
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Magnetoencephalographic correlates of emotion regulation: topography and 

classification 

 

Nikita Rudenkiy  

Institute for Cognitive Neuroscience  

HSE University                          

National Research Nuclear University 

Moscow Engineering Physics Institute                                          

Moscow, Russia         

nvrudenkiy@hse.ru                           

Vladimir Kosonogov 

Institute for Cognitive Neuroscience 

HSE University 

Moscow, Russia 

vkosonogov@hse.ru 

Aleksandra Medvedeva 

Institute for Cognitive Neuroscience 

HSE University 

Moscow, Russia 

admedvedeva@hse.ru 

 

Danila Shelepenkov 

Institute for Cognitive Neuroscience 

HSE University 

Moscow, Russia 

dashelepenkov@gmail.com 

Abstract—The most common strategies of emotion 

regulation are reappraisal and suppression. However, it is still 

unclear which neural mechanisms underlie them, since a 

number of studies have identified different patterns of brain 

activation. In the present study, for the first time, the inter-

subject correlation was calculated based on the neural activity 

captured by magnetoencephalography during free watching of 

neutral and negative videos, reappraisal and suppression. We 

also examined sources of activation and attempted to predict the 

conditions using a neural network. We revealed a greater 

average inter-subject correlation (a marker of engagement in 

naturalistic stimuli) regarding watching negative videos in 

comparison to other conditions, which points to individual 

differences in emotional processes. Inter-subject correlation of 

the source activity was higher in the prefrontal cortex during 

both regulation strategies compared to natural watching of 

negative videos, which supports the assumption of the 

involvement of this region in regulation. We were not able to 

predict the condition of watching by the network, but found that 

it has a potential to learn and, supposedly, requires more 

samples in a training dataset. In sum, the inter-subject 

correlation measures based on magnetoencephalography 

demonstrated different synchrony of neural activation 

regarding aspects of emotion regulation, which is worthwhile to 

investigate in further studies with other naturalistic stimuli. 
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I. INTRODUCTION 

Emotion regulation (ER) involves managing emotions, 
either by maintaining or altering states experienced at the 
moment [1]. Cognitive reappraisal, focusing on changing 
thoughts and attitudes towards a situation, and suppression 
aimed at inhibiting feelings or expressions are among the most 
common strategies for ER [2,3]. A number of studies have 
shown that reappraisal is generally more effective and 
contributes to long-term well-being, although suppression can 
also be useful in short-term goal-oriented conditions [4–6]. 
The difference in the impact of strategies on long-term 
outcomes can be due to the specific involvement of 
physiological systems. 

In studies focusing on brain activity, predominantly 
utilizing functional magnetic resonance imaging (fMRI) and 
electroencephalography (EEG), ER was attributed to the 
activation of the prefrontal cortex [7–9], as well as the anterior 

insula and the premotor area [10,11]. In addition, enhanced 
activity in the lateral temporal lobe and diminished activity in 
the amygdala were revealed during reappraisal [8,10]. The 
results of suppression research are contradictory regarding the 
insula and amygdala, however, correlations with increased 
activation of the inferior parietal cortex and decreased 
activation of the temporo-occipital regions have been shown 
[12]. 

A less common method of studying ER is 
magnetoencephalography (MEG), which is mainly 
implemented for spatio-temporal evaluation. For instance, 
emotion-related inhibition processes from 100 to 425 ms after 
stimulus onset were found in the right angular and occipital 
gyri, the right orbito-frontal gyrus and the left anterior 
temporal lobe [13,14]. Meanwhile, the high spatial and 
temporal resolution of MEG makes it valuable for tracking 
rapid neural responses to emotional stimuli and regulation 
processes using various types of analyses. One of the 
promising methods is the inter-subject correlation (ISC) 
analysis, which identifies neural activity patterns shared 
across individuals and is suitable for long events and 
naturalistic stimuli [15]. At the same time most MEG studies 
regarding emotions utilize images, while implementation of 
more naturalistic stimuli, like videos, could provide better 
insights into dynamic processes [16]. Moreover, in an earlier 
EEG study of ER, the paradigm with clips presentation was 
already used in combination with ISC: a higher ISC was 
revealed during regulation processes in comparison to 
watching negative/neutral video [17]. 

Our study aimed to explore MEG correlates of ER while 
subjects watched one-minute negative video clips and used 
reappraisal or suppression strategies in contrast to watching 
neutral and negative video without regulation. We 
hypothesized that neural spatial activation, as well as ISC, 
would vary regarding emotional valence and regulation 
conditions. Additionally, in order to explore the possibility of 
prediction of conditions (free watching or regulation) based 
on MEG sources data, we applied a convolutional neural 
network. 

II. METHODS 

A. Sample 

Twelve healthy females and six males in the age range 
between 18 and 24 years (mean age=19.5, SD=1.6), took part 
in the experiment. None of the participants reported any 
neurological or psychiatric conditions. All participants signed This work was supported by Russian Science Foundation [project 22- 

48-08002, https://rscf.ru/en/project/22-48-08002/]. 



informed consent and were informed about potentially 
unpleasant content, including blood in the scenes (ethical 
approval from HSE University № 92, 19.09.2022). 

