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● Spatial-temporal decompositions are pivotal in interpretation  of EEG or MEG data 

● RSA links brain-imaging modalities and models using second order similarity metrics 

● RSA requires source activation time series and uses exhaustive source space search 

● ReDisCA decomposes EEG\MEG into representationally relevant space-time 

components 

● ReDisCA boosts  detectability and localization of representationally relevant sources 
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Abstract

The principle of Representational Similarity Analysis (RSA) posits that neural repre-
sentations reflect the structure of encoded information, allowing exploration of spatial and
temporal organization of brain information processing. Traditional RSA when applied to
EEG or MEG data faces challenges in accessing activation time series at the brain source
level due to modeling complexities and insufficient geometric/anatomical data.

To address this, we introduce Representational Dissimilarity Component Analysis (Re-
DisCA), a method for estimating spatial-temporal components in EEG or MEG responses
aligned with a target representational dissimilarity matrix (RDM). ReDisCA yields informa-
tive spatial filters and associated topographies, offering insights into the location of ”repre-
sentationally relevant” sources. Applied to evoked response time series, ReDisCA produces
temporal source activation profiles with the desired RDM. Importantly, while ReDisCA does
not require inverse modeling its output is consistent with EEG and MEG observation equa-
tion and can be used as an input to rigorous source localization procedures.

Demonstrating ReDisCA’s efficacy through simulations and comparison with conventional
methods, we show superior source localization accuracy and apply the method to real EEG
and MEG datasets, revealing physiologically plausible representational structures without
inverse modeling. ReDisCA adds to the family of inverse modeling free methods such as
independent component analysis [34], Spatial spectral decomposition [41], and Source power
comodulation [9] designed for extraction sources with desired properties from EEG or MEG
data. Extending its utility beyond EEG and MEG analysis, ReDisCA is likely to find ap-
plication in fMRI data analysis and exploration of representational structures emerging in
multilayered artificial neural networks.

Keywords— EEG and MEG, spatial-temporal decomposition, representational similarity anal-

ysis, source localization.
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1. Introduction

Representational Similarity Analysis (RSA) now stands as a pivotal technique within
cognitive neuroscience, offering a profound lens into the organization and representation of
information in the human brain. This method has revolutionized our capacity to comprehend
neural bases of cognitive processes by elucidating relationships between neural representations
of stimuli or concepts and relating them to behavioral variables and computational model-
ing [12, 30]. The largely philosophical concept of representational similarity later received
its practical implementations in the field of both invasive electrophysiological [42, 19, 56]
and non-invasive functional magnetic resonance imaging (fMRI) based neuroimaging [5, 8]
followed by explicitly matching similarity patterns of neural activity to the theoretically pre-
supposed representational structure [1] including the attempts to match the representational
structure of neural activity across species [31]. Capitalizing on the success of the early appli-
cation of the RSA principle, a seminal paper by Kriegskorte et al. [30] provided a step-by-step
guide for the use of RSA to link the three whales of modern neuroscience: neuronal activity,
behavior, and computational models. Since then a number of informative studies emerged
that utilize the notion of representation [54] and employ RSA as an instrument to explore
informational structure embodied in the neural substrate [29].

RSA was extended to merge fMRI and magnetoencephalography (MEG) non-invasive
functional neuroimaging modalities [6]. This approach aimed to leverage the typically ac-
knowledged high spatial resolution of fMRI alongside the high temporal resolution of MEG.
MEG channels were used as features for constructing a classifier to yield the representational
dissimilarity matrices (RDMs) corresponding to specific time intervals. These RDMs were
then matched against those computed from spatial region of interest (ROI) activity patterns
as measured by fMRI. This study revealed intriguing patterns of temporally persistent and
recurrent representations [26] across the visual processing stream reflecting both bottom-up
and top-down informational flows highlighting the concept of predictive coding implemented
in our brains.

Several years later, MEG alone combined with cortical ROI multivariate pattern analysis
and powered by the RSA framework [27] managed to provide both temporally and spatially
informative maps highlighting the ventral vs. dorsal bifurcation of the visual pathway related
to processing images of faces and tools contrasted against meaningless textures. Methodolog-
ically, this paper is significant as to the best of our knowledge that was the first attempt to
apply RSA to MEG data in the source space. To this end, the authors first computed a
fine-grained distributed inverse solution using the sLORETA technique [47]. Applying it
to each time slice in the MEG sensor data they obtained cortical distribution of activity
for each vertex on the cortical mesh model. Then, they combined vertices into spatially
extended coarse ROIs and retained only three principal components of activities in each
cortical ROI. Then, a series of region and time-window specific linear discriminant analysis
(LDA) classifiers were trained to distinguish between stimulus classes and to form regional
RDMs. These regional RDMs were then employed within the standard RSA framework and
compared against theoretical RDMs.

It is important to realize that in the case of fMRI, the source space signals are readily
available after the application of a more or less standard collection of analysis steps including
data preprocessing and calculation of the appropriate contrasts. Things are significantly

2
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less transparent and standardized in the EEG or MEG cases [39, 10]. Here, to obtain the
individual voxel or ROI activity profiles, the inverse modeling approaches are used to convert
sensor signals into the source space activation time series. This is typically done by applying
an inverse operator matrix to EEG / MEG sensor measurements. The inverse operator
directly depends on the forward model. The latter approximates the way the source activity is
mapped to the sensors and is computed by solving Maxwell equations within the head volume
which typically requires approximating the head with a set of nested surfaces bounding the
regions of constant conductivity. The accuracy of the forward model depends on the extent
to which the geometry as well as conductivity and permeability properties of the model
align with their real counterparts. Generally unknown conductivity profiles of the tissues
comprising the head, the associated anisotropy of the conductivity tensor, and the limited
coregistration accuracy of the sensor array to the volume conductor model are the sources
of the forward model inaccuracies especially pronounced when dealing with EEG data. The
precision of modeling magnetic fields from neuronal sources tends to yield accurate MEG
forward models, showcasing an impressive fidelity with an estimated error rate of around
10% [38]. Yet, despite this advantage, MEG systems are notably less accessible compared to
their EEG counterparts. Even if the forward model is accurate enough the task of estimating
neuronal sources from non-invasively collected EEG or MEG data is inherently ill-posed.
Fundamentally, for a given set of measurements, there exist an infinite number of cortical
source distributions that perfectly fit the measurements. This problem is resolved and a
unique solution is guaranteed by regularization which makes the results depend heavily on
the apriori assumptions about source distributions. Taken together, all this limits RSA
applications in the realm of time-resolved neuroimaging furnished by the EEG and MEG,
the techniques that offer a unique time-resolved window into the rapid neuronal processes.

To address this problem and broaden the potential applications of the powerful RSA
principle here we propose novel representational dissimilarity component analysis (ReDisCA)
- an inverse modeling free method designed to estimate the spatial-temporal components in
evoked responses that adhere to a specific target (or theoretical) representational dissimilarity
matrix (RDM). The output of this method is a set of spatial filters and the associated
topographies (or patterns) that appear informative of the location of ”representationally
relevant” sources whose activity exhibits the sought representational profiles. Application of
the discovered spatial filters to the evoked response time series matrix yields temporal source
activation profiles with the desired RDM over the selected time window. It is worth noting
that ReDisCA belongs to the class of spatial decomposition methods that resolve the inherent
uncertainty of the inverse problem by adding the specific assumptions and looking for the
number of sources or components whose count does not exceed the rank of the data matrix.
Thus, ReDisCA looks for components (or sources) with specific representational dissimilarity
profiles.

While ReDisCA does not necessitate an inverse modeling, its foundation lies in the classi-
cal linear EEG/MEG observation equation. It exercises the concept of spatial filtering, akin
to already established techniques like Independent Component Analysis (ICA) [34], Spatial-
Spectral Decomposition (SSD) [41], or Source Power Co-modulation (SPoC) [9]. This ensures
that the discovered spatial patterns are suitable for implementing a rigorous source localiza-
tion procedure based on the notion of signal subspace [40] as described for example in [44]
in application to ICA.

3
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This compatibility with the linear model positively distinguishes ReDisCA from the purely
sensor space applications of RSA to EEG or MEG data. For example, [37] used high-density
EEG and highlighted the detailed spatial and temporal patterns of responses underlying var-
ious aspects of meaningfulness in the presented visual stimuli. They achieved this by using
newly proposed differentiation analysis (DA) and computed temporal and spatial profiles of
the category differentiation index (CDI) that can be used to make judgments about time
windows and approximate spatial locations of the pivotal sources. However, due to their
empirical nature, the obtained spatial CDI maps can not be rigorously fitted with the elec-
tromagnetic model of the head and therefore are only tangentially related to the underlying
distribution of cortical sources with target representational properties. Therefore, the ap-
proach proposed here can be considered as a link between the existing purely sensor-space
applications of RSA to EEG and MEG data and the fully-fledged inverse modeling-based
technique described in [27].

In what follows we first describe a classical RSA formulation and then proceed to the
presentation of ReDisCA. As it will become clear, ReDisCA utilizes formally the same opti-
mization strategy as that used in SPoC, a well-established technique for extracting spatial-
temporal components corresponding to neuronal sources of rhythmic activity whose power
is co-modulated with the user-supplied behavioral variable. To illustrate this connection we
provide a table of explicit correspondence between the quantities defined in this paper and
those used in SPoC and then describe the optimization strategy based on solving the gener-
alized eigenvalue problem with appropriately formed matrices. Next, we evaluate ReDisCA’s
performance and compare it against several versions of the source space RSA implementa-
tions in the two simulated scenarios, with either a single source or with four simultaneously
active sources each with its own RDM. Finally, we apply ReDisCA to the analysis of a real
EEG dataset that lacks the information necessary for source localization, a prerequisite for
the source space RSA analysis. We show how the new method can be used to discover rep-
resentationally relevant structure in the EEG and MEG evoked responses without the use
of inverse modeling. We conclude with a discussion of ReDisCA’s strengths and weaknesses
and relate it to the existing modifications of RSA including accommodation of advanced
dissimilarity measures [58] and the data-driven estimation of the theoretical RDM [25, 21].

2. Methods

2.1. Problem statement

Consider a collection of data matrices denoted as Xc
i , each with dimensions N × T .

