
ISSN 1560-3547, Regular and Chaotic Dynamics, 2024, Vol. 29, No. 5, pp. 794–802. c© Pleiades Publishing, Ltd., 2024.

On Isolated Periodic Points of Diffeomorphisms with

Expanding Attractors of Codimension 1

Marina K. Barinova1*

1National Research University Higher School of Economics,
ul. Bolshaya Pecherskaya 25/12, 603155 Nizhny Novgorod, Russia

Received April 01, 2024; revised September 01, 2024; accepted September 20, 2024

Abstract—In this paper we consider an Ω-stable 3-diffeomorphism whose chain-recurrent
set consists of isolated periodic points and hyperbolic 2-dimensional nontrivial attractors.
Nontrivial attractors in this case can only be expanding, orientable or not. The most known
example from the class under consideration is the DA-diffeomorphism obtained from the
algebraic Anosov diffeomorphism, given on a 3-torus, by Smale’s surgery. Each such attractor
has bunches of degree 1 and 2. We estimate the minimum number of isolated periodic points
using information about the structure of attractors. Also, we investigate the topological
structure of ambient manifolds for diffeomorphisms with k bunches and k isolated periodic
points.
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1. INTRODUCTION AND FORMULATION OF RESULTS

Let Mn be a closed smooth connected n-manifold with a metric d and let f : Mn → Mn be
a diffeomorphism. An invariant compact set Λ ⊂ Mn is called hyperbolic if there is a continuous
Df -invariant splitting of the tangent bundle TΛM

n into stable and unstable subbundles Es
Λ ⊕ Eu

Λ,
dimEs

x + dimEu
x = n (x ∈ Λ) such that for natural k and for some fixed Cs > 0, Cu > 0, 0 < λ < 1

‖Dfk(v)‖ � Csλ
k‖v‖, v ∈ Es

Λ,

‖Df−k(w)‖ � Cuλ
k‖w‖, w ∈ Eu

Λ.

Recall that an ε-chain of length m ∈ N, joining points x, y ∈ Mn, for f is called a collection
of points x = x0, . . . , xm = y such that d(f(xi−1), xi) < ε for 1 � i � m. A point x ∈ Mn is called
chain recurrent for f if for any ε > 0 there exists m, depending on ε > 0, and an ε-chain of length
m, joining x to itself. The set of all chain recurrent points is called a chain-recurrent set and is
denoted by Rf .

Summarizing the results in [1–4], we know that the hyperbolicity ofRf is equivalent to Ω-stability
of f , that is, small perturbations of f preserve the chain-recurrent set (equivalently nonwandering
set NW (f)) structure. Thus, by [5], Rf consists of a finite number of pairwise disjoint sets, called
basic sets, each of which is compact, invariant, and topologically transitive (contains a dense orbit).
If a basic set is a periodic orbit, then it is named trivial. In the opposite case, it is nontrivial. If
dimΛ = n− 1 for some basic set Λ, then it is called a basic set of codimension 1.
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A stable and an unstable manifold of a point x ∈ Λ, where Λ is a basic set, can be defined in
the following way:

W s
x = {y ∈ Mn | lim

k→+∞
d
(
fk(x), fk(y)

)
= 0},

W u
x = {y ∈ Mn | lim

k→+∞
d
(
f−k(x), f−k(y)

)
= 0}.

By [5], W s
x and W u

x are injective immersions of Rq and R
n−q, respectively, for some q ∈ {0, 1, . . . , n}.

For r > 0 we denote by W s
x,r and W u

x,r the immersions of discs Dq
r ⊂ R

q and Dn−q
r ⊂ R

n−q.

The concept of orientability can be introduced for a basic set Λ with dimW s
x = 1 or dimW u

x = 1,
x ∈ Λ. A nontrivial basic set Λ is called orientable if for any point x ∈ Λ and any fixed numbers
α > 0, β > 0 the intersection index1) W u

x,α ∩W s
x,β is the same at all intersection points (+1

or −1) [7]. Otherwise, the basic set is called nonorientable.