B. Stimuli 

For our experimental setup, we selected 36 one-minute 
videos from our database of affective videos (currently under 
review). Nine of these videos were emotionally neutral 
(M=5.13; 1 denoting “very negative” and 9 denoting “very 
positive”), while the other 27 contained negative content 
(M=2.78), featuring scenes such as surgeries, suffering 
animals, starvation, and fights. 

C. Procedure 

The ER paradigm was based on the approach outlined by 
Richards and Gross [18], which we had previously tested in 
earlier studies [19,20]. Each of the 36 videos, presented for 60 
seconds, was accompanied by one of three instructions: “just 
watch”, “reappraise”, or “suppress”, followed by a rest period 
of 12-18 seconds. During the “just watch” condition, the 
participants just naturally watched the videos. In the 
“reappraisal” condition, the participants were asked to watch 
the videos with emotional detachment, focusing on details and 
perceiving the content from an objective perspective to 
minimize emotional load; while in the “suppression” 
condition the instruction was to control emotional feelings 
through maintaining a neutral facial expression. After each 
video, the participants reported the negativity of emotions 
from 1 for “neutral” to 9 for “very negative”. 

All neutral videos were shown with the “just watch” 
instruction, while the negative videos were equally divided 
between the three instructions. To prevent order effects on the 
valence ratings [21], each participant watched the videos in a 
randomized order, with no more than two consecutive 
presentations of the same condition. Additionally, 
presentation of the negative stimuli was arranged in such a 
way that every video was seen under each condition by an 
equal number of the participants. Thus, our approach takes 
into account the fact that the same stimulus can cause a 
different perception of negativity. 

D. Data recording 

The neural activity data was registered using a 306-
channel Neuromag Vector View MEG system (Elekta Oy, 
Finland) in a magnetically-shielded room at 1 kHz. 
Throughout the recording session, a band-pass filter (0.1-330 
Hz) was applied, and the position of the participant’s head was 
continuously monitored using the HPI coils. Heart rate and 
ocular movements were obtained to delete artefacts. 

E. Data processing 

The MEG data was notch-filtered at 50 and 100 Hz. 
Electrooculography (EOG) signals from two channels, 
electrocardiography (ECG) signals and empty room signal-
space projections (SSP) were applied to eliminate eye-
movement and cardiac artifacts [22]. Following these steps, 
the processed data was segmented into epochs. The MEG 
preprocessing was performed in the MNE Python [23]. 

F. Source localization 

Various surface reconstructions were created from the 
individual MRI data using FreeSurfer [24]. We generated 
reconstruction geometry of 'oct5' with approximately 9.9-mm 
spacing, resulting in 1026 sources per hemisphere for ISC 
analysis. The next step involved calculating the forward 

solution using the boundary-element model. After the 
alignment and computation of the forward solution, the 
inverse operator was calculated and applied to the MEG data. 
The source data were downsampled to 125 Hz to reduce the 
complexity of calculations. 

G. Inter-subject correlation and its topography 

ISC was computed separately for each video [25,26]. 
Three first components were averaged for each subject within 
each video. Then we averaged ISC within conditions for each 
subject. Finally, we conducted an analysis of variance with 
four conditions (“watch neutral”, “watch negative”, 
“reappraise”, and “suppress”) as repeated measures with the 
Bonferroni correction. To explore the brain topography of ER, 
for each video clip we computed the mean of three 
components for each source in every condition. We averaged 
ISC within conditions for each video and each source. Then 
we performed a t-test using with 10000 permutations for all 
pairs of conditions (6 tests with the Bonferroni correction) for 
each source (with SciPy Python; [27]). 

H. Condition prediction 

We attempted to predict the four different conditions 
(“watch neutral”, “watch negative”, “reappraise”, and 
“suppress”) using the localized source data during watching 
one-minute videos from 18 subjects, totaling 612 entries. 
Among these objects, the source data of two participants (72 
entries) were reserved for testing, while the rest were utilized 
for training. Each entry was characterized by a matrix of size 
2052 × 7500, representing sources over time. We selected a 
convolutional network EEGNet [28] and conducted training 
with 50 epochs, assessing loss and accuracy on both training 
and validation sets. 

III. RESULTS 

We revealed significant differences in ISC between 
conditions (F=12.8, η2=0.05, p<0.001, Fig. 1). Post hoc tests 
showed the watching negative videos differed from all other 
conditions: watching neutral videos (t=3.5, p=0.01), 
suppression (t=4, p<0.001), and reappraisal (t=4.75, p<0.005). 

 

Fig. 1. Inter-subject correlation of source activity during watching neutral 

and negative videos, suppression and reappraisal, *p=0.01, **p<0.005. The 

point inside the "violin" represents the median of the data. The black 
rectangle (box) shows the interquartile range (IQR). Whiskers are within 1.5 

* IQR of Q1 and Q3. The bottom line has p<0.005. 

