
AFFINE MONOIDS OF CORANK ONE

YULIA ZAITSEVA

Abstract. We give a classi�cation of noncommutative algebraic monoid structures on
normal a�ne varieties such that the group of invertible elements of the monoid is connected,
solvable, and has a one-dimensional unipotent radical. We describe the set of idempotents
and the center of such a monoid and give a criterion for existence of the zero element.

1. Introduction

An (a�ne) algebraic monoid is an irreducible (a�ne) algebraic variety X with an asso-
ciative multiplication µ : X × X → X, (x, y) 7→ x ∗ y, which is a morphism of algebraic
varieties and admits a unity 1 ∈ X such that 1 ∗ x = x ∗ 1 = x for all x ∈ X. The group of
invertible elements G(X) of an algebraic monoid X is an algebraic group, which is Zariski
open in X. According to [19, Theorem 3], every algebraic monoid X with an a�ne group of
invertible elements G(X) is an a�ne monoid. For more information on algebraic monoids,
see [16, 17, 18, 21].
An a�ne algebraic monoid X is called reductive (solvable, commutative) if G(X) is

a reductive (solvable, commutative) a�ne algebraic group. The most developed is the
theory of reductive monoids, see e.g. the combinatorial classi�cation of reductive monoids
in [21, 18].
By the (co)rank of a monoid X we mean the (co)dimension of a maximal torus in G(X).

Let the ground �eld K be algebraically closed and of characteristic zero. In the commutative
case, the group G(X) splits into the direct product of an algebraic torus (K×)r and a
commutative unipotent group Gs

a, where Ga = (K,+) is the additive group of the ground
�eld.
In [1], commutative monoids on a�ne spaces are studied. In particular, [1, Proposition 1]

gives a classi�cation of commutative monoid structures of ranks 0, n−1, and n on An. This
implies a classi�cation of commutative monoids on A1 and A2, and [1, Theorem 1] provides
a classi�cation on A3. In [20], these classi�cations are extended to non-closed ground �elds
of characteristic zero.
In [10], a classi�cation of commutative monoid structures of rank 0, n − 1, and n on

normal a�ne varieties is obtained. It turns out that such an a�ne algebraic variety is
toric, and structures of corank one are described by Demazure roots of the variety. The
classi�cation is given in terms of comultiplications µ∗ : K[X] → K[X]⊗K[X]:

χu 7→ χu ⊗ χu(1⊗ χe + χe ⊗ 1)⟨p,u⟩,

where p is the primitive vector on a ray of the cone of X and e is a Demazure root corre-
sponding to this ray, see Section 3 for de�nitions. In particular, it implies the classi�cation
of commutative monoid structures of any rank for normal a�ne surfaces.

2010 Mathematics Subject Classi�cation. Primary 20M32, 14M25, Secondary 14R20, 14R05.
Key words and phrases. Algebraic variety, algebraic group, algebraic monoid, toric variety, group em-

bedding, locally nilpotent derivation, semidirect product, idempotents, center.
Supported by the RSF-DST grant 22-41-02019.

1



2 YULIA ZAITSEVA

In [6], a classi�cation of noncommutative monoids on a�ne surfaces is given. In this
case, G(X) is a semidirect product of K× and Ga. It is proved that the surface is toric and
the comultiplication has the form

χu 7→ χu ⊗ χu(1⊗ χe1 + χe2 ⊗ 1)⟨p,u⟩, (1)

where e1, e2 are two Demazure roots corresponding to the same ray of the cone of X with
primitive vector p.
In this work, we obtain a classi�cation of noncommutative a�ne monoids of corank one

on normal varieties of an arbitrary dimension. This result generalizes classi�cations in [10]
and [6]. Let X be such a monoid. In Proposition 1 we show that X is toric. It was proved
earlier in [6] for a�ne monoids of dimension 2. Then we get a classi�cation of monoid
structures of corank one in terms of comultiplications and toric geometry in Theorem 1,
see Section 5 for a proof. It turns out that formula (1) works in arbitrary dimension.
Theorem 2 is the specialization of the classi�cation to a�ne spaces. In Theorem 3, we
obtain a description of idempotents in X. In contrast to the commutative case, the number
of idempotents may be in�nite under some conditions on Demazure roots e1, e2 and the
cone σ of the toric variety. In Proposition 3, we study geometry of the subvariety E(X)
of all idempotents in X. In particular, we show that any irreducible component of E(X)
is either isomorphic to the a�ne line or is an isolated point. In Proposition 4, it is proved
that the monoid X admits the zero element if and only if σ⊥ = 0 and −e1,−e2 /∈ σ∨.
In Proposition 5, the system of equations de�ning the center Z(X) of X is obtained. It
follows that dimZ(X) = dimX−2; moreover, all irreducible components have the maximal
dimension if X is an a�ne space; see Corollaries 3 and 4. Finally, the connection between
irreducible components of E(X) and the center is given in Proposition 6.
The author is grateful to Ivan Arzhantsev for valuable suggestions, attention to this work