A basic set Λ is called an attractor if it has a compact trapping neighborhood U such that

f(U) ⊂ intU and
+∞⋂

n=1
fn(U) = Λ. Each hyperbolic attractor consists of unstable manifolds of its

points by [8]. If dimΛ = dimW u
x , x ∈ Λ, for a hyperbolic attractor Λ, then it is expanding.

This article is devoted to the question of the influence of the presence of a nontrivial attractor
in the nonwandering set of a dynamical system on the complexity of the system. For example, if
the nonwandering set of an Ω-stable diffeomorphism contains the Smale solenoid or 2-dimensional
Anosov torus, then it necessarily contains at least another nontrivial basic set [9]. However, some
types of hyperbolic attractors can coexist with isolated periodic orbits without additional nontrivial
basic sets. A 2-dimensional expanding attractor is one of them. The most famous example of a 3-
diffeomorphism with a 2-dimensional expanding attractor is a DA-diffeomorphism, obtained from
the Anosov diffeomorphism on a 3-torus by Smale surgery.

Any codimension 1 expanding attractor Λ divides its basin W s
Λ into a finite number of connected

components. Every such component B determines a bunch b as the union of unstable manifolds of
all periodic points from Λ whose stable separatrix belongs to B. The number k of such so-called
boundary points is finite and is called a degree of the bunch b and b is called k-bunch with the
basin B.

If n � 3 then, by [10, Theorem 2.1], any codimension 1 expanding attractor Λ has 1-bunches or
2-bunches only. Moreover, the following fact takes place.

Statement 1. If Λ is a hyperbolic expanding attractor of codimension 1 of a diffeomorphism
f : Mn → Mn given on a closed smooth n-manifold Mn, then Λ is nonorientable iff it has a 1-bunch.

In this paper we consider diffeomorphisms every nontrivial basic set of which is an expanding
attractor of codimension 1. We investigate how the number of bunches affects the number of isolated
periodic points in the nonwandering set of a 3-diffeomorphism and the structure of its ambient
manifold.

An expanding attractor with k bunches of degree 2 can be obtained by applying Smale surgery
at k points. The resulting system has k isolated sources. The question is whether there is a

1)Let Jk : Rk → M3 be immersions, Dk be open balls of finite radii in R
k, k = 1, 2. Then the restrictions

Jk : Dk → M are embeddings and their images W k = Jk(Dk) are smooth embedded submanifolds of the manifold

M3. Let Uk be a tubular neighborhood of W k, which are images of embeddings in M3 of spaces of (3− k)-

dimensional vector bundles on W k [6, Chapter 4, § 5]. Since the balls Dk are contractible, these bundles are

trivial and, hence, U2 \W 2 consists of two connected components U2
+ and U2

−. This allows us to define a function

σ : U2
+ ∪ U2

− → Z such that σ(x) = 1 if x ∈ U2
+ and σ(x) = 0 if x ∈ U2

−. If submanifolds W 1 and W 2 intersect

transversally at a point x = J1(t), t ∈ D1, then there exists a number δ > 0 such that J1((t− 2δ, t+ 2δ)) ⊂ U2.
The number

Indx(W
1,W 2) = σ(t+ δ)− σ(t− δ)

is called an intersection index of submanifolds W 1 and W 2 at the point x. Notice that this definition does not
require orientability of the manifold M3.
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diffeomorphism whose nonwandering set consists of such an attractor and isolated periodic points,
but the number of points in trivial basic sets is less than k. From this article it follows that the
answer is no.

The first example of a 3-diffeomorphism, the only nontrivial basic set of which is a nonorientable
2-dimensional expanding attractor, was constructed in [9] and has 12 isolated periodic points.
Theorem 1 and [10, Theorem 2.1] say that there is no such system with less than 12 points.

The main result is the following theorem.