These matrices represent recordings of brain activity, specifically EEG, MEG, or potentially
ECoG or sEEG, performed with N channels over T time stamps. The length of the time
segment of interest within the entire response is T samples, corresponding to the number of
columns in Xc

i . These recordings are obtained during the i-th trial out of a total of Ic trials,
corresponding to the experimental condition c = 1, . . . , C.

Averaged evoked response is one of the informative features extracted from electrophysi-
ological recordings obtained in the event-related paradigms. It can be calculated simply by
averaging Xc

i over Ic trials to get Xc = 1
Ic

∑Ic
i=1X

c
i . X

c emphasizes phasic components of the
response, i.e. those whose activity phase is consistent with the stimulus onset.

4
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Our objective is to use a set of Xc observed over C conditions and to identify spatial
and temporal components or subsequently brain regions whose temporal activity profiles
exhibit the target differences among the C experimental conditions. The target differences
in our case are defined by a predefined theoretical or model-based C × C representational
dissimilarity matrix (RDM) D.

2.2. Source space representational similarity analysis (RSA)

For EEG and MEG scenarios, we can achieve this by the two-step spot-light procedure
similar to that used in [27]. First we use an M ×N inverse operator denoted as WM whose
m-th row is denoted as w⊤

m, m ∈ 1, . . . ,M , and acts as a spatial filter tuned to the m-th
voxel or cortical vertex.

This precomputed spatial filter aids in estimating the 1 × T vector of the m-th voxel
activity during condition c as sc⊤m = w⊤

mX
c, allowing us to derive the time series corresponding

to every voxel in the predefined volumetric grid based on the sensor-space averaged evoked
response measurements Xc defined above. Note that here and in the subsequent expressions
horizontally oriented vectors are marked with transpose superscript, i.e. sc⊤m = (scm)

⊤.
Next, once having obtained regional time series vectors sc⊤m we can evaluate the dissimi-

larity measure of choice to obtain the m-th region-specific dissimilarity matrix Dm = {dijm},
m = 1, . . . ,M . In what follows we will stick to the square of the Euclidean distance as a
measure of response dissimilarity that can be readily extended to Mahalanobis distance once
the covariance matrix describing the dependencies between the time samples of the regional
response is available. Thus

Dm = {dijm} = ∥sciTm − scjTm ∥2, i, j = 1, . . . , C. (1)

Once the regional RDMs are prepared, following the standard RSA procedure, we will
employ the correlation coefficient ρm to assess the similarity between regional RDMs (Dm)
indexed by m and the theoretical RDM D = {dij} typically supplied by the user.

ρRSA
m = corr

(
dij, dijm

)
=

2

C(C − 1)

C∑

i=1

C∑

j=i+1

d̃ij d̃ijm (2)

where the tilde represents standardized upper triangular elements of the respective RDM
matrices. The standardization operation applied to a vector lies in subtracting its mean and
dividing by the standard deviation.

The scores ρRSA
m reflect the similarity between the theoretical and regional RDMs. They

can be visually represented on the cortical surface or within the brain volume by interpolating
the scores associated with each of the M voxels or cortical mesh nodes. Then, to identify the
spots of significant similarity, a statistical testing procedure is applied. This procedure should
consider the limited spatial resolution inherent in EEG and MEG-based inverse mapping, and
correction should be made for the effective number of multiple comparisons. This may be
accomplished using, for example, the cluster-based permutation testing procedure [36] where
the surrogate data are obtained by permuting the labels of C conditions which essentially
corresponds to computing ρRSA

m but for a randomly reshuffled upper triangle of the theoretical
RDM.

5
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Figure 1: Source space RSA diagrams. a) RSA applied to the averaged evoked response (AV). The inverse
operator is applied to already averaged evoked response data Xp observed during condition p, p = 1, . . . , C,
then the empirical RDM entry is calculated as the quadratic difference between the evoked source time series
in conditions ci = p and cj = q. b) RSA applied to single trials (S.T.). The inverse operator is applied to
every single l − th trial in the data, followed by computing the quadratic difference that gets then averaged
over trials within each condition. In both cases, different inverse operators

(
WM = {w⊤

m}
)
can be used. We

experimented with two inverse solvers - MNE and LCMV BF.

6
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The diagrams in Figure 1 schematically show the described process. In the first case illus-
trated in panel Figure 1.a an inverse operator is applied to already averaged evoked response
data Xp observed during condition p, p = 1, . . . , C, and then the empirical RDM entry is
calculated as the quadratic difference between the evoked source time series in condition p
and q. In Figure 1.b we show an alternative approach where the inverse operator is applied
to the single (l− th) trial data, followed by computing the quadratic difference that then gets
averaged over trials within each condition. In our experiments with source space RSA, we will
also distinguish between the use of two different inverse solvers - Minimum norm estimator
(MNE) and Linearly constrained minimum variance beamformer (LCMV BF). This gives us
in total four versions of the source space RSA that we will compare our new approach with.

2.3. Representational dissimilarity component analysis (ReDisCA)

Here we propose an alternative method for identifying brain activity components with
the desired representational dissimilarity. Instead of using the pre-computed inverse operator
WM = {w⊤

m}, m = 1, . . . ,M whose m-th row serves the m-th cortical vertex and conducting
an exhaustive search over all M cortical vertices (or voxels) as in the spotlight source space
RSA illustrated in Figure 1, we analytically seek a vector of coefficients w such that the
empirical RDM of spatially filtered data sc⊤w = w⊤Xc, c ∈ 1, . . . , C, closely approximates the
target RDM D. Note that this analytically found spatial filter weights vector w conceptually
plays the same role as the rows wm of the inverse operator in the source space RSA.

To implement this we posit and solve the following optimization problem

w = argmax corr
(
dijw , d

ij
)
= argmax corr

(
∥sciTw − scjTw ∥2, dij

)
, (3)

where following (1) to gauge similarity between the empirical RDM Dw = {dijw} of the spa-
tially filtered data scTw = w⊤Xc and the target RDM matrix D we use the Pearson correlation
coefficient between the two RDMs upper triangular elements indexed by (i, j). Also, as a
representational dissimilarity measure we employ the squared Euclidean distance between
condition-specific spatially filtered temporal activation profiles. However, in this case, the
spatial filter w is unknown and needs to be found by solving this optimization problem. Once
the weights are found they can be turned into source topographies. The relation between
spatial filter weights and the associated source topographies has been described in [17] and
will also be addressed below. The obtained topographies of sources with desired RDM profiles
can then be used for inverse modeling and localization of the underlying neuronal sources.
Note that we used subscript w to denote the elements of the empirical RDM corresponding
to the spatial filter w that we are about to identify, see (2) for comparison.

To solve the optimization problem (3) we use the fact that sciTw = w⊤Xci and rewrite (3)
as an explicit function of w:

w = argmax corr
(
w⊤ (Xci −Xcj) (Xci −Xcj)⊤w, dij

)
. (4)

For compactness, we denote Rij = (Xci −Xcj) (Xci −Xcj)⊤ to obtain the following opti-
mization problem

wmax = argmax corr
(
w⊤Rijw, dij

)
, i = 1, . . . , C, j = 1, . . . , C. (5)

7
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In Equation (5), N ×N matrix Rij represents the unscaled correlation matrix of the sensor-
space time series differences recorded between condition i and condition j. This expression
formally exactly matches the optimization problem solved in SPoC [9] where the role of Rij

is played by the time-segment specific sensor data correlation matrix.
SPoC deals with a collection of time segments (or epochs) indexed by e in the original

paper, and aims to find a spatial filter for isolating a source whose power follows the desired
temporal profile z(e). In our approach, we work with a collection of condition pairs (i, j)
and seek a source whose RDM Dw = {dijw} matches the target RDM D = {dij}. While SPoC
computes correlation matrices C(e) specific to the e-th epoch of EEG(MEG) data, in our
approach we calculate correlation matrices Rij of the difference of EEG (MEG) time series
observed during the pairs of conditions indexed by (i, j). The role of index e in the original
SPoC is played by the pair of indices (i, j) whose combinations enumerate the collection of
the upper triangular elements of the RDM. One may also express this correspondence as
e = (i− 1)C + j, i > j, i = 1, . . . , C, j = 1, . . . , C. Essentially, the e-th segment time series
in SPoC is replaced by the time series of the difference between condition pair (i, j). The
role of the desired power profile z(e) from the original SPoC is played by the elements dij of
the theoretical RDM D driving the proposed here representational dissimilarity components
analysis (ReDisCA). This correspondence is summarized in Table 1 below.

Var. SPoC Var. ReDisCA Role in SPoC Role in ReDisCA
e (i, j) time window index conditions pair index

C(e) Rij data correlation matrix data diff. corr. matrix
z(e) dij desired response pattern desired RDM pattern

Table 1: Correspondence between main SPoC variables as defined in [9] and the variables used to define
ReDisCA in this manuscript.

There are two ways to solve the optimization problem (5). The first one is to use the gra-
dient descent and to identify w as the solution for (5) to maximize the correlation coefficient
between the empirical and the desired theoretical RDM profiles. While this is entirely pos-
sible, the SPoC paper describes a more attractive alternative to approximate the correlation
coefficient with covariance which allows for a closed-form solution.

To ensure that optimization of covariance (the non-normalized version of the correlation
coefficient) is a good approximator of the correlation coefficient optimization we

• use standardized elements of the RDM d̃ij

• use the constraint w⊤R̄w⊤ = 1 where

R̄ =
2

C(C − 1)

C∑

i=1

C∑

j=i+1

Rij (6)

is the average correlation matrix.

For compactness we also denote the weighted average correlation matrix

R̄d =
C∑

i=1

C∑

j=i+1

d̃ij(Rij − R̄) (7)

8
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The resulting optimization problem can then be written as

w = argmax
(
w⊤R̄dw

)
, s.t. w⊤R̄w = 1 (8)

and can be analytically solved using the method of Lagrange multipliers.
The problems formally identical to (8) often arise in the domain of multivariate signal

processing, see beamforming [57], common spatial patterns [49], spatial spectral decompo-
sition (SSD) [41] and SPoC [9] as EEG (MEG) specific examples. The optimal w is found
as the solution to the following generalized eigenvalue problem corresponding to the largest
eigenvalue

R̄dw = λR̄w (9)

When solving this problem for an N -channel data we will arrive at an N × N matrix W
whose columns are the eigenvectors of matrix pair (R̄d, R̄) or in other words

R̄dW = ΛR̄W, (10)

where Λ = {λn}, n = 1, . . . , N is the diagonal matrix of generalized eigenvalues. The above
procedure is referred to as the maximization of covariance option in the original SPoC paper
[9]. In this case, matrix W resulting from solving the generalized eigenvalue problem (10) is
square and also full rank as we assume that both R̄d and R̄ are invertible. Then, W can be
simply inverted to obtain a matrix A = {a⊤

n } = W−1 whose rows a⊤
n are the topographies

of sources with the desired representational properties. In the case when the generalized
eigenvalue problem (10) is not full rank the described procedure can be performed in the
lower dimensional principal space and the obtained topographies can be transformed back to
the original sensor space.