and permanent support, and to Roman Avdeev for useful comments. Special thanks are
due to the anonymous reviewer for substantial corrections and remarks.

2. Semidirect products and the toric structure

De�nition 1. An (a�ne) irreducible normal algebraic variety X with a morphism
X ×X → X, (x, y) 7→ x ∗ y, is called an (a�ne) algebraic monoid if x ∗ (y ∗ z) = (x ∗ y) ∗ z
for all x, y, z ∈ X and there exists a point 1 ∈ X called unity such that 1 ∗ x = x ∗ 1 = x.

Let X be an a�ne monoid of dimension n. Then the group G(X) of invertible elements
of X is a connected a�ne algebraic group, which is Zariski open in X, see [18, Theorem 1]
and [19, Theorem 5]. Recall that the rank and the corank of an a�ne algebraic group G
are the dimension and the codimension of a maximal torus in G, respectively. By the
rank and the corank of a monoid X we mean the rank and the corank of the group G(X),
respectively.
The aim of the present work is to study a�ne monoids of corank one. In this case, G(X)

has no semisimple part since any root subgroup in a semisimple group occurs together with
an opposite one. So G(X) has a one-dimensional unipotent radical and G(X) = Ga ⋋ T ,
where Ga = (K,+) and T is a torus of dimension n− 1.
By de�nition of a semidirect product, the group operation in G(X) is de�ned by a

homomorphism χ : T → Aut(Ga) = K×:

(α, t] · (α′, t′] = (α + χ(t)α′, tt′], (2)
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where α, α′ ∈ Ga and t, t′ ∈ T . We denote this group Gχ. Thus

Gχ = Ga ⋋ T,

where T is an algebraic torus of dimension n− 1 and the multiplication is de�ned by (2).
Notice that according to (2) we have (α, t] = (α, 1](0, t] = α · t, where α ∈ Ga, t ∈ T .

There is also a dual way to write the elements of Gχ. Namely, for an element (α, t] ∈ Gχ

consider β = χ−1(t)α ∈ Ga. Then t · β = (0, t](β, 1] = (χ(t)β, t] = (α, t]. Thus for any
element g ∈ Gχ we have two decompositions

g = (α, t] = α · t = [t, β) = t · β.
The dual multiplication rule is

[t, β) · [t′, β′) = [tt′, χ(t′)−1β + β′).

The group Gχ is commutative if and only if χ = 0. Let us denote the center of a group G
by Z(G).

Lemma 1. If χ ̸= 0, then Z(Gχ) = {0} ×Kerχ.

Proof. Let (α, t] ∈ Z(Gχ), i.e.

(α + χ(t)α′, tt′] = (χ(t′)α + α′, t′t] (3)

for any α′ ∈ Ga and t′ ∈ T . Since there exists t′ ∈ T with χ(t′) ̸= 1, condition (3) for
α′ = 0, 1 implies α = 0 and χ(t) = 1. Conversely, for (α, t] ∈ {0}×Kerχ equation (3) turns
into (α′, tt′] = (α′, t′t]. □

De�nition 2. A group embedding of an algebraic group G is an irreducible algebraic va-
riety X with an open embedding G ↪→ X such that the action of G× G on G by left and
right multiplication can be extended to an action of G×G on X.

If X is a monoid, then G(X) ↪→ X is a group embedding. For a�ne monoids the
converse is also true, i.e. if X is an a�ne group embedding of G, then the multiplication
on G extends to a multiplication X ×X → X in such a way that G is the group G(X) of
invertible elements of X, see [21, Theorem 1] for characteristic zero and [18, Proposition 1]
for the general case.

Recall that a normal irreducible algebraic variety is called toric if it admits an e�ective
action of an algebraic torus T with an open orbit, see [8, 12, 14]. In other words, a toric
variety is a group embedding of an algebraic torus. The main result of this section is the
following statement.