Theorem 1. Let f : M3 → M3 be an Ω-stable diffeomorphism given on a closed 3-manifold, and
let Λ be a nonempty set of nontrivial basic sets of f . If Λ consists of expanding attractors of
codimension 1 having a total of k1 bunches of degree 1 and k2 bunches of degree 2, then the number
of points in the set NW (f) \ Λ is no less than 3

2k1 + k2 and this estimate is exact.

Corollary 1. If the nonwandering set NW (f) of an Ω-stable diffeomorphism f : M3 → M3

consists of 2-dimensional expanding attractors with k bunches in total and k isolated periodic points,
then

• each nontrivial attractor and M3 are orientable;

• dimW u
p = 1 for every isolated saddle point p;

• each connected component of the set M3 \ Λ is homeomorphic to a punctured 3-sphere.

It is clear from Corollary 1 that in a subclass of diffeomorphisms with an orientable attractor
Λ and a nonorientable manifold M3 the estimates from Theorem 1 cannot be reached. Indeed, if
Λ is orientable, then k1 = 0 by Statement 1 and the number of points in the set NW (f) \ Λ is
no less than k2. But this number cannot be equal to k2, because if it is, then M3 is orientable by
Corollary 1. For this case the following theorem takes place.

Theorem 2. Let an Ω-stable diffeomorphism f : M3 → M3 be given on a closed nonorientable
manifold M3 and a set of nontrivial basic sets consists of expanding orientable 2-dimensional
attractors having a total of k bunches, then the number of isolated periodic points is no less than
k + 2.

A simple structure of the orbit space of the restriction of f to the set W s
Λ \ Λ gives us a way to

obtain an Ω-stable system without nontrivial basic sets from the considered one. We will describe a
procedure of transition from a cascade with codimension 1 expanding attractors to a corresponding
regular system in Section 2. Section 3 gives a proof of estimates from Theorem 1 and Theorem 2.
A proof of Corollary 1 directly follows from the proof of Theorem 1. Finally, in Section 4 we show
that the estimates are exact.

2. TRANSITION TO A REGULAR SYSTEM

In this section we will show how to obtain a system f̃ : M̃3 → M̃3 with regular dynamics from
a system f : M3 → M3 with codimension 1 expanding attractors and isolated periodic points. The
classical technique for working with orientable expanding attractors of codimension 1 is to replace
them by hyperbolic sinks. This is facilitated by the structure of the orbit spaces of the action of
the diffeomorphism on the bunch basins. We adapt this technique to the case where the attractor
is nonorientable, that is, it has bunches of degree 1. This allows us to use the Lefschetz formula for
the desired estimates.

Let Λ be a set of nontrivial attractors of f and UΛ be its trapping neighborhood. The boundary
of UΛ consists of k1 copies of2) RP 2 and k2 copies of S

2 ([11, Lemma 2.2]) as in Fig. 1. Let
M3 \ intUΛ = M+ �M−, where M+ and M− are compact subsets of M3 (one of them can be
empty) such that ∂M+ consists of k+ 2-spheres, ∂M− consists of k−1 > 0 copies of RP 2 and k−2

2)
RP 2 is the real projective plane.
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Fig. 1. Components of the boundary of a trapping neighborhood near bunches of different degrees.

copies of S2. Notice that each connected component of M− is nonorientable [12] and hence there

exists a double cover π : M̂− → M− [9] such that ∂M̂− consists of k̂− = k−1 + 2k−2 2-spheres. There

is the following division of M̃3 on disjoint closed submanifolds M̃+ and M̃−:

• M̃+ = M+ ∪h+ (D×Zk+), whereD = {(x, y, z) ∈ R
3 | x2+ y2 + z2 � 1}, h+ : ∂M+ → ∂(D×

Zk+) is a diffeomorphism;

• M̃− = M̂− ∪h− (D × Zk̂−), h
− : ∂M̂− → ∂(D × Zk̂−) is a diffeomorphism.