Note, that by solving (10) instead of (9) we obtain N spatial filters wn and source to-
pographies a⊤

n , n = 1, . . . , N . The n-th generalized eigenvalue λn, n = 1, . . . , N reflects the
extent to which the empirical RDM corresponding to the time series extracted using spatial
filter wn is similar to the desired theoretical RDM D.

We call the topographies a⊤
n combined with the corresponding data derived RDM profiles

D̂n = {d̂ijn } = {w⊤
nR

ijwn} the representational dissimilarity components and the described
process of obtaining them the REpresentational DISsimilarity Component Analysis or Re-
DisCA.

The significance of the similarity between the component-specific data-derived RDMs
D̂n, n = 1, . . . , N and the theoretical RDM D can be established by the permutation test-
ing procedure suggested in SPoC. The idea of this approach is to solve a large number of
surrogate problems of the form (10) but based on the matrices created from the data with
permuted condition labels. The mutual correspondence between the set of difference corre-
lation matrices Rij and the condition pair labels (i, j) is destroyed and the corresponding
asymptotic p−values are calculated as a fraction of cases when the surrogate generalized
eigenvalue exceeds that obtained on the original data.

The collection of K topographies AK = [a1, . . . , aK ] corresponding to the components
with significantly high similarity between the data-derived and the theoretical RDM spans
representational dissimilarity subspace, ReDisS. These topographies together with the corre-
sponding spatially filtered ERP time series furnish the decomposition of the evoked response
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potential (ERP) data into a set of relevant constituents with respect to the used theoretical
RDM.

Technically this completes ReDisCA’s description whose result is a set of spatial com-
ponent topographies ak and the corresponding spatial filters wk that can be used to obtain
component-specific response time series vectors ucT

k in the c-th condition as ucT
k = w⊤

k X
c.

More generally, one can write this in a matrix form as

UcT = W⊤Xc. (11)

From the above and given that the matrix of spatial filters W⊤ is invertible we can write

Xc = W−1UcT = AUcT =
N∑

k=1

aku
cTk, (12)

which shows that after obtaining ReDisCA components the sensor data in the c-th condition
can be reconstructed as a superposition of rank-1 contributions akukc of ReDisCA compo-
nents.

Figure 2: Representational dissimilarity component analysis (ReDisCA) diagram. The problem of finding
the spatial components whose output ERP follow the desired RDM is reduced to SPoC covariance optimiza-
tion. Instead of time-window covariance matrices C(e) and the associated values of behavioral variable z(e)
observed for a set of latency values e = 1, . . . E ReDisCA uses activation difference covariance matrices Rpq

and the elements dpq of the theoretical RDM correspondingly, see also Table 1.

Note that using ReDisCA does not require an explicit electromagnetically informed in-
verse modeling to identify the spatial components within multichannel EEG (MEG) data
that exhibit the desired representational properties aligned with the user-supplied theoreti-
cal RDM.
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However, to compare ReDisCA’s results to those obtained with the more conventional
source space RSA approaches we can apply the electromagnetic inverse modeling to the
identified spatial topography vectors ak. This allows us to quantitatively assess the locations
of sources underlying each of the components. The simplest way to associate ReDisCA
results with neuronal sources is to compute the cosine similarity score between each forward
model-based topography vector gm, m = 1, . . . ,M corresponding to the m−th vertex of the
cortical mesh and the ReDisCA derived pattern a1 corresponding to the largest generalized
eigenvalue λ1, i.e.

ρCS
m =

g⊤
ma1

∥gm∥∥a1∥
. (13)

This procedure can be applied to each statistically significant topography.
Alternatively, to localize sources corresponding to the entire K−dimensional represen-

tational dissimilarity subspace spanned by the topographies of statistically significant com-
ponents stored in AK we can perform a simple multiple signal classification (MUSIC) scan
using subspace correlation metric as

ρMUSIC
m = subcorr

(
g⊤
m,AK

)
(14)

Similarly to ρm used in the classical RSA setting, the scores ρMUSIC
m and ρCS

m can be visually
represented on the cortical surface or within the brain volume by interpolating the scores
associated with each of the M voxels or cortical mesh nodes. Note also that ρMUSIC

m is a
more general measure of similarity between the subspaces of the arbitrary dimensions and
reduces to ρCS

m for K = 1.

2.4. Simulations setting

To validate the proposed ReDisCA approach, we conducted two sets of simulations. The
best way to ensure that ReDisCA derived components are informative with respect to the
underlying sources is to actually find these sources given the components estimated by Re-
DisCA. Therefore in both simulations we mapped the obtained topographies to the source
space using (14) and assessed the location of the MUSIC scan’s peak with respect to the
simulated source location(s).

2.4.1. Generation of source activation time series with desired representational structure

In both simulations we used the following strategy to generate the source activation time
series for each of the C conditions and associate them with the representational structure
across C conditions.

• For each source generate a random mixing matrix M by sampling its elements from
zero mean and unit variance Gaussian distribution N (0, 1)

• Generate C × T matrix S of condition-specific source evoked response potentials as
S = MZ where Z is a C × T matrix of Gaussian random variables whose rows are
low-pass filtered by the 6-th order Butterworth filter with a cut-off frequency of 2 Hz.
We will refer to the c-th row of this matrix as sc⊤ for c = 1, . . . , C.
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• Compute the resultant dissimilarity profile matrix D0 from the obtained condition-
specific time series vectors S according to equation (1).

As described later the noisy version of D0 will be supplied to the tested here RSA approaches
as a theoretical RDM. For each Monte-Carlo iteration we generated a new matrix Z, and thus
a new set of condition-specific source time series S. In the first set of simulations where we
generated only one active source we kept the mixing matrix M constant over all Monte-Carlo
iterations. In the second set of simulations with P = 4 sources, we used four mixing matrices
Mp, one for each source, that remained unchanged throughout Monte-Carlo trials.

2.4.2. ReDisCA vs. source space RSA

Within the first set of simulations we compared ReDisCA against the source space RSA
using a single source scenario. In this comparison, to generate the observed EEG (MEG)
data we placed a single source iteratively in a node of the cortical mesh whose index was
randomly generated and activated the source with the condition-specific time series. Here
we used C = 5 conditions and generated condition-specific ERP time series. For each source
position (iteration) the time series were randomly regenerated from a newly sampled matrix
of random variables according to the procedure described above.

At each Monte-Carlo iteration corresponding to a specific source location in the m0-th
node of the cortical mesh we obtained condition-specific source time series observed in the
l−th trial as

Xc
l = (gm0 + δδδ) sc⊤ + γΥΥΥx

l . (15)

In (15) gm0 is the N × 1 forward model vector (or topography) corresponding to the source
located in the m0-th vertex of the cortical mesh with coordinate rm0 . In order to account for
inevitable forward modeling errors we used normally distributed N × 1 source model noise
vector δδδ with covariance matrix Cδ = σ2

δI and σδ = 0.15||gm0 ||. Row vector sc⊤ is the c-th
row of S and ΥΥΥx

l is a N × T realistic brain noise matrix generated by 1000 randomly seeded
cortical sources activated with 1/f noise, similar to the way it was done in [43] with factor γ
controlling the signal-to-noise ratio in the simulated data. Note that each trial had a different
realization of the spatially correlated noise ΥΥΥx

l and new δδδ was generated for each Monte-Carlo
iteration.

We then use the simulated noisy sensor data Xc
l for l = 1, . . . , Ic and c = 1, . . . , C and we

aim to use the approximate RDM of a specific source to find spatial component(s) whose time
series, see (11), exhibits the desired representational structure defined by the approximate
RDM. The approximate RDM is used to simulate the real-world scenario where we naturally
lack precise knowledge of the dissimilarity profile. To this end, we incorporate a random
C×C noise matrix ΥΥΥd at each Monte-Carlo iteration. This addition modifies the theoretical
RDM D0 to D = D0 +ΥΥΥd.

To verify the result we then apply the source localization procedure to the discovered
component(s) to determine the location r̂ of a source (or its index, denoted as m̂) the dis-
covered spatial component pertains to and whose activity exhibits the intended theoretical
similarity profile. We then use the obtained location to calculate the performance metrics as
described in Section 3.1. When source space RSA is applied to this simulated data our goal
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is to directly identify the cortical source of interest using the procedures outlined in Figure
1.

In our simulations we have chosen T = 200 ms as the length of the window to which RSA
is applied. The spectral profiles of the source evoked activity occupied the frequency range
below 2 Hz to impose the smoothness characteristic of the real evoked responses. As we will
show in the example of applying ReDisCA to real EEG data the method can be applied in
a sliding window mode and remains operable at T = 150 ms. The constraint on the length
of the time interval is dictated primarily by the condition number of the resultant correla-
tion matrices (4) and can be further reduced with proper regularization and/or dimension
reduction procedures. Alternatively, ReDisCA can be applied to the entire evoked response
time interval and then a statistical testing procedure can be used to determine the intervals
of significant difference, see Section 4.2.2.

To evaluate the performance of ReDisCA in comparison to the four versions of the source
space RSA, we employed the Receiver Operating Characteristic (ROC) curve. This measure,
devoid of specific thresholds, gauges the overall informational capacity in the output of these
approaches concerning the detection task. For a detailed explanation of how the ROC curve
is calculated, please refer to Section 3.1.

2.4.3. Realistic simulations with multiple sources

Another simulation scenario reproduces the situation when the observed evoked responses
are generated by a superposition of several sources each with its own representational dis-
similarity matrix. To this end we experimented with P = 4 sources and their corresponding
dissimilarity matrices D0p and their noisy versions Dp, p = 1, . . . , P . The ideal RDMs D0p,
p = 1, . . . , P of the evoked responses for each of P = 4 sources among C = 6 conditions
are shown in Figure 3. To evaluate the RSA’s robustness we have also experimented with a
subset of C = 3, 4, 5 conditions.