Proposition 1. Any a�ne monoid X of corank one is a toric variety. Moreover, the group
of invertible elements G(X) is invariant with respect to the acting torus T.

Proof. If χ = 0, then Gχ is commutative and the result follows from [2, Theorem 2 and
Lemma 2].
Let χ ̸= 0. First consider the actions of Gχ on itself by left and right multiplication. Let

a group homomorphism θ : T × T → Aut(Gχ) be de�ned by

θ(t1, t2)(g) = t1gt
−1
2 .

An element (t1, t2) ∈ T × T belongs to the kernel of θ if and only if (t1, t2) belongs to
the diagonal of the center diagZ(Gχ) = {(g, g) | g ∈ Z(Gχ)} ⊆ Gχ × Gχ. By Lemma 1,
Z(Gχ) = {0} ×Kerχ ⊆ Ga ⋋ T , so Ker θ = diagKerχ. Since T × T is a torus, the image

T = Im θ ⊆ Aut(Gχ)
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is a torus as well. It is isomorphic to (T × T )/ diagKerχ, so the torus T has dimension
dimT = (n− 1) + (n− 1)− (n− 2) = n.
Thus we have an e�ective action of T on Gχ coming from left and right multiplications

of Gχ on itself. By de�nition of a group embedding, this action can be extended to the
action on X, so there exists an e�ective action of T on X. It is known that any e�ective
action of a torus of dimension coinciding with the dimension of a variety has an open orbit,
see [9, Corollaire 1, P. 521]. We have dimT = dimGχ = dimX = n, so both actions of T
on Gχ and X have an open orbit. □

The idea of the following generalization of Proposition 1 was proposed by Sergey Gorchin-
skiy and Constantin Shramov. Consider a solvable monoid X, i.e. a monoid with a solvable
group of invertible elements G(X). Then G(X) = U ⋋ T , where T is a torus and U is the
unipotent radical of G(X). In some cases it can be proved that X is toric as well.
Namely, let the multiplication in a semidirect product G = U ⋋ T be given by a homo-

morphism ψ : T → Aut(U):

(u, t] · (u′, t′] = (u · ψ(t)(u′), tt′], u, u′ ∈ U, t, t′ ∈ T.

De�nition 3. This semidirect product is called active if dimT + dim Imψ = dimG or,
equivalently, dim Imψ = dimU .

Example 1. Any connected a�ne algebraic group of corank one is solvable, and the semidi-
rect product Gχ = Ga ⋋ T is active if and only if χ ̸= 0.

Since U is a unipotent group, it is isomorphic to a vector space as an algebraic variety.
Let us prove that we can choose coordinates in U in such a way that T acts on U linearly.

Lemma 2. There are coordinates in U such that ψ(T ) ⊆ GL(U).

Proof. For G = U ⋋ T and its Lie algebra g = u⊕ t, consider the conjugation

ψ : G→ Aut(G), ψ(g)(g′) = gg′g−1,

and the adjoint representation

Ad: G→ Aut(g), Ad(g) = dψ(g).

Since U is normal in G, we have restrictions

ψ : T → Aut(U) and Ad: T → Aut(u) ⊆ GL(u).

It is known that the exponential map exp: u → U is bijective and commutes with the
di�erential, i.e. exp ◦ψ(t) = Ad(t) ◦ exp for any t ∈ T . So exp takes coordinates on u to U
in such a way that ψ(t) ∈ GL(U) for any t ∈ T . □

So one may assume that ψ(t) = diag(χ1(t), . . . , χk(t)) ∈ GL(U), where χi, 1 ⩽ i ⩽ k, are
characters of the torus T . In these terms, the semidirect product is active if and only if χi

are linearly independent.

Example 2. Notice that dim Imψ ⩽ dimT , so for an active semidirect product there is a
necessary condition dimT ⩾ 1

2
dimG. For example, the solvable groupB of upper triangular

n× n matrices is the semidirect product of the group of unitriangular matrices U and the
torus of diagonal matrices T . It is not active for n > 3 since dimT = n < 1

2
dimG = n(n+1)

4
.

