ∀i ∈ E we have

|O|∑
j=1

λj · λRi(i,j)

|O|∑
j=1

λj · (λ1 + λ2)

≥

|E\{i}|∑
j=1

λj · λRi(i,j)

|E\{i}|∑
j=1

λj · (λ1 + λ2)

.

This leads us to

λRi(E)

|E|∑
j=1

λj

·


|O|∑
j=1

λj · λRi(i,j)

|O|∑
j=1

λj · (λ1 + λ2)

 ≥
λRi(O∪{i})
|O∪{i}|∑
j=1

λj

·


|E\{i}|∑
j=1

λj · λRi(i,j)

|E\{i}|∑
j=1

λj · (λ1 + λ2)

 ,

which is equivalent to HRI
i (π) ≥ HRI

i (ρ), ∀i ∈ E, ρ ∈ D̊i(π).

2. Suppose π = {B1, B2, ..., Bm} is a certain coalition partition. We start with showing that
if player 1 is part of a coalition B1 where |B1| > 1, then he/she would benefit from moving
out to an empty coalition, i.e. H1(B1, B2, ..., Bm) < H1({1}, B1 \ {1}, B2, ..., Bm) ⇔

λ1

|B1|∑
k=1

λk

· λ1

|π|∑
k=1

λk

<
λ1

|π|+1∑
k=1

λk

,

which is fulfilled since

λ1

|B1|∑
k=1

λk

<

|π|∑
k=1

λk

|π|+1∑
k=1

λk

is true.

Thus, it is always beneficial for player 1 to move out to an empty coalition. If after such
a move, there is at least one coalition of power greater than one, then it will definitely
comprise a player j who would benefit from moving to an empty coalition. Here is the
reasoning. Let N ′ =

⋃
B∈π
|B|≠1

B and j ∈ B2 ⊆ N ′ : Rj(N
′) = 1. It is possible here that

B2 = B1 \ 1.

We have Hj({1}, B1 \ {1}, B2, ..., Bm) < Hj({1}, {j}, B1 \ {1}, B2 \ {j}, ..., Bm) ⇔
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λ1

|B2|∑
k=1

λk

·
λRj(N ′)

|π|+1∑
k=1

λk

<
λRj(N ′)

|π|+2∑
k=1

λk

.

The inequality is valid since the inequality

λ1

|B2|∑
k=1

λk

=
λ1

λ1 +
|B2|∑
k=2

λk

<

|π|+1∑
k=1

λk

|π|+1∑
k=1

λk + λ|π|+2

=

|π|+1∑
k=1

λk

|π|+2∑
k=1

λk

is true. Continuing in the same manner, we find that the only possible an NSP is a
degenerate partition.

Next, we prove the necessary and sufficient conditions for an NSP. Since an NSP can only
have a degenerate form, it is necessary and sufficient to show that not a single player in
the degenerate partition π would want to join a player with a greater ranking. Thus, π
is an NSP ⇔ Hi(π) ≥ Hi(ρ) ∀i ∈ N Rj(N) ≻ Ri(N) ∀ρ ∈ Di(π), i.e.

λRi(N)

|N |∑
k=1

λk

≥ λ2

λ1 + λ2

·
λRi(N)−1

|N |−1∑
k=1

λk

∀i ∈ N

or
|N |−1∑
k=1

λk

|N |∑
k=1

λk

≥ λ2

λ1 + λ2

·
λRi(N)−1

λRi(N)

∀i ∈ N.

Thence we get the necessary and sufficient conditions

|N |−1∑
k=1

λk

|N |∑
k=1

λk

≥ λ2

λ1 + λ2

·max
i

(
λi−1

λi

)
∀i ∈ N.

Proof of Theorem 5.

1. The existence of a core strategy profile follows from point 1 of Theorem 1. Furthermore,
if wisi ̸= wisj ∀sj ∈ S, then equilibrium in dominant strategies exists in the game and,
hence, there exists a unique core partition.

2. Consider the ranking collective game. Let us show that a degenerate partition is a CP.
It follows from the proof of point 3 of Theorem 2 that only a degenerate partition can
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be a CP. Suppose that for {{1}, {2}, ..., {n}} there is a blocking coalition B. It that case
however, there will be a player j ∈ B with a ranking |B| who would benefit from moving
to an empty coalition (see proof of Theorem 2 p. 3). We have a contradiction. Hence, a
CP exists and has the form {{1}, {2}, ..., {n}}.

Let us consider the weighted individual game. Suppose that the partition π = {{1}, ..., {n}}
is not a CP. Then, there is a blocking coalition B such that HWI

i (π) < HWI
i (ρ) ∀i ∈ B,

ρ = {B, π−B} ⇔

wi∑
k∈N

wk

<
wi

wi +
∑

k∈B\{i}
wk

· wi

wi +
∑

k∈N\B
wk

∀i ∈ B.

Therefore,

wi +
∑

k∈N\B
wk∑

k∈N
wk

<
wi

wi +
∑

k∈B\{i}
wk

,

and

wi +
∑

k∈N\B
wk

wi +
∑

k∈N\B
wk +

∑
k∈B\{i}

wk

<
wi

wi +
∑

k∈B\{i}
wk

,

Let us define the function

fA(x) =
x

x+
∑
j∈A

wj

,

where A ⊆ N,A ̸= ∅. Then, the left-hand side of the inequality represents the func-
tion fB\{i}(wi +

∑
k∈N\B

wk), and fB\{i}(wi) is written on the right-hand side. Since wi +∑
k∈N\B

wk > wi, then the conclusion following from the monotonicity of the function fA(x)

is that the inequality does not hold. We have a contradiction. A blocking coalition does
not exist.