Let us introduce the following notation:

• M+ =
+∞⋃

m=1
fm(M+), M− =

+∞⋃

m=1
fm(M−);

• π : M̂− → M− is a double cover of M−;

• M̂ = M+ ∪ M̂−, k = k+ + k̂−;

• f̂ : M̂ → M̂ is a diffeomorphism such that f̂ |M+ = f |M+ and f̂ |M− is a lift of f |M− .

Also, let O be the center of the disk D.

Theorem 3. There exists a diffeomorphism f̃ : M̃3 → M̃3 which has k sinks at the points O ×
Zk ⊂ M̃3 and f̃ |

˜M3\(O×Zk)
is topologically conjugated with f̂ .

Proof. Let B+ and B− be sets of the bunch basins in the sets M+ and M−, respectively. Let also

B̂− = π−1(B−) and B̂ = B+ ∪ B̂−. Since the bunch basins are periodic, there exists a division of the

set B̂ on subsets B̂i, i = 1, . . . , l, each of which has a minimum natural number mi such that the set

B̂i =
mi⋃

j=1
f j(B̂i), where B̂i is some connected component of B̂. Then m1 + · · ·+ml = k. It follows

from [11, Lemma 2.2] that each B̂i is diffeomorphic to S
2 × R and hence the orbit space of f |

̂Bi
is

diffeomorphic to S
2 × S

1 if f̂mi |
̂Bi

preserves orientation or to S
2×̃S

1 if f̂mi |
̂Bi

reverses orientation.

Notice that periodic hyperbolic sinks have the same orbit spaces in their basins.
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Let gi : R
3 × Zmi → R

3 × Zmi be a diffeomorphism with mi sinks at the origins O × Zmi ,

gi = (x2 ,
y
2 ,

z
2 , t+ 1 mod mi) if f̂mi |

̂Bi
preserves orientation, and gi = (−x

2 ,
y
2 ,

z
2 , t+ 1 mod mi)

otherwise. Since manifolds B̂i and (R3 \O)× Zmi have the same number of connected components

and orbit spaces of f̂ |
̂Bi

and gi|(R3\O)×Zmi
are diffeomorphic, it follows that for each i there exists

a diffeomorphism hi : B̂i → (R3 \O)× Zmi , conjugated f̂ |
̂Bi

with gi|(R3\O)×Zmi
by [13, Statement

10.35 2)].

Then diffeomorphisms g : R3 × Zk → R
3 × Zk and h : B̂ → (R3 \O)× Zk can be composed of

gi and hi. Moreover, h can be chosen in such a way that h(UΛ) = S
2 × Zk, where S

2 ⊂ R
3 is a

standard 2-sphere. Then M̃3 = M̂�h (R
3 ×Zk) with a natural projection q : M̂� (R3 ×Zk) → M̃3.

The desired diffeomorphism f̃ coincides with qf̂(q|
̂M)−1 on the set q(M̂) and with qg(q|R3×Zk

)−1

on the sets q(R3 × Zk). Notice that by the construction f̃ has k sinks more than f̂ . �

3. LOW ESTIMATE OF TRIVIAL BASIC SETS NUMBER

In this section we will prove the estimate from Theorem 1. Let f : M3 → M3 be an Ω-stable
diffeomorphism, given on a closed connected 3-manifold. Throughout this section we will assume
that all isolated periodic points and also boundary periodic points are fixed, because this does not
affect the lower estimates: an appropriate degree of the initial system satisfies these properties and
has the same number of isolated periodic points. Let Rf = Λ∪ p1 ∪ p2 ∪ . . .∪ pm, where Λ is a union
of expanding attractors of codimension 1 with k1 bunches of degree 1 and k2 bunches of degree 2
in total and pi is a fixed point, i ∈ {1, 2, . . . ,m}. Below we will prove that m � 3

2k1 + k2.