For n = 3 we have dimT = 3 = 1
2
dimB, however, the semidirect product is not active as

well since ψ(diag(t1, t2, t3)) acts on U with linear dependent characters t1t
−1
2 , t1t

−1
3 , t2t

−1
3 .
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Example 3. The group

G =




t1 0 . . . 0 u1
0 t2 . . . 0 u2

. . . . . .
. . . . . . . . .

0 0 . . . tn−1 un−1

0 0 . . . 0 tn

 , ti ∈ K×, uj ∈ K


is an active semidirect product of the group U of unitriangular matrices of G and the torus
of diagonal matrices T since ψ(T ) ⊆ GL(U) is generated by linearly independent characters
t1t

−1
n , . . . , tn−1t

−1
n .

Proposition 2. Any solvable a�ne monoid X with active group of invertible elements is
a toric variety. Moreover, the group of invertible elements G(X) is invariant with respect
to the acting torus T.

Proof. Following the proof of Proposition 1, consider the map θ : T × T → Aut(G) and the
torus T = Im θ. An element (t1, t2) ∈ T × T belongs to Ker θ if and only if t1 = t2 ∈ Z(G).
Notice that t = (0, t] ∈ Z(G) if and only if t ∈ Kerψ. Indeed, if (ψ(t)(u′), tt′] = (u′, t′t] for
any u′ ∈ U , t ∈ T , then ψ(t) = id. So Ker θ = diagKerψ.
Since dimT + dim Imψ = dimG, the torus T has dimension

dim(T × T )− dimKer θ = dimT + dimT − (dimT − dim Imψ) = dimG = dimX.

As above, it follows that the action of T has an open orbit on G(X) and X. □

It would be interesting to investigate a�ne algebraic monoids with an arbitrary active
group of invertible elements, and we plan to do it in a further publication. In this article,
we concentrate on a�ne monoids of corank one.

3. Preliminaries on toric varieties

3.1. Polyhedral cones of an a�ne toric variety. Let us recall basic facts on a�ne toric
varieties; see, for example, [12, Section 1.3]. Let N be a lattice of rank n, NQ = N ⊗Z Q be
the rational vector space of dimension n, and σ ⊆ NQ be a strongly convex polyhedral cone.
Below we give a construction of an a�ne toric variety Xσ of dimension n corresponding to
the cone σ. It is known that all a�ne toric varieties arise in this way.
Let M = Hom(N,Z) be the dual lattice, MQ = M ⊗Z Q be the corresponding rational

vector space, and ⟨ · , · ⟩ : NQ ×MQ → Q be the natural pairing. We can consider M as
the lattice of characters of a torus T = Hom(M,K×) of dimension n; for a lattice element
u ∈ M , let χu : T → K× be the corresponding character. Then the dual lattice N is
identi�ed with the lattice of one-parameter subgroups of the torus T = N ⊗ZK×. Consider
the polyhedral cone σ∨ dual to the cone σ:

σ∨ = {u ∈MQ | ⟨v, u⟩ ⩾ 0 for all v ∈ σ}.

Then σ∨ is a cone of full dimension, Sσ = M ∩ σ∨ is a �nitely generated semigroup with
ZSσ = M , and K[Sσ] =

⊕
u∈Sσ

Kχu is a �nitely generated K-algebra. We de�ne Xσ as the

spectrum of the algebra K[Sσ].
Consider K as a semigroup with respect to multiplication. Any semigroup homomor-

phism Sσ → K de�nes an algebra homomorphism K[Xσ] → K, which corresponds to a
point in Xσ. Conversely, any point in Xσ is de�ned by some semigroup homomorphism
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Sσ → K. The torus T can be identi�ed with the subset X0 of Xσ as the restrictions of
group homomorphisms M → K× to semigroup homomorphisms Sσ → K.
In fact, X0 is open in Xσ, so any character χu of the torus T can be identi�ed with a

rational function on Xσ. We have the decomposition

K[Xσ] =
⊕
u∈Sσ

Kχu. (4)

Let an element t of the torus T act on χu by multiplication by χu(t). This de�nes the action
of T on K[Xσ] and hence the action of T on Xσ.