At each Monte-Carlo iteration we have randomly seeded four sources over the cortical
mantle with the restriction of no source being closer than δmin = 2 cm to any of the other
sources. This gave us P = 4 true source location vectors rtruep and true source topography
vectors gtrue

p , p = 1, . . . , P . We have then added noise to these true source topographies,
projected source activation time series to the sensors and added realistic 1/f brain noise
similarly to (15) as

Xc =
P∑

p=1

(
gtrue
p + δδδp

)
sc⊤p + γΥΥΥx, (16)

Overall the approach to constructing the simulated data in this second experiment matched
that of the first one with the exception that in the current experiment the simulated data
contained the superposition of activity of P = 4 simultaneously active task-related sources
each with its own RDM.

3. Performance metrics

As we described in Section 2 ReDisCA itself does not require the electromagnetic inverse
modeling, see also Figure 2. At the same time the source space RSA applied to EEG(MEG)
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Figure 3: Theoretical RDM matrices for each of the four simulated sources generated within an exemplar
Monte-Carlo trial.
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data explicitly uses inverse modeling as highlighted by the diagrams shown in Figure 1.
Therefore, to evaluate ReDisCA’s performance and match it against the source space RSA
we use components discovered by ReDisCA and fit them with the electromagnetic model as
described in Section 2 and equations (13, 14).

3.1. ROC curves

Within the first set of simulations we evaluated the methods’ performance using area
under ROC curve (ROC AUC) metrics. To compute the ROC curves we first determine the
counts of true positives (TP), false positives (FP), true negatives (TN), and false negatives
(FN).

To this end as described in Section 2.4 at each k-th Monte-Carlo iteration corresponding to
a neuronal source placed at a randomly chosen location rk we use the scans ρm, m = 1, . . . ,M
described in Section 2 and for each threshold value θ we find a set of indices M> of cortical
vertices m for which ρm ≥ θ. Then, we count the number of vertices in M> that fall within
a sphere with rmax = 0.01 m centered around the true source location rk simulated during
the k-th Monte-Carlo iteration and save it to the corresponding true positives count array
TPk(θ). The count of vertices from M> that fall outside the sphere with radius rmax is added
to the false-positives count array FPk(θ).

Next we find a complementary set M< of cortical vertex indices m such that ρm < θ. We
then count the number of vertices from M< that appear within the sphere with rmax = 0.01
m centered around the true source location rk and save it to the corresponding false negatives
count array FNk(θ). The count of vertices from M< outside the sphere with radius rmax is
saved to the true-negatives count array TNk(θ).

Then, for each threshold value θ we compute the average true positive rate (TPR(θ)) or
sensitivity and the average false positive rate FPR(θ) equal to 1− specificity as

TPR(θ) =

∑Nmc

k=1 TPk(θ)∑Nmc

k=1 TPk(θ) + FNk(θ)
(17)

FPR(θ) =

∑Nmc

k=1 FPk(θ)∑Nmc

k=1 FPk(θ) + TNk(θ)
(18)

The pair (FPR(θ), TPR(θ)) parameterized by θ forms the ROC curve that we use to compare
between different RSA approaches studied in this paper.

3.2. Performance gauges for realistic simulations

In the realistic simulations with multiple sources described in Section 2.4.3 we created
P = 4 simultaneously active sources placed randomly on the cortex during each Monte-Carlo
iteration, each with the specific theoretical RDM Dp. In this case, we gauged the performance
based on the distance between the simulated source locations and those that were estimated
using ReDisCA and the two source space RSA implementations that performed best during
the first set of simulations with a single source, see Section 2.4.2.

To compute this metric at each Monte-Carlo iteration we used the scans ρpm, m =
1, . . . ,M , p = 1, . . . , P corresponding to the p−th source RDM Dp and identified the cortical
vertex index m∗ corresponding to the maximum of ρpm as m∗ = argmax(ρpm). We then used
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the coordinates vector r∗ of the m∗ vertex and computed the distance between it and the
true location of the p-th source rtruep , see Section 2.4.3 as δrp = ∥rtruep − r∗∥. We then plotted
the histograms δrp observed in the Monte-Carlo trials for each of the compared methods.

At each Monte-Carlo iteration we have also computed the correlation coefficients between
spatial topography vector ap

1 of the first ReDisCA component and the corresponding true
source topography vectors gp

true, p = 1, . . . , P . Having performed a set of Monte-Carlo trials
we summarized the observed correlation coefficient distributions in the form of histograms.

Finally, we have compared the target RDMs Dp = {dpij} from the p-th source to the

empirical RDMs D̂p. These empirical RDMs can be obtained from spatially filtered data
using ReDisCA-derived filters wp as D̂p = {d̂pij} = {w⊤

p R
ijwp}, where Rij is the i-th and

j− th condition difference time series covariance matrix as described in section 2.3. Then, we
measured the correlation coefficients between the vectors derived from the upper triangular
elements of Dp and D̂p for each p−th source, p = 1, . . . , P . Using multiple Monte-Carlo
trials, we summarized the distributions of these correlation coefficients in histograms.

4. Results

4.1. Simulations

In Figure 4, we illustrate the outcomes of the first set of our simulations where we com-
pared ReDisCA with four versions of the source space RSA, see Figure 1 for their detailed
diagram. As described before, the aim here was to detect a single neuronal source using
a noisy version of its specific RDM. In Figure 4.a, the blue curve represents ReDisCA’s
performance in the detection of the representational dissimilarity subspace using the aver-
aged evoked response data. This method significantly outperforms four different versions
of the source space RSA that employ two different inverse operators: the minimum norm
estimator and the LCMV beamformer. Out of the four source space RSA approaches LCMV
beamformer based on single trials (BF S.T.) approach appears to perform best. Impor-
tantly, ReDisCA yields better ROC AUC values in detecting spatial component linked to
the targeted neuronal source without relying on electromagnetic inverse modeling and with
significantly fewer computations as compared to the source space RSA. To make this con-
clusion and enable the comparison we employed the electromagnetic inverse modeling to
align ReDisCA’s results with those of conventional RSAs that operate explicitly in the space
of neuronal sources, see expressions (13) and 14). Figure 4.b illustrates noisy (blue) and
noise-free (red) averaged ERP time series and the theoretical dissimilarity matrix used in
simulations is shown at the bottom. Figures 4.c and 4.d show similar results but for SNR
= 0.1. As we can see, in this atypically low SNR case ReDisCA’s performance only slightly
deteriorates and remains superior to that of the other methods. ReDisCA appears capable of
accurately locating the target source in nearly 85% of cases at almost zero false alarms rate.
Comparing the curves of classical RSA approaches (MNE AV RSA, MNE S.T. RSA, BF AV
RSA, BF S.T. RSA) across two SNR values (panels a) and c) in Figure 4), an interesting
finding emerges. We notice an improvement in the performance of the source space RSA
methods under low SNR conditions compared to higher SNR scenarios in this single-source
simulation. Our analysis reveals that this seeming paradox arises due to a decrease in false
positives in the traditional RSA outputs as SNR decreases. Despite the use of a realistic
brain noise model with spatial correlations, the resulting data matrix appears ’empty’. This
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a) b)

d)c)

Realistic brain noise with 1000 sources, single trial SNR 0.2, 100 trials

Realistic brain noise with 1000 sources, single trial SNR 0.1, 100 trials

Figure 4: Results of 100 MC trials of simulations in single source detection scenario. a) and c) the ROC
curves for ReDisCA and four source space RSA versions, see Section 2 for two different SNR levels. b) and
d) - noisy (blue) and noise-free (red) averaged ERP time series for the two SNR values and the theoretical
dissimilarity matrix used in the simulations.
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results in the situation where despite the inverse modeling the sole persistent component of
the single source remains spread across numerous cortical vertices in the source time series
estimates, which leads to a surplus of high correlations between the observed and theoretical
RDMs. The increased noise levels, however, rectify this issue, rendering RDM correlation
scans more specific which in turn improves the corresponding ROC curves.

This observation aligns with the lower ROC-AUC values observed in the source space
RSAs based on the averaged ERP data (BF AV and MNE AV) compared to their single-trial
counterparts (BF S.T. and MNE S.T.). In the latter case, dissimilarity scores are computed
on individual trials before averaging, while in the former the averaging precedes computation
of the vertex-specific between-condition dissimilarity scores based on the inverse modeling of
these averaged ERP data (refer to Figure 1). This paradoxical behavior, however, does not
manifest in more realistic simulations involving multiple cortical sources, as described next.

Realistic brain noise with 1000 sources, single trial SNR 0.4, 100 trials

Realistic brain noise with 1000 sources, single trial SNR 0.2, 100 trials

a) b)

d)c)

Figure 5: Results of 100 MC trials of realistic simulations with M = 4 randomly seeded sources and C = 6
conditions: a) Distribution of the true topography and ReDisCA derived pattern correlation coefficient,
b) Distribution of the true topography and ReDisCA spatial filter weight vector correlation coefficient, c)
Distribution of the correlation coefficient of true RDM and RDMs derived from the multichannel data with
the first ReDisCA derived spatial filter, d) Distribution of ReDisCA source localization error, e) Distribution
of the MNE spotlight RSA source localization error.
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Next we describe the results of more realistic simulations where at each Monte Carlo trial
we randomly seeded M = 4 sources each with its own RDM, see Section 2.4.3 for details.
The results from 100 Monte Carlo trials of these realistic simulations for C = 5 conditions
are presented in Figure 5 for two SNR values.

In Figure 5.a we show the distribution of source localization errors for four sources (dif-
ferent colors) for the three methods: ReDisCA, BF S.T. RSA, and MNE S.T. RSA. Out
of compactness considerations we have chosen to present here the results of only two best-
performing source space RSA methods, BF S.T. and MNE S.T. As one can see ReDisCA’s
distribution appears to have the largest proportion of cases where all four sources are local-
ized with errors below 1 cm. The distributions of source localization errors delivered by BF
S.T. and MNE S.T. are increasingly shifted to the right and result in greater median source
localization error as compared to ReDisCA.