Proof. Via the transition to a regular system, described in Section 2, we will obtain an Ω-stable

diffeomorphism f̃ : M̃3 → M̃3 with a finite chain-recurrent set on a closed manifold M̃3. Notice

that all chain-recurrent points of f̃ are fixed. Let M be a connected component of M = M3 \ Λ.
Notice that M is f -invariant. There exists a connected component M̃ of M̃3 corresponding to M .

Let us denote a number of 1- and 2-bunch basins, contained in M , by l1 and l2, respectively. M ,

and hence M̃ , can be one of 2 types (see Section 2): (1) M ⊂ M+ and (2) M ⊂ M−. In the first

case l1 = 0 and f̃ |
˜M

has l2 sinks more than f̂ |M . In the second case l1 > 0 and even and f̃ |
˜M

has

l1 + 2l2 sinks more than f̂ |π−1(M).

Let Cj , j = 0, 1, 2, 3, be the number of fixed points p of f̃ |
˜M

with dimW u
p = j, for example,

let C0 be the number of sinks. Also, f̃ |
˜M

has at least 1 source, since it is Ω-stable. Then, by the
Lefschetz formula, the alternating sum of Cj is equal to 0:

C3 − C2 + C1 − C0 = 0.

At the same time, since M̃ is connected, it follows that C1 −C0 + 1 � 0 [14]. If M̃ of type (1),
then C0 � l2 > 0 and there are no additional restrictions. The finding of the minimum of the
sum C0 + C1 + C2 + C3 is a linear programming problem, it can be solved by a simplex method.

Then the minimum of fixed points of f̃ |
˜M

can be reached if C3 = 1, C2 = 0, C1 = l2 − 1, C0 = l2.

Therefore, f |M has at least l2 isolated fixed points if M̃ is of type (1). It follows from [15] that M̃
is homeomorphic to S

3 in this case.

If M̃ is of type (2), then C1, C2, and C3 are even, because the isolated periodic points of
f |M are doubled in this case. Also, C0 � l1 + 2l2 > 0. Without loss of generality we suppose

that 1-dimensional separatrices of saddles do not intersect3). Then we can arrange points in the

3)Each Ω-stable diffeomorphism with a finite chain-recurrent set has an ε-close Morse – Smale diffeomorphism with
the same number of chain-recurrent points. Therefore, we can consider this Morse – Smale diffeomorphism instead
of the initial one to calculate the desired estimates.
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nonwandering set of f̃ |
˜M

to agree with the Smale relation4). Moreover, the order can be chosen
in such a way that each saddle of index 1 comes before all saddles of index 2. Thus, we have
ω1 ≺ . . . ≺ ω

C0
≺ σ1 ≺ . . . ≺ σ

C1
≺ β1 ≺ . . . ≺ β

C2
≺ α1 ≺ . . . ≺ α

C3
, where each ωi is a sink, each

σi is a saddle of index 1, each βi is a saddle of index 2, and each αi is a source.

It follows from [16] that a set A =
c1⋃

i=1
cl(W u

σi
) is 1-dimensional and connected. Since π is a double

cover, there is an involution ϕ on the set A \ (ω1 ∪ . . . ∪ ωC0
), which is a lift of an identity map

on π(A \ (ω1 ∪ . . . ∪ ω
C0
)) and swaps preimages of points. The involution ϕ can be extended by

continuity on the whole A. Moreover, a set of fixed points of the extended involution ϕ coincides
with the set of sinks corresponding to 1-bunches.

Let A∗ = A/ϕ. Since a natural projection is a continuous map, the connectedness of A implies
the connectedness of A∗. A∗ contains (C0 + l1)/2 sinks and hence at least (C0 + l1)/2 − 1 saddles
of index 1 are needed. Therefore, A contains at least (C0 + l1 − 2) saddles of index 1, i. e.,
C1 � C0 + l1 − 2.

Let us solve a linear programming task for this case:

C3 − C2 + C1 − C0 = 0,

C0 � l1 + 2l2,

C1 − C0 � l1 − 2,

C3 � 2.