3.2. Faces and toric open subsets. Recall that a face of a cone is the intersection of the
cone with a supporting hyperplane. There is a bijection between faces of the dual cones σ
and σ∨: for any k-dimensional face τ of the cone σ the set

τ⊥ ∩ σ∨ = {u ∈MQ | ⟨v, u⟩ = 0 ∀v ∈ τ} ∩ σ∨

is an (n − k)-dimensional face of σ∨, and, conversely, for any face γ of the cone σ∨ of
dimension k the set γ⊥ ∩ σ is a face of σ of dimension n − k. Faces of dimension one are
called rays, and faces of codimension one are called facets.
Any homomorphism of semigroups Sσ → Sσ′ de�nes a homomorphism K[Sσ] → K[Sσ′ ] of

algebras and a morphism SpecK[Sσ′ ] → SpecK[Sσ]. In particular, if τ ⊆ σ, then Sτ ⊇ Sσ,
which determines a morphism Xτ → Xσ. It can be proved that the morphism Xτ → Xσ

is an open embedding if and only if τ is a face of the cone σ. Moreover, in this case
Sτ = Sσ + Z⩾0(−u′), where u′ ∈ M and τ = σ ∩ u′⊥, or, equivalently, u′ ∈ M is from the
relative interior of the dual face τ⊥ ∩ σ∨ of the cone σ∨. Then K[Sτ ] is the localization of
K[Sσ] at χ

u′
, which determines an embedding Xτ ⊆ Xσ as a principal open subset. In terms

of semigroup homomorphisms, Xτ consists of points Sσ → K such that the image of u′ is
nonzero, or, equivalently, the image of any u′ ∈ M from the relative interior of τ⊥ ∩ σ∨ is
nonzero. In particular, for all faces τ of σ, the actions of T on Xτ de�ned in subsection 3.1
are compatible and have the open orbit is X0.

3.3. Torus orbits. It is known that T-orbits on Xσ correspond to faces of the cone σ,
see [12, Section 3.1]. More precisely, for a face τ ⊆ σ denote by xτ the distinguished point
in Xσ given by the following semigroup homomorphism Sσ → K:

u 7→

{
1 if u ∈ τ⊥,

0 otherwise.

By Oτ we denote the T-orbit of the point xτ ; it has dimension n − dim τ . In terms of
semigroup homomorphisms it consists of homomorphisms Sσ → K such that

u 7→

{
K× if u ∈ τ⊥,

0 otherwise.

It is known that all orbits of T on Xσ are of the form Oτ for a face τ of σ. If γ is a face
of τ , then Oτ ⊆ Oγ. For more details, see [7, Theorem 3.2.6].

3.4. Locally nilpotent derivations, Ga-actions, and Demazure roots. For an alge-
bra A, a linear operator δ : A→ A is a derivation if it satis�es the Leibniz rule:

δ(fg) = δ(f)g + fδ(g)

for any f, g ∈ A. A derivation δ is called locally nilpotent (LND) if for any f ∈ A there
exists a number n ∈ Z>0 such that δn(f) = 0. The exponential map de�nes a bijection
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between locally nilpotent derivations on an algebra A and rational Ga-actions on A, see [11,
Section 1.5]. More precisely, an LND δ on A de�nes the Ga-action α · f = exp(αδ)(f) for
α ∈ Ga, f ∈ A; conversely, given an action ξ : Ga × A → A, (α, f) 7→ α · f , we can recover
the LND δ as

(
dξ
dα

)
|α=0. For an a�ne algebraic variety X, Ga-actions on X are in bijection

with Ga-actions on K[X], and so with LNDs on the algebra K[X].
Let A =

⊕
u∈S

Au be graded by a semigroup S. A derivation δ : A → A is called homoge-

neous if it maps homogeneous elements to homogeneous ones. It follows from the Leibniz
rule that, for a domain A, a homogeneous derivation has the degree deg δ ∈ ZS such that
δ(Au) ⊆ Au+deg δ for any u ∈ S.
Let Xσ be an a�ne toric variety, and let pi ∈ N, 1 ⩽ i ⩽ m, be primitive vectors on the

rays of the cone σ. For any 1 ⩽ i ⩽ m, denote

Ri = {e ∈M | ⟨pi, e⟩ = −1, ⟨pj, e⟩ ⩾ 0 for all j ̸= i, 1 ⩽ j ⩽ m}.

The elements of the set R =
⊔

1⩽i⩽m

Ri are called the Demazure roots of the toric variety Xσ.