Panel b) shows ReDisCA-specific metrics described in Section 3.2. From top to bottom we
show the distributions of 1) topography correlation coefficient between ReDisCA identified
a1 and the true simulated source topography gtrue

p , 2) ReDisCA weights w1 and the true
topography gtrue

p correlation coefficient and finally 3) correlation coefficient between the target

Dp and observed RDMs D̂p for p = 1, . . . , 4.
Since the spatial filters derived by ReDisCA get not only tuned to the target source but

also attempt to tune away from the interfering sources [17, 48] the true source topographies
appear to be much better aligned with ReDisCA derived topographies (patterns) than with
the corresponding weight vectors. As evident from the bottom plot in Figure 5.b the observed
RDMs appear to be well correlated with the target RDMs for all four sources. Panels c) and
d) of Figure 5 show similar plots but for the decreased Signal-to-Noise Ratio (SNR) equal
to 0.2, allowing us to observe that ReDisCA remains operable in these harsh conditions. It
is important to note that in simulations by combining noiseless sensor data with noise data
matrices, see equation (16), we effectively control the SNR based on the ratio of root mean
powers between these two matrices. Therefore, as the number of sources within the noiseless
data matrix increase, the SNR per individual source automatically decreases. Hence, in the
case of four sources, the SNR of 0.2 represents a notably more challenging task compared to
a single-source scenario with the SNR of 0.1.

Finally, we explore the dependence of localization error on the number of conditions
employed in RSA analysis. It is intuitive to expect that the increase in the number of
conditions should lead to improved source localization performance in the classical RSA
scenario and better identification of the representationally relevant components by ReDisCA.
As before, to align ReDisCA’s results with those of source space RSA approaches we fitted
a dipole to ReDisCA-derived source topography vectors ap

1, p = 1, . . . , 4. The results are
presented in Figure 6 in the form of three graphs corresponding to the average median
localization error achieved by the three techniques. As expected the increase in the number
of conditions leads to the decrease of source localization error. ReDisCA furnishes the best
performance for all C, the mean median error appears to be less than 2 cm for C = 6
conditions.

4.2. Real data analysis examples

In this section we demonstrated the use of ReDisCA for analysis of two real-life datasets.
The first dataset is a publicly available low-density EEG N170 dataset available at https://osf.i
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Figure 6: Average median localization error of 4 simultaneously active sources (each with its own RDM) as
a function of the conditions count C for three methods ReDisCA, beamformer-powered single trial RSA, and
MNE-powered single trial RSA. As expected the increase in the number of conditions leads to the decrease of
source localization error. ReDisCA furnishes the best performance for all C, the mean median error appears
to be less than 2 cm for C = 6 conditions.
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and described in [22]. In that data the N170 was elicited in a face perception task with stim-
uli from [51]. In this task, an image of a face, car, scrambled face, or scrambled car was
presented on each trial in the center of the screen, and participants responded whether the
stimulus was an “object” (face or car) or a “texture” (scrambled face or scrambled car).
The data were preprocessed and three ICA components corresponding to ocular and cardiac
artifacts were removed from the data. Then, the ERP were computed by averaging responses
within each of the stimulus types. The dataset comprises the EEG data from 40 subjects. In
our analysis for demonstration purposes we used single subject data recorded from the first
participant with index ”1”.

The second dataset is an Elekta Neuromag 306 MEG dataset from the first run of the
RSA study by [27]. In this open-access article, the authors employed source space RSA and
demonstrated distinct differences in the timing, brain regions involved, and dynamics of visual
processing of faces and tools during the categorization stage. They found that face-specific
spatiotemporal patterns were linked to bilateral activation of ventral occipito-temporal areas
during the feature binding stage at 140–170 ms. In contrast, tool-specific binding-related
activity was observed within the 210–220 ms window, located in the intraparietal sulcus of
the left hemisphere. Brain activity common to both categories began at 250 ms and included
widely distributed assemblies within the parietal, temporal, and prefrontal regions. A more
detailed description of the spatial-temporal dynamics can be found in Figure 3 of [27]. In
our analysis we used the data recorded from the first subject labeled as ”AD”.

4.2.1. ReDisCA of a low-density EEG dataset

We first applied ReDisCA to explore the spatial-temporal structure of the response to
meaningful versus meaningless stimuli that were formed as the scrambled versions of the
original images. For that, we formed the theoretical RDM shown in Figure 7.a. Then,
scanning over time windows of duration T = 150 ms and calculating the p-values we obtain
their color-coded map shown in Figure 7.b with rows corresponding to the components and
columns encode time. We then visualized uncorrected p-values corresponding to the first
component and identified the time interval corresponding to a continuous segment of p <
0.05. As can be seen from Figure 7.d we found such a segment at around t = 400 ms.
The corresponding pattern is visualized in panel c) and has highly pronounced occipital
topography. This result is in agreement with observations made in a high-density EEG-
based study [37] that demonstrates a statistically significant difference between meaningful
and meaningless stimuli occurring in the time window around 300-500 ms and is localized to
the occipital area of the scalp. ReDisCA missed the first peak at around 100 ms reported by
[37] but that could be explained by a smaller number of electrodes in the current dataset as
compared to the one analyzed in [37]. At the same time, our analysis of an MEG dataset, see
Figure 15 in Section 4.2.2, shows a significantly different activation of ReDisCA component
starting at 160 ms and contrasting the meaningful vs. meaningless visual stimuli. This
component has dominantly occipital topography.

A significant component aligned with the theoretical meaningful vs. meaningless RDM
was observed over 3 adjacent time windows. Figure 8 shows the discovered topographic pat-
terns of the first ReDisCA component, the corresponding time courses of this component
observed within the four different conditions as well as the observed (or empirical) color-
coded RDM in the bottommost panel. As we can see the yellow and violet timecourses
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Figure 7: Meaningful vs meaningless stimuli perception analysis. a) Theoretical RDM contrasting the two
types of stimuli. b) Color-coded map of component p-values, each row corresponds to a component and
columns encode time. c) Topography (pattern) of the first and the only significant component during the
time interval around t = 400 ms. d) Temporal profiles of the uncorrected p-values corresponding to the first
component. The significant segment is marked with asterisks.
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corresponding to the meaningless stimuli appear disentangled from the red and blue ones ob-
served during the presentation of meaningful pictures. The topography of the first significant
ReDisCA component (p < 0.05) remains highly similar over the three consecutive time win-
dows. Interestingly, the time series of this ERP component observed during the presentation
of faces (blue) exhibits longer-lasting traces as compared to that corresponding to the activity
during the presentation of cars (red curve) which is consistent with the findings reported in
several studies exploring neural correlates of face perception in humans [18]. Consequently,
the observed RDMs indeed appear to closely resemble the target RDM, see Figure 7.a used
for the described inquiry. Comparing the evolution of the topography of the first (the only
one found significant) ReDisCA component we can observe its gradual displacement in the
sagittal plane moving downwards with time followed by deepening (the topography widens)
of the source at the last time stamp. This may correspond to the traveling wave patterns
found in the visual area [52, 4].

We proceeded by examining the activity associated with particular meaningful stimuli
using the RDMs displayed in Figure 9.a for faces and Figure 9.b for cars, respectively. These
RDMs guide our search towards a component with a distinct activity in one condition (face
or car) different from that observed in the remaining three conditions. Additionally, unlike
what may be the case in the decoding-based multivariate pattern analysis approaches, the
RDMs prescribe the activity during the remaining three conditions to be similar. Although a
classifier can be built to enforce a compact representation within each of the classes, the RSA
offers a greater flexibility in imposing the geometric constraints on the discovered activity
using non-binary RDM matrices. See the analysis reported in Figures 16 and 17 in Section
4.2.2.

According to the large volume of studies N170 ERP component is considered to be face
specific and occurs at around 170 ms latency. We have therefore selected the time window
of duration T = 100 ms centered at 200 ms and applied ReDisCA to it using the theoretical
RDM shown in Figure 9.a. Figure 10 shows ReDisCA’s output and as we can see from the
top panel of 10 the first and the only significant ReDisCA component has topography corre-
sponding to a source in the right fusiform gyrus, the area known to be crucial to perception of
facial information and differentially activated in response to regular or scrambled face stimuli
[16, 27].

The corresponding ERP components obtained by filtering the multichannel ERP with
a spatial filter derived by ReDisCA are presented in the panel below the topography. We
indeed can observe a burst of activity around 170 ms in the ”face” condition while in the other
three conditions the response curves do not have such a burst and are very closely aligned
implementing the requirement imposed by the RDMmatrix. In agreement with other studies,
the discovered face-related ERP components remain active over a long duration of response.
The observed RDM is shown in the bottommost panel. We can see that it aligns well with
the theoretical RDM and exhibits a high correlation coefficient of 0.82.

Finally, we performed similar processing but using the theoretical RDM from Figure 9.b
designed to highlight response components specific to the processing of car images. We have
found two significant components with p < 0.01 shown in Figure 11. The first components
appear to have a lower occipital topography with the time course exhibiting deflection at
around 150 ms that is specific to the second condition (car images). This reflects activity in
the ventral visual pathway during the image perception task. The traces of this ReDisCA
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Figure 8: Meaningful vs. meaningless stimuli perception analysis. Topography, spatially filtered timecourses
and the observed RDMs for the three consecutive time slices at around t = 400 ms, see also Figure 7.d
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Figure 9: Theoretical RDMs corresponding to faces (a) and cars (b)

component appear to be remarkably similar in the other three conditions not only during the
target interval but also over the entire response duration. The observed and the theoretical
RDM appear highly correlated with a correlation coefficient greater than 0.99.

Interestingly, the second component has a pronounced topography that may reflect the
activity in the dorsal visual pathway that is known to accompany visual perception of objects
and is hypothesized to reflect the neural processes of formation of spatial relations between
the objects within the scene that is then fed to the ventral visual stream [3]. It may also be
related to identifying the car as a graspable tool as far as the steering wheel is concerned [2].

Based on the above we can conclude that the reported real data analysis results obtained
with a direct application of ReDisCA to the averaged ERP data appear to align well with the
existing knowledge in the field of neuroimaging related to visual perception of faces and cars
and differentiation between meaningful and meaningless stimuli including not only spatial
but also temporal structure of this process.

These findings obtained with ReDisCA appear to be in line with what’s already known in
the field of neuroimaging regarding the brain processes underlying visual perception. This in-
cludes distinguishing between meaningful and meaningless stimuli, delineation of face-specific
and car-specific activation considering both the spatial and temporal aspects of this cognitive
process.

4.2.2. ReDisCA of the MEG visual stimuli categorization dataset

To enable a comparison to a more traditional source space RSA we applied ReDisCA to
the MEG dataset from [27] corresponding to the first run of their experiment.