The optimal values are: C0 = l1 + 2l2, C1 = 2l1 + 2l2 − 2, C2 = l1, and C3 = 2. Then there are
at least l1 + l2 − 1 saddles of index 1, l1/2 saddles of index 2, and 1 source at the component M .

Summing over all connected components of M, we find that f has at least 3
2k1 + k2 isolated

periodic points: at least s sources, (k1 + k2 − s) saddles of index 1, and k1/2 saddles of index 2,
where s is the number of connected components of M. �

Below we will prove Theorem 2.

Proof. If M3 is nonorientable, but Λ contains only orientable attractors, then by [10] W s
Λ is

homeomorphic to a punctured 3-torus, M− = ∅, and there exists a nonorientable connected

component M of the set M+. Then the corresponding manifold M̃ is also nonorientable, and f̃ |
˜M

has saddles of different indices [15], that is, C2 > 0 and C1 > 0. There are two optimal possibilities:
1 source, 1 saddle of index 2, l2 saddles of index 1, and l2 sinks or 2 sources, 1 saddle of index 2,
l2 − 1 saddles of index 1, and l2 sinks — for the both possibilities the total number of points in the

nonwandering set of f̃ |
˜M

is 2l2 + 2, so f |M has at least l2 + 2 isolated periodic points. �

4. ACHIEVABILITY OF THE ESTIMATES

In this section we present realizations of diffeomorphisms with a minimum number of trivial
basic sets, i. e., we will prove the second part of Theorems 1 and 2. First of all, we will answer
the question: how to obtain an Ω-stable cascade f : M3 → M3 with a set of expanding attractors
of codimension 1 Λ with k1 � 0 bunches of degree 1 and k2 � 0 bunches of degree 2 in total
(k1 + k2 > 0) and 3

2k1 + k2 periodic points outside of Λ.

Let f be a diffeomorphism of the class under consideration with the following properties:

• all bunches and isolated periodic points are fixed;

4)Let Λ1 and Λ2 be basic sets of an Ω-stable diffeomorphism f : M → M . Λ1 ≺ Λ2 if W s
Λ1

∩W u
Λ2

�= ∅.
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• if k2 > 0, then M+ is connected and has k2 boundary components, otherwise M+ is empty;

• if k1 > 0, then each nontrivial attractor has 1-bunches and M− has k1/2 connected
components, each of which is homeomorphic to RP 2 × [−1, 1].

The corresponding regular system f̃ |
˜M+ for the set M+ realizing the minimum can be as in

Fig. 2. It has k2 sinks, k2 − 1 saddles, and 1 source.

Fig. 2. Morse – Smale system for M+, realizing low estimates.

If k1 > 0, all bunches of degree 1 are divided into pairs in such a way that after gluing the
cylinders RP 2 × [−1, 1] to a trapping neighborhood of Λ we will obtain a connected manifold M3.
Let the restriction f |M of the desired diffeomorphism f on each connected component M of M−

be topologically conjugated to a diffeomorphism (g1 × g2), where g1 : RP
2 → RP 2 is as in Fig. 3

and g2 : R → R such that g2(x) = 2x.

Fig. 3. Morse – Smale system on RP 2.

Achievability of the estimate from Theorem 2 will be shown with a diffeomorphism f : M3 → M3

with the following properties:

• f has only 1 nontrivial attractor Λ, which is connected and has k2 bunches of degree 2;

• all bunches and isolated periodic points of f are fixed;

• a set M+ consists of k2 connected components.

Let the corresponding regular system f̃ : M̃3 → M̃3 be given on S
3 × Zk2−1 � S

2×̃S
1, the

dynamics on each 3-sphere be “sink-source” and on the S
2×̃S

1 be as in Fig. 4. Therefore,
f : M3 → M3 has exactly k2 + 2: k2 sources and 2 saddles of different indices — isolated chain-
recurrent points, and M3 is nonorientable.
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Fig. 4. Morse – Smale system on S
2
˜×S

1.
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