It is easy to see that if e ∈ Ri, γ is a face of σ, and e ∈ γ⊥, then the cone generated by γ
and pi is a face of σ as well.
Demazure roots of Xσ are in one-to-one correspondence with nonzero homogeneous LNDs

on the algebra K[Xσ] with respect to grading (4) up to proportionality. Homogeneous LNDs
on K[Xσ] are, in turn, in one-to-one correspondence with Ga-actions on Xσ normalized
by the acting torus T, see [13, Theorem 2.7]. A Demazure root e is the degree of the
corresponding LND, and the action of the torus T on Ga by conjugation is the multiplication
by χe.

4. Classification results

Let X be an a�ne monoid with multiplication X ×X → X. The dual homomorphism
of algebras of regular functions is the comultiplication K[X] → K[X] ⊗ K[X]. The co-
multiplication determines the multiplication, so a�ne monoids can be described in these
terms.

Let us formulate the main result.

Theorem 1. Let X be an a�ne monoid of corank one. Then X = Xσ is toric, and the
comultiplication K[Xσ] → K[Xσ]⊗K[Xσ] has the form

χu 7→ χu ⊗ χu (1⊗ χe1 + χe2 ⊗ 1)⟨p,u⟩, (5)

where K[Xσ] =
⊕
u∈Sσ

Kχu as in equation (4), p is the primitive vector on a ray of the cone σ,

and e1, e2 are Demazure roots corresponding to p. Conversely, for any a�ne toric vari-
ety Xσ, any primitive vector p on a ray of the cone σ, and any Demazure roots e1, e2
corresponding to the same p, formula (5) de�nes a monoid structure of corank one on Xσ.
The group of invertible elements is the toric open subset Xρ ⊆ Xσ isomorphic to the

group Gχ for χ = χe2−e1.

Remark 1. Consider an automorphism of the lattice N such that the corresponding auto-
morphism of the vector space NQ preserves the cone σ. Let ek map to e′k under the dual
automorphism of the lattice M , where ek, k = 1, 2, are two Demazure roots corresponding
to the same ray of σ. Then two monoid structures on Xσ given by e1, e2 and by e′1, e

′
2 are

isomorphic.
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Example 4. Let us �nd all monoid structures of rank 2 on the quadratic cone

X = {vw = zt} ⊆ A4;

see [10, Example 5] for the commutative case. It is an a�ne toric variety given by the
cone σ with p1 = (1, 0, 0), p2 = (0, 1, 0), p3 = (1, 0, 1), and p4 = (0, 1, 1), see Figure 1.
Indeed, the semigroup Sσ = M ∩ σ∨ is generated by vectors (1, 0, 0), (0, 1, 0), (0, 0, 1),
and (1, 1,−1); for the functions v = χ(1,0,0), w = χ(0,1,0), z = χ(0,0,1), and t = χ(1,1,−1), we
obtain K[X] = K[v, w, z, t] with relation vw = zt. All vectors pi are equivalent up to an

N σ

p1 = (1, 0, 0)

p2 = (0, 1, 0)
p3 = (1, 0, 1)

p4 = (0, 1, 1)

M

R1

σ∨

(1, 0, 0) (0, 1, 0)

(0, 0, 1)

(1, 1,−1)

Figure 1. The cones of X in Example 4.

automorphism of the lattice N , let p = p1. The set of corresponding Demazure roots equals

R1 = {(−1, k, l) | k ∈ Z⩾0, l ∈ Z>0},
take e1 = (−1, k1, l1) and e2 = (−1, k2, l2). According to Theorem 1, the product of x, y ∈ X
is de�ned by the formula

χu(x ∗ y) = χu(x)χu(y) (χe1(y) + χe2(x))⟨p,u⟩,

i.e.

(vx, wx, zx, tx) ∗ (vy, wy, zy, ty) =

= (vxw
k1
y z

l1
y + vyw

k2
x z

l2
x , wxwy, zxzy, txw

k1+1
y zl1−1

y + tyw
k2+1
x zl2−1

x ).

The proof of Theorem 1 is given in the next section. Let us specialize the result to the
case of a�ne space.

Theorem 2. Any monoid structure of corank one on An up to a polynomial change of
variables is given by

(x1, . . . , xn) ∗ (y1, . . . , yn) = (x1y1, . . . , xn−1yn−1, x
a1
1 . . . x

an−1

n−1 yn + yb11 . . . y
bn−1

n−1 xn),

where a1, . . . , an−1, b1, . . . , bn−1 ∈ Z⩾0.