Now consider the ranking individual game. Let us show that a degenerate partition is
a CP. Let us assume this is not true. Let B block {{1}, {2}, ..., {n}}, then HRC

i (π) <

HRC
i (ρ) ∀i ∈ B, ρ = {B, π−B} ⇔

λRi(N)

|N |∑
k=1

λk

<
λRi(B)

|B|∑
k=1

λk

·
λRi((N\B)∪{i})
|(N\B)∪{i}|∑

k=1

λk

∀i ∈ B.

Take a player j ∈ B such that Rj(B) = 1. Note that Rj(N) = Rj((N \ B) ∪ {j})) is
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true for the player j. For instance, the ranking of the player j = 3 in the coalition N =

{1, 2, 3, 4, 5, 6} is 3, Rj(N) = 3. Suppose the blocking coalition has the form B = {3, 4, 5}.
Then, players team up into a coalition, forming a partition ρ. In that case, the transversal
in which player 3 wins within one’s coalition has the form (N \B)∪{3} = {1, 2, 3, 6} and
player 3 preserves one’s ranking within that coalition, i.e. R3((N \ B) ∪ {3}). Thus, for
the player j ∈ B the inequality above can be divided by λRj

(N). We get the inequality

|(N\B)∪{i}|∑
k=1

λk

|N |∑
k=1

λk

<
λ1

|B|∑
k=1

λk

.

We transform this inequality into

|N |−|B|+1∑
k=1

λk

|N |−|B|+1∑
k=1

λk +
|N |∑

k=|N |−|B|+2

λk

<
λ1

λ1 +
|B|−1∑
k=1

λk

Note that the left-hand and the right-hand sides of the inequality represent a function
of the form f(x) =

x

x+ c
. Indeed, on the left-hand side of the inequality, we set x =

|N |−|B|+1∑
k=1

λk, c =

|N |∑
k=|N |−|B|+2

λk. On the right-hand side, we set x = λ1, c =
|B|−1∑
k=1

λk.

Also,
|N |−|B|+1∑

k=1

λk > λ1 and
|B|−1∑
k=1

λk >
|N |∑

k=|N |−|B|+2

λk. However, the function f(x) increases

monotonically when x increases and decreases monotonically when c increases. Hence,
the left-hand side of the inequality is strictly greater than the right-hand side of the
inequality. We have a contradiction. Therefore, a blocking coalition does not exist.

Proof of Statement 3.

1. Let π = {B1, B2, ..., Bm} and, without loss of generality, we assume that i ∈ B1. We
denote by HWI

1 (π) the payoff of player 1 in the weighted individual game in the partition
π, and by HWC

1 (π) the payoff of player 1 in the weighted collective game in the partition
π. In that case, the condition HWI

1 (π) ≥ HWC
1 (π) is equivalent to

wi∏
B∈π

∑
j∈B

wj

·
∑

K∈Mi(π)

∏
j∈K

wj∑
l∈K

wl

≥ wi∑
j∈N

wj

.

This leads to
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∑
K∈Mi(π)

∏
j∈K

wj∑
l∈K

wl

≥

∏
B∈π

∑
j∈B

wj∑
j∈N

wj

.

The function
∑

K∈Mi(π)

ϕ(K) is written on the left-hand side of the inequality, and the

function ϕN(π) is written on the right-hand side.

2. Let π = {B1, B2, ..., Bm}. By definition, dominance means that HRI
1 (π) ≥ HRC

1 (π) ⇔

λ1∏
Bj∈π

|Bj |∑
k=1

λk

 ∑
K∈Mi(π)

∏
j∈K

λj∑
l∈K

λl

 ≥ λ1∑
Bj∈π

|Bj |∑
k=1

λk

.

Note that where i = 1, we have

λ1∏
Bj∈π

|Bj |∑
k=1

λk

 ∑
K∈Mi(π)

∏
j∈K

λj∑
l∈K

λl

 =
λ1

|π(1)|∑
k=1

λk

· λ1

|π|∑
k=1

λk

.

This leads to
λ1

|π(1)|∑
k=1

λk ·
|π|∑
k=1

λk

≥ 1∑
Bj∈π

|Bj |∑
k=1

λk

.

The condition is that π is an NSPC in the ranking collective and the ranking individual
games. It follows from point 1 of Theorem 2 that only a harmonious partition π =

{O,E} = {{1, 3, 5, ..., n}, {2, 4, 6, ..., n− 1}}, 1 ∈ O can be an NSPC.

It is therefore enough to show that

λ1

|O|∑
k=1

λk · (λ1 + λ2)

≥ 1
|O|∑
k=1

λk +
|O|−1∑
k=1

λk

or

λ1 ·
|O|−1∑
k=1

λk ≥ λ2

|O|∑
k=1

λk.

This gives us the inequality

|O|−1∑
k=1

λk

|O|∑
k=1

λk

≥ λ2

λ1

,
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which is equivalent to
(n−1)/2∑
k=1

λk

(n+1)/2∑
k=1

λk

≥ λ2

λ1

.
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