Similarly to [27], we divided the responses within each category into two equal parts and
labeled them numerically as 1 and 2, resulting in total 6 subcategories labeled ”face 1”, ”face
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Figure 10: ReDisCA of face-specific responses using the RDM depicted in Figure 9.a. The top panel shows the
topography (pattern) of the first and the only significant ReDisCA component. The topography corresponds
to a source in the right fusiform gyrus, the area pivotal to the perception of facial information. In the central
panel the corresponding ERP components in the four conditions are displayed. The observed RDM is shown
in the bottommost panel and exhibits a high correlation coefficient of 0.82 with the theoretical RDM.
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Figure 11: Two significant components discovered by ReDisCA using car detector RDM (Figure 9.b) applied
at t = 170 ms latency.
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2”, ”tool 1”, ”tool 2”, ”nons. 1”, and ”nons. 2”. In each of the subcategory we had 80
epochs and 480 epochs in total. Since ReDisCA operates on the averaged evoked responses,
we averaged the single-trial responses to obtain six evoked response field (ERF) matrices, one
for each subcategory. Each ERF response is a 204×1500 matrix, reflecting the activity of 204
planar gradiometers over 1500 ms, with 500 ms of pre-stimulus and 1000 ms of post-stimulus
intervals.
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Figure 12: Three theoretical RDM matrices used for analysis of [27] dataset.

We have then applied ReDisCA to these six ERFs aiming to elucidate the components
supporting cortical processing of each of the 3 categories. We used the theoretical RDM ma-
trices shown in Figure 12 for each of the three categories. This time we applied ReDisCA to
the entire 1500 ms time-window at once. We then used the spatial filters derived by ReDisCA
and computed the time series associated with each of the representation dissimilarity com-
ponents. In our presentation here we considered only the first three statistically significant
ReDisCA components.

The top row of Figure 13 shows the temporal profiles for each of the 6 categories (”face
1”, ”face 2”, ..., ”nons. 2”, see the legend) for the face-specific theoretical RDM from Figure
12.a. Panels a)-c) of Figure 13 correspond to the first three ReDisCA components. The
title of each panel contains the component’s p−value. The bottom row of plots in Figure
13 depicts spatial patterns associated with each ReDisCA component discovered using the
face-specific theoretical RDM.

To determine the intervals of significant difference in component activation time series
between categories, we performed randomization tests. This involved permuting the sub-
category labels of individual epochs, computing surrogate averages, and applying the corre-
sponding spatial filters. We then corrected for multiple comparisons using the family-wise
error rate (FWER) principle operationalized by the maximum statistics computed over the
entire time interval. The results of the statistical testing are shown with red and blue asterisk
lines located above and below the time series plots in the top panels of Figures 13 - 15. For
the reader’s convenience and to facilitate a comparison of ReDisCA results with the source
space RSA findings reported in [27], we have also indicated the starting times of the major
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significance intervals in each of the time series plots.

65 ms

160 ms

311 ms

218 ms 273 ms

734 ms

a) b) c)

Figure 13: ReDisCA applied to the data from [27] with the face-specific theoretical RDM, see Figure 12.a.
Panels a)-c) correspond to the first three ReDisCA components. Within each panel the top plot shows
temporal profiles for each of the 6 subcategories (”face 1”, ”face 2”, ”tools 1” , ”tools 2”, ”nons. 1” and
”nons. 2”), see the legend and the title for the associated p-value. The bottom plot shows the component’s
spatial pattern.

Similarly we have applied ReDisCA using the other two theoretical RDMs from Figures
12.b and 12.c and generated Figures 14 and 15 with ReDisCA results.

The first face category-related ReDisCA component, shown in Figure 13.a exhibits the
early differential response to faces starting at 65 ms, see [55] for a review of possible reasons.
The response curve has a prominent peak at 160 ms. This peak differentiates the neural
response to face stimuli from the responses to the other categories. The spatial topography
shown in the bottom panel of Figure 13.a has maximum over the central and right occipital
sensors. This topography likely corresponds to the neuronal sources in the occipital pole,
inferior occipital and the right fusiform gyrus. Notably, this ReDisCA component rises again
with the significance interval starting at 311 ms. This component aligns well with the blue
face-related decoding trace shown in Figure 3 of [27]. The second ReDisCA component,
see Figure 13.b, demonstrates prominent activation of the parietal cortex with the first sig-
nificance interval starting at 218 ms. This topography may reflect sources located in the
middle temporal posterior cortex. The last ReDisCA component shows late and sustained
processing of face-related information starting at 273 ms by neuronal populations located
in the bilateral occipital regions involving some activation of the frontal lobes which may
reflect fronto-temporal interactions associated with visual processing [45]. This component
augments the first ReDisCA component but does not exhibit early response to the face stim-
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Figure 14: ReDisCA applied to the data from [27] with the tool-specific theoretical RDM, see Figure 12.b.

Figure 14 shows the results of ReDisCA with the tool-specific theoretical RDM from
Figure 12.b. ReDisCA component 1 (Figure 14.a) shows a prominent response to the ”tool
1” and ”tool 2” stimuli that occurs at 210 ms and appears to be localized to the central
occipito-parietal region also involving the planar gradientometers located over the left (and
compactly over the right) central sulcus areas. Later activation involves the extended parietal
and occipital regions (Component 2, Figure 14.b) localized to the mid-occipital and left
parietal cortices. Interestingly, ReDisCA’s Component 3 shows activity starting later at
around 240 ms and stemming from the right and left sensory-motor cortices and sources in
the temporal lobe with the prevalence of the right side in contrast to Component 1. These
observations align well with those in [27] where the authors also observed responses at similar
latency with the left sensory-motor cortex (ReDisCA’s component 1) leading the right one
(ReDisCA’s component 3), see the tools-related curves in Figure 3 of [27] for the IPS, VPM
and the MTp cortices.

Next, we explore ReDisCA’s components contrasting the perception of the meaningful
(”face” and ”tool”) and the meaningless (”nons.”) visual stimuli, see Figure 12.c for the cor-
responding theoretical RDM. In Figure 15.a and Figure 15.b we can see the two components
that can be assigned to the ventral and dorsal visual pathways correspondingly. The activity
response to the meaningful stimuli occurred as early as 160 ms in the occipito-parietal region
(Component 1) followed by the prominent response along the dorsal visual pathway (Com-
ponent 2). Early (182 ms) and short-lasting as well as the late (675 ms) differential response
between the meaningful and the meaningless stimuli gets isolated into a single component
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Figure 15: ReDisCA applied to the data from [27] with the RDM contrasting meaningful (”face”,”tool”) vs.
meaningless (”nons.”) categories, see Figure 12.c.

with a focal mid-parietal topography, see Component 3 in Figure 15.c.
In the final example we used ReDisCA to impose specific geometric relationships between

the resultant components. To do so we used the non-binary RDM shown in Figure 16.a which
forces ReDisCA to look for the components whose activation is similar within each of the
three categories (faces, tools, and visually meaningless images). Simultaneously, it imposes
geometric relations on the activation of the sought components, requiring that the distance
between each meaningful category and the meaningless one is less than the distance between
the two meaningful categories, see Figure 16.b. Since ReDisCA currently searches for one-
dimensional components, the responses to the two meaningful stimuli (faces and tools) will
be positioned on the opposite sides relative to the responses to the nonsensical visual stimuli.

The three components with the lowest p-values are shown in Figure 17 in the order they
were returned by ReDisCA.

From 17.a we can observe the rise of the response magnitude in the ”tools” condition that
is significantly different from the response in the ”faces” condition (that remains nearly flat
over this interval) as shown by the asterisks on the top of the plot. The significant difference
starts at 202 ms which nearly exactly matches the results reported in Figure 3 of [27]. As
evident from the topography, the observed response is produced by dominantly left parietal
sources and possibly sources from the left sensory-motor cortex. Component 2 shows the
development of this response in the visual areas of the cortex which again aligns well with
the late (around 260-350 ms) activity of the fusiform gyrus (FG) in response to the images
of ”tools”. The last component reflects face-specific activity that peaks early at around 160
ms, then mixes with the activity in the other subcategories and then in the second window
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Figure 16: a) The non-binary theoretical RDM matrix used to impose the specific geometric relationship
on the component time series. b) This matrix requires that the responses to ”face” and ”tool” categories
are maximally separated while both are equally distanced from the response to the nonsensical images. The
distances in a) and b) are identically color-coded.
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starting at 356 ms becomes prominently distinct from the response in the other categories.

a) b) c)

202 ms 336 ms 65 ms 356 ms
160 ms

Figure 17: Representational dissimilarity components in the dataset by [27] obtained using non-binary theo-
retical RDM shown in Figure 16.

We have also performed MUSIC scan in order to highlight the cortical areas whose source
topographies fall into the representational dissimilarity subspace identified by ReDisCA. To
do so we have utilized the forward model built using the individual MRI as described in [27]
and applied equation (14) to compute the subspace correlation ρMUSIC

m between the pair of
topographies corresponding to a freely oriented dipole at each m-th cortical location and the
representational dissimilarity subspace identified by ReDisCA spanned by the topographies
shown in Figure 17.

In Figure 18 we can observe involvement of the dominantly right fusiform gyrus, right
insula, left intraparietal sulcus and anterior central gyrus as cortical regions demonstrating
the requested geometric relationships imposed by the RDM in Figure 16.a In these regions
the response to faces and tools appears on the opposite sides w.r.t. their response to nonsense
stimuli as schematized in Figure 16.b and observed in the top panels of Figure 17.