A topographic analysis showed significant differences in 
ISC regarding activation of several brain regions during 
conditions. Fig. 2 reflects the differences between watching 



negative videos and suppression. Thus, in the left hemisphere 
the following areas were detected: middle anterior cingulate 
gyrus and sulcus, lateral superior temporal gyrus, superior and 
transverse occipital sulcus. While in the right hemisphere 
these were: superior frontal gyrus, orbital gyrus, superior 
parietal gyrus, middle temporal gyrus, central sulcus, 
intraparietal and transverse parietal sulcus, h-shaped orbital 
sulcus, postcentral sulcus, superior part of the precentral 
sulcus, superior temporal sulcus. 

 

Fig. 2. Topoplots of sources (n=13 sources) where ISC significantly 

differed between the conditions. The right hemisphere is shown on the right 
side of the image, the left – on the left side. Yellow represents sources where 

watching negative > suppression; blue represents sources where suppression 

> watching negative. Scales indicate t values of permutations tests (p<0.008). 

 Fig. 3 represents the differences between watching 
negative videos and reappraisal. In the left hemisphere were 
indicated regions: middle anterior cingulate gyrus and sulcus, 
cuneus gyrus, supramarginal gyrus of the inferior parietal 
lobe, posterior lateral fissure, superior circular sulcus of the 
insula, lateral orbital sulcus, subparietal sulcus, superior 
temporal sulcus. At the same time, in the right hemisphere 
these were:  middle anterior cingulate gyrus and sulcus, 
inferior temporal gyrus, anterior circular sulcus of the insula, 
superior and transverse occipital sulcus, h-shaped orbital 
sulcus, pericallosal sulcus, superior temporal sulcus. 

 

Fig. 3. Topoplots of sources (n=15 sources) where ISC significantly 
differed between the conditions. The right hemisphere is shown on the right 

side of the image, the left – on the left side. Yellow represents sources where 

watching negative > reappraisal; blue represents sources where reappraisal > 

watching negative. Scales indicate t values of permutations tests (p<0.008). 

The obtained prediction model utilizing the network 
EEGNet revealed the ability to learn neural patterns of the 
conditions on the training data, at the same time the accuracy 
and Cross Entropy on the test set showed that it was overfitted 
and cannot yet predict new data with sufficient accuracy. 
Thus, Fig. 4 shows Cross Entropy Loss on the training and 
validation data after each epoch. We can see a significant drop 
in the loss during training, while there is no change in the 

validation set. Fig. 5 indicates accuracy on the training and 
validation data after each epoch. The training accuracy is 
noticeably different from the test accuracy due to overfit of the 
model. 

 

Fig. 4. Cross Entropy Loss on the train and validation data. 

 

Fig. 5. Accuracy on the train and validation data. 

IV. DISCUSSION 

According to our hypothesis, the average brain activation 
resulted in a significantly different and higher ISC in free 
watching of negative videos in comparison to three other 
conditions. This can indicate a more uninvolved and distracted 
perception of nonemotional content [26]. At the same time, a 
lower ISC was also found in both regulatory conditions, which 
contradicts the results of a previous study with the same 
paradigm but using EEG, where synchrony between 
participants during regulation appeared to be higher than free 
watching [17]. This disagreement may lie in a higher 
reliability MEG, which captures differences in neural 
activation caused by individual differences within regulation 
in the subjects. In fact, a number of studies emphasize that the 
choice of a particular regulation strategy, as well as its success, 
largely depends on the individual characteristics of a person, 
including personality traits, culture, and context [29,30]. 

As for the sources of neuronal activity derived from 
mapping, ISC was significantly greater in the prefrontal cortex 



during both ER strategies compared to free watching of 
negative videos. This finding is consistent with results from 
the previous neuroimaging studies, where it has been shown 
that higher prefrontal activity is associated with ER process 
itself, regardless of strategies [9,11]. The obtained result can 
also be connected with involvement in regulation of cognitive 
control, which has also been localized in this area [31]. 

We further tested our MEG data for the ability to predict 
four conditions (free watching of neutral and negative videos, 
reappraisal and suppression). We chose a neural network 
EEGNet that was originally designed on EEG recordings. 
Applying the neural network to the source data has shown that 
the training loss decreases, and the accuracy on the training set 
reaches high levels, which indicates that the neural network 
can learn. However, it showed low accuracy on the validation 
set. The possible reason can be the small size of the dataset, 
that requires further studying with increased training samples. 

As one of the limitations, our paradigm of inducing 
emotions is based on one-minute negative video clips, which 
is a rather long-lasting stimulus and therefore does not allow 
to apply a number of common analyses of ER, such as event-
related magnetic fields [32]. At the same time long videos, 
compared to a set of static images presented for several 
seconds, are closer to emotional triggers in real life. While 
ecologically valid paradigms can provide a more reliable basis 
for research on the flow of rapid processes such as ER. 
Furthermore, realistic stimuli captivate the attention of 
participants more effectively, resulting in a more targeted 
focus of perception [33]. In this regard, in future studies it can 
be potentially beneficial to also examine ISC in various 
regulation strategies, but with different naturalistic stimuli 
such as games, recall, and music. 
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