Overall, application of ReDisCA to the MEG dataset exploring the neural processes
underlying visual categorization of faces and tools appears to support the main result of the
original study [27] and confirms that while perception of faces is dominantly accompanied by
the activity in the ventral visual stream, the images of tools elicit activity along the dorsal
visual path and also result in the activation of hand related sensory-motor areas associated
with the use of the tools.
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Figure 18: Cortical map reflecting the first principal angle between the dissimilarity subspace spanned by the
topographies from Figure 17 and the subspaces spanned by the topographies of a freely oriented dipole at
each cortical location, see equation (14). This highlights the potential contribution of the cortical sources to
the multivariate activity pertinent to the user specified RDM. (14). Letters A,P,S,L,R - anterior, posterior,
superior, left, right define the view angle.
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5. Discussion

Conceptually, ReDisCA extends the family of the previously developed methods for de-
composing multichannel EEG and MEG data and extracting the spatial-temporal compo-
nents with desired properties. One popular example is the Spatial Spectral Decomposition
(SSD) technique [41]. SSD seeks to maximize the power at a frequency band of interest while
simultaneously minimizing it within the side bands. For each specific triplet of frequency
bands (one central and two flanking) the SSD results in a set of spatial components whose
time series exhibit the frequency band selective property. In particular, the timecourses of
the SSD-derived spatial components are characterized by the maximal ratio of power within
the central band to that within the two flanking sub-bands which justifies the use of SSD
for extracting rhythmic components from multichannel EEG or MEG time series. Another
popular method is the Source Power Comodulation, or SPoC [9]. SPoC aims to find spa-
tial filters and patterns by using in the decomposition process a target behavioral variable
to emphasize the components whose instantaneous power profile correlates with the target
variable. Typically SPoC targets rhythmic activity and extracts its sources whose envelope
aligns well with the target variable. Notably, neither SSD nor SPoC or their early fore-
runner ICA require forward and inverse modeling machinery to extract target component
time series. Theoretically speaking, the design of either of these methods does not require
that the obtained components correspond to a specific neuronal source with a well-defined
location. In practice, however, the obtained patterns that pertain to individual components
exhibit remarkable alignment with the appropriate dipolar electromagnetic model and allow
for pinpointing a specific cortical location as a source of activity with the desired property.

In its current version ReDisCA operates with evoked response data recorded over sev-
eral experimental conditions and aims at finding spatial components (each potentially cor-
responding to a distinct neuronal source) whose activation time series exhibit the expected
representational structure. We have started with the Euclidean norm as a distance between
component activation time series. This continuous measure of dissimilarity not only allows
for an analytic solution of the subsequent optimization problem but appears superior [58, 15]
to the simplest forms of more intricate classification accuracy-based distances. Based on this
and using the standard notion of spatial filtering of multichannel EEG or MEG data we
devised ReDisCA as the approach for dissecting the evoked responses into a set of spatial
components with activation time series that adhere to the user-supplied target (or theoretical)
representational dissimilarity structure.

To achieve this we have formulated the specific constrained optimization problem (5). Its
solution gives us the spatial filters whose application to the multichannel evoked response
yields component activation timeseires with the expected target representational structure
encoded by the prespecified target RDM. These time series combined with the spatial patterns
corresponding to each of the spatial filters [17, 48, 23] give us spatial decomposition of the
multichannel evoked responses observed over the range of experimental conditions. The
goodness of fit is given by the corresponding generalized eigenvalue.

In contrast to the source space RSA [27] ReDisCA does not require inverse modeling
and does not perform an explicit and exhaustive scan over brain sources in the attempt to
pinpoint those whose empirical RDM is close enough to the target RDM. Conceptually the
role of the inverse modeling in ReDisCA is similar to that in the multivariate pattern analysis
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of EEG or MEG data, see for example [7]. While the inverse modeling can be applied to
the patterns [17, 24] obtained from the regression weights it is not the essential step in the
analysis.

In simulations to compare ReDisCA to the source space RSA we fitted an electromag-
netic model to the signal subspace spanned by the topographies of the statistically significant
ReDisCA components, see equation (14) and matched the obtained locations against those
of the simulated sources. This allowed us to rigorously compare ReDisCA with the explicit
inverse modeling-driven RSA. ReDisCA has successfully identified the signal subspace cor-
responding to the simulated sources and provided higher ROC AUC scores as compared to
the source space RSA based on the exhaustive scan. Note that in our implementation of the
source space RSA we analyzed each cortical source separately, used MNE and LCMV beam-
former as inverse solvers and employed the L2-norm as the dissimilarity measure instead of
sLORETA and LDA classifier used in [27]. However, when matching these two techniques
against each other one has to keep in mind that ReDisCA uses less information and does not
require inverse modeling which makes it applicable to a broader collection of datasets and
modalities. For example, ReDisCA may be an interesting option to employ for the analysis
of ECoG data where forward and inverse modeling are less straightforward than it is with
non-invasive EEG or MEG data. Also, ReDisCA is directly applicable to the averaged evoked
responses time series and does not require the presence of single-trial data.

In the final example of real-data analysis we have visualized the representational dissim-
ilarity subspace discovered by ReDisCA. To this end we have performed MUSIC scan and
visualized the cosine of the first principal angle between the dissimilarity subspace and the
subspaces spanned by the topographies of a freely oriented dipole at each cortical location.
This highlights the potential contribution of the cortical sources to the multivariate activity
pertinent to the user specified RDM. More sophisticated analysis of the ReDisCA discov-
ered subspace can be performed using a variety of EEG and MEG inverse problem solving
approaches [14] including the advanced hierarchical Bayesian techniques aimed at recovery
of the underlying neuronal current source density e.g. [33, 50] or parametric approaches to
discover discrete sources [35] and their associated time series. Doing so one has to take into
account the importance of accurately modeling individual subject heads and tissue conduc-
tivity profiles [59] to improve the source localization accuracy. At the same time, ReDisCA,
a spatial decomposition method, as opposed to the source-space RSA, does not require the
inverse modeling and can be used to analyze the datasets with no detailed anatomic infor-
mation, see Section 4.2.1. Although at the expense of potentially important details, in such
a setting ReDisCA can be useful in non-invasive explorations of the representational drift
phenomenon [11] and in the analysis of psychiatric conditions e.g. [53].

Any RSA implementation benefits from the increase in the number of experimental condi-
tions. Although we demonstrated that ReDisCA outperformed conventional RSA approaches
for all tested counts of conditions (3,4,5,6), the practically useful results can be obtained from
datasets with no less than four conditions. MNE inverse solver appeared to be a better option
as compared to the LCMV beamformer for the number of conditions less than 6. ReDisCA
followed by the source localization procedure yielded almost a 2-fold reduction in the mean
source localization error as compared to the exhaustive scanning source space RSA. The ap-
proach reported in [27] where voxel time series obtained with sLORETA are combined into
ROIs followed by dimension reduction and LDA classification. This combination may poten-

36



Journal Pre-proof

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920
 Jo
ur

na
l P

re
-p

ro
of

tially improve the accuracy of the exhaustive scan-based RSA however, requires significantly
more computations and in contrast to ReDisCA is not directly applicable to the averaged
evoked responses time series.

We demonstrate that the optimization problem in ReDisCA is mathematically analogous
to that of SPoC, but it utilizes modified input data matrices. These matrices are calculated
as the difference between the evoked responses recorded for each pair of conditions. In
this context, the entries of the theoretical RDM formally take on the role of the behavioral
variable, as shown in Table 1.

In the future, ReDisCA can potentially adopt cross-validated Euclidean distances [58].
To cope with the inherent asymmetry one can use a symmetric version of it as dijc.v. =

1
2
w⊤

(
Rij

[A][B] +Rij
[B][A]

)
w, where Rij

[A][B] =
(
Xci

[A] −X
cj
[A]

)(
Xci

[B] −X
cj
[B]

)⊤
and Rij

[B][A] =
(
Xci

[B] −X
cj
[B]

)(
Xci

[A] −X
cj
[A]

)⊤
with Xci

[A] representing averaged responses corresponding to

condition ci and obtained using base data partition A and Xci
[B] - using validation partition

B. Investigation of the utility of this cross-validated distance in the ReDisCA setting is a
separate topic that needs to be addressed by future studies.

Feature-weighted RSA is a modification of RSA that allows to better align the observed
and the theoretical RDMs [21]. This is achieved by mixing the RDMs that pertain to the
individual features, e.g. voxels comprising an ROI, with optimal weights maximizing the
similarity of this mixed RDM and its theoretical target. In application to EEG and MEG data
the role of individual features is played by individual channels and therefore the adaptively
tuned weights may be considered as some sort of spatial filtering. At the same time, since
the weighted RDM matrix entries appear in the form of non-linearly transformed channel
data (squared distances, functions of classification accuracy, etc.) the coefficients of such a
mixing can not be transformed into electromagnetically meaningful patterns and are therefore
difficult to interpret [13].

In contrast, ReDisCA by design seeks for a linear spatial filter applied directly to the
channel data to isolate a source with the desired representational pattern. Because of this,
the weights vector can be easily converted to source topography, or pattern [24, 17], which
takes into account the spatial correlation structure present in the data. This guarantees that
the discovered spatial patterns can be used for implementing a rigorous source localization
procedure based on the notion of signal subspace as described for example in [40]. This
property positively distinguishes ReDisCA from the sensor space RSA approach described in
[37] where the authors using high-density EEG were able to highlight the detailed spatial and
temporal patterns of responses underlying various aspects of meaningfulness in the presented
visual stimuli. They achieved this using newly proposed differentiation analysis (DA) and
computed temporal and spatial profiles of the category differentiation index (CDI) that can
be used to make judgments about time windows and approximate spatial locations of the
pivotal sources. However, due to their empirical nature, the obtained spatial CDI maps can
not be rigorously fitted with an electromagnetic model and therefore are only tangentially
related to the underlying distribution of cortical sources whose activity exhibits the desired
representational properties.

ReDisCA is formulated to search for a single spatial vector, as indicated by Equation (5),
and evaluates the similarity of activation in the temporal dimension. This places specific
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constraints on the size of the temporal window T to ensure ReDisCA’s proper functioning.
It’s crucial to recognize that the size of this window is contingent upon the frequency con-
tent of the investigated evoked response. Faster-changing signals permit more information
(pertaining to similarity/dissimilarity) within shorter time intervals.

Additionally, the window size is influenced by the number of sensors employed. In theory,
larger sensor arrays necessitate longer windows to ensure the correlation matrices are full
rank. Note, however, that typically, EEG and MEG data are projected into smaller sub-
spaces with dimensions 10-100. All subsequent operations are conducted within this reduced
dimensional space to guarantee the full rank of the resulting matrices. An alternative or
additional approach involves employing the Tikhonov regularization strategy when comput-
ing the inverse of the correlation matrix R̄. It’s evident that reducing the subspace size
and increasing the regularization parameter, in addition to enhancing stability, adversely
impacts ReDisCA’s spatial resolution. At the same time, as illustrated with the last example
described in Section 4.2.2 ReDisCA can be applied to the entire response duration window
and automatically provides the time-intervals where the sought representational dissimilar-
ity structure arises. Guidelines detailing these trade-offs must be developed in the future,
drawing upon both simulations and theoretical analyses followed by verification with real
data.

The approaches such as SSD, SPoC and now ReDisCA are designed to be applied to a
single subject. When the conclusion needs to be drawn from a cohort of subjects, special
steps need to be undertaken. For example, in the source space RSA approach reported in
[27] pooling across subjects is performed using the standard in the MEG approach based on
warping individual cortex geometries onto the canonical cortex followed by calculation of the
group level statistics. Given the superiority of ReDisCA demonstrated here as compared to
the explicit scan in detecting sources with specified RDMs, see Figures 4 and 5, the source
space estimates can be obtained by applying the individual inverse modeling to the patterns
discovered by ReDisCA followed by warping these individual results onto the canonical brain.
It is potentially possible to consider development of group-level approaches, conceptually
similar to those reported in [28, 20] and driven by ReDisCA functional (5).

ReDisCA’s applications extend beyond EEG and MEG data analysis to potentially in-
clude the ROI-based examination of fMRI data. Interpreting the weights that scale individual
voxel RDMs, as introduced in [21], poses challenges in converting it into a pattern, as dis-
cussed in [17]. Here, the difficulty arises because the weights in [21] are applied to the
Representational Dissimilarity Matrices (RDMs) of individual voxels and not to the actual
voxel activations. Since the RDM elements are non-linear functions of voxel activation, the
weights in [21] can not be converted into within ROI activation patterns highlighting the
voxels that contribute most to the target RDM.

Employing ReDisCA within each ROI may resolve this challenge, by applying weights
to the activation of individual voxels rather than to their non-linear functions. This would
enable the subsequent transformation of ReDisCA weights into patterns [17, 46] which could
enhance the spatial resolution of fMRI-based functional mapping by clarifying the delineation
of an extended ROI into subregions contributing to the improved alignment with the target
RDM.

Moreover, ReDisCA can advance the methodology outlined in [32], where the RSA princi-
ple was used to analyze representations emerging in the layers of an artificial neural network.
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An intriguing possibility arises when ReDisCA-derived weights align with those of a subse-
quent neuron connected to the analyzed layer, signifying that the individual neuron appears
to be tuned to track the representational structure encoded in the target RDM.

6. Conclusion

In conclusion, this study introduces and applies the novel technique of Representational
Dissimilarity Component Analysis (ReDisCA) to overcome challenges associated with clas-
sical Representational Similarity Analysis (RSA), particularly in EEG and MEG data. By
estimating spatial-temporal components aligned with a target representational dissimilarity
matrix (RDM), ReDisCA produces spatial filters and associated topographies that reveal
”representationally relevant” sources. The application of these spatial filters to evoked re-
sponse time series demonstrates superior performance in terms of source localization accuracy
compared to conventional source space RSA, with significantly fewer computations. Our ap-
proach does not require forward modeling and any geometric information but if these are
available the obtained components permit rigorous fits with the electromagnetic model by
means of a plethora of methods for solving the inverse problem. The methodology is validated
through realistic simulations and applied to a real EEG and an MEG dataset, showcasing its
potential for discovering representational structures without relying on the inverse modeling.
In the discussion, we highlighted the limitations of ReDisCA, outlined potential directions
for its further development, and identified novel applications.
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[35] Mäkelä, N., Stenroos, M., Sarvas, J., and Ilmoniemi, R. J. (2018). Truncated rap-music
(trap-music) for meg and eeg source localization. NeuroImage, 167:73–83.

[36] Maris, E. and Oostenveld, R. (2007). Nonparametric statistical testing of eeg-and meg-
data. Journal of neuroscience methods, 164(1):177–190.

[37] Mensen, A., Marshall, W., and Tononi, G. (2017). Eeg differentiation analysis and
stimulus set meaningfulness. Frontiers in psychology, 8:1748.

[38] Mosher, J. C. and Leahy, R. M. (1999). Source localization using recursively applied
and projected (rap) music. IEEE Transactions on signal processing, 47(2):332–340.

[39] Mosher, J. C., Leahy, R. M., and Lewis, P. S. (1999). Eeg and meg: forward solutions
for inverse methods. IEEE Transactions on biomedical engineering, 46(3):245–259.

[40] Mosher, J. C., Lewis, P. S., and Leahy, R. M. (1992). Multiple dipole modeling and
localization from spatio-temporal meg data. IEEE transactions on biomedical engineering,
39(6):541–557.

[41] Nikulin, V., Nolte, G., and Curio, G. (2011). A novel method for reliable and fast ex-
traction of neuronal EEG/MEG oscillations on the basis of spatio-spectral decomposition.
Neuroimage.

[42] Op de Beeck, H., Wagemans, J., and Vogels, R. (2001). Inferotemporal neurons represent
low-dimensional configurations of parameterized shapes. Nature neuroscience, 4(12):1244–
1252.

[43] Ossadtchi, A., Altukhov, D., and Jerbi, K. (2018). Phase shift invariant imaging of
coherent sources (psiicos) from meg data. NeuroImage, 183:950–971.

42



Journal Pre-proof

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144
Jo
ur

na
l P

re
-p

ro
of

[44] Ossadtchi, A., Pronko, P., Baillet, S., Pflieger, M. E., and Stroganova, T. (2014). Mu-
tual information spectrum for selection of event-related spatial components. application to
eloquent motor cortex mapping. Frontiers in Neuroinformatics, 7:53.

[45] Pantazatos, S. P., Yanagihara, T. K., Zhang, X., Meitzler, T., and Hirsch, J. (2012).
Frontal–occipital connectivity during visual search. Brain Connectivity, 2(3):164–175.

[46] Parra, L., Alvino, C., Tang, A., Pearlmutter, B., Yeung, N., Osman, A., and Sajda,
P. (2003). Single-trial detection in eeg and meg: Keeping it linear. Neurocomputing,
52:177–183.

[47] Pascual-Marqui, R. D. et al. (2002). Standardized low-resolution brain electromagnetic
tomography (sloreta): technical details. Methods Find Exp Clin Pharmacol, 24(Suppl
D):5–12.

[48] Petrosyan, A., Sinkin, M., Lebedev, M., and Ossadtchi, A. (2021). Decoding and inter-
preting cortical signals with a compact convolutional neural network. Journal of Neural
Engineering, 18(2):026019.

[49] Pfurtscheller, G., Guger, C., and Ramoser, H. (1999). Eeg-based brain-computer in-
terface using subject-specific spatial filters. In Engineering Applications of Bio-Inspired
Artificial Neural Networks: International Work-Conference on Artificial and Natural Neu-
ral Networks, IWANN’99 Alicante, Spain, June 2–4, 1999 Proceedings, Volume II 5, pages
248–254. Springer.

[50] Rezaei, A., Lahtinen, J., Neugebauer, F., Antonakakis, M., Piastra, M. C., Koulouri,
A., Wolters, C. H., and Pursiainen, S. (2021). Reconstructing subcortical and cortical
somatosensory activity via the ramus inverse source analysis technique using median nerve
sep data. Neuroimage, 245:118726.

[51] Rossion, B. and Caharel, S. (2011). Erp evidence for the speed of face categorization
in the human brain: Disentangling the contribution of low-level visual cues from face
perception. Vision research, 51(12):1297–1311.

[52] Sato, T. K., Nauhaus, I., and Carandini, M. (2012). Traveling waves in visual cortex.
Neuron, 75(2):218–229.

[53] Seiger, R., Reggente, N., Majid, D.-A., Ly, R., Tadayonnejad, R., Strober, M., and
Feusner, J. D. (2023). Neural representations of anxiety in adolescents with anorexia
nervosa: a multivariate approach. Translational Psychiatry, 13(1):283.

[54] Shea, N. (2018). Representation in cognitive science. Oxford University Press.

[55] Susac, A., Ilmoniemi, R. J., Pihko, E., Nurminen, J., and Supek, S. (2009). Early
dissociation of face and object processing: A magnetoencephalographic study. Human
brain mapping, 30(3):917–927.

[56] Tsao, D. Y., Freiwald, W. A., Tootell, R. B., and Livingstone, M. S. (2006). A cortical
region consisting entirely of face-selective cells. Science, 311(5761):670–674.

43



Journal Pre-proof

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154
Jo
ur

na
l P

re
-p

ro
of

[57] Van Veen, B., Van Drongelen, W., Yuchtman, M., and Suzuki, A. (1997). Localization of
brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE
Transactions on Biomedical Engineering, 44(9):867–880.

[58] Walther, A., Nili, H., Ejaz, N., Alink, A., Kriegeskorte, N., and Diedrichsen, J. (2016).
Reliability of dissimilarity measures for multi-voxel pattern analysis. Neuroimage, 137:188–
200.

[59] Wolters, C. H., Anwander, A., Tricoche, X., Weinstein, D., Koch, M. A., and Macleod,
R. S. (2006). Influence of tissue conductivity anisotropy on eeg/meg field and return
current computation in a realistic head model: a simulation and visualization study using
high-resolution finite element modeling. NeuroImage, 30(3):813–826.

44



Journal Pre-proof

Data and Code Availability Statement
Jo
ur

na
l P

re
-p

ro
of

The code is available upon request by emailing at ossadtchi@gmail.com. The data used in the 

MS are publicly available at https://osf.io/pfde9/ 

 

 



Journal Pre-proof

Title page with author details
Jo
ur

na
l P

re
-p

ro
of

Representational dissimilarity 

component analysis 

(ReDisCA) 
 

Alexei Ossadtchi∗ ,1,2 , Ilia Semenkov 1,3, Anna Zhuravleva 1,3, Vladimir Kozunov 4, Oleg 

Serikov 5, Ekaterina Voloshina 3 

 

1  –  Higher School of Economics, Moscow, Russia 

2  –  LIFT, Life Improvement by Future Technologies Institute, Moscow, Russia 

3  –  AIRI, Artificial Intelligence Research Institute, Moscow, Russia 

4  –  Moscow State Univeristy of Psychiatry and Education, Moscow, Russia 

5  –  AI Initiative, King Abdullah University of Science and Technology, KSA 

∗  –  the corresponding author, ossadtchi@gmail.com 

 



Journal Pre-proof

Declaration of Interest Statement
Jo
ur

na
l P

re
-p

ro
of

The authors declare that they have no known competing financial interests or personal 

relationships that could have appeared to influence the work reported in this paper. 

 

 

 