Proof. According to [5] one can assume that the toric structure on An from Theorem 1 is
given by diagonal matrices. The cones σ ⊆ NQ and σ∨ ⊆ MQ of the a�ne space An are
the positive octants in the corresponding rational vector spaces. Since all rays of σ are
equivalent up to automorphism, we can consider only one ray ρ with the primitive vector
p = (0, . . . , 0, 1) ∈ N . It remains to choose two Demazure roots e1 = (b1, . . . , bn−1,−1),
e2 = (a1, . . . , an−1,−1), a1, . . . , an−1, b1, . . . , bn−1 ∈ Z⩾0, and use formula (5) for all basis
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vectors u = ui, corresponding to coordinates xi on An, 1 ⩽ i ⩽ n. For 1 ⩽ i ⩽ n − 1, we
have χui(x ∗ y) = χui(x)χui(y) = xiyi, and for i = n we obtain

χun(x ∗ y) = χun(x)χun(y)(χe1(y) + χe2(x)) = xnyn(y
b1
1 . . . y

bn−1

n−1 y
−1
n + xa11 . . . x

an−1

n−1 x
−1
n ).

□

5. Proof of Theorem 1

The proof is divided into four subsections below. The �rst three subsections contain the
proof of the direct implication of the theorem, and the last subsection provides the converse
implication.

5.1. Preliminary results. Let X be an a�ne monoid of corank one. By Proposition 1,
the variety X is toric with respect to the torus T, and the open subset Gχ ⊆ X is invariant
with respect to T, i.e. is a toric variety as well. Let X = Xσ for a cone σ ⊆ NQ and
Gχ = Xρ for a cone ρ ⊆ NQ. As an algebraic variety, the group Gχ = Ga ⋋ T is isomorphic
to the direct product of the line Ga and the torus T . Then the cone ρ ⊆ NQ is a ray and
the dual cone ρ∨ ⊆MQ is a halfspace.
Notice that the inclusion Gχ = Xρ ↪→ X = Xσ restricts to the identity map on the open

orbit of the torus action. So it comes from the inclusion of semigroups Sσ ⊆ Sρ and of
cones ρ ↪→ σ as in subsection 3.2. Since Xρ ⊆ Xσ is an open embedding, the cone ρ is a
face of the cone σ, see subsection 3.2. So ρ is a ray of the cone σ.
The action of T = Im θ on Gχ comes from left and right multiplications of T on Gχ, see

Proposition 1. If we act on a point (α, t] ∈ Gχ by an element θ(t1, t2) ∈ T, t1, t2 ∈ T , we
obtain a point

θ(t1, t2)
(
(α, t]

)
= (0, t1](α, t](0, t

−1
2 ] = (χ(t1)α, t1tt

−1
2 ]. (6)

Notice that χ(t1) = χ(t′1) does not depend on a choice of a representative θ(t1, t2) =
θ(t′1, t

′
2) ∈ T since Ker θ = diagKerχ. So θ(t1, t2) 7→ χ(t1) is a character of T. It follows

that the coordinate function ααα ∈ K[Gχ] is homogeneous with respect to grading (4) corre-
sponding to the action of T. The function βββ = χ−1(t)ααα ∈ K[Gχ] is homogeneous as well.
Multiplying ααα and βββ by an appropriate scalar we may assume that ααα = χa and βββ = χb for
some a, b ∈ Sρ. Notice that ααα ∈ K[Gχ] and 1/ααα /∈ K[Gχ], whence a ∈ Sρ does not belong
to the face ρ⊥, i.e. ⟨p, a⟩ > 0.

5.2. Comultiplication on K[Gχ]. Let G be the group of invertible elements in X. Then
G is open in X, the algebra K[X] is a subalgebra of K[G], and the comultiplication on
K[X] is the restriction of the comultiplication K[G] → K[G] ⊗ K[G] corresponding to the
multiplication in the group G.

Therefore, we are interested in the comultiplication on K[Gχ].

Lemma 3. The comultiplication K[Gχ] → K[Gχ]⊗K[Gχ] is given by

χu 7→ χu ⊗ χu (1⊗ααα−1 + βββ−1 ⊗ 1)⟨p,u⟩, (7)

where u ∈ Sρ and K[Gχ] =
⊕
u∈Sρ

Kχu.

Proof. Consider the orbits of the action of the torus T on Xρ = Gχ = Ga ⋋ T . The cone ρ
has two faces 0 and ρ, so according to subsection 3.3 there are two orbits Xρ = O0 ∪ Oρ.
By formula (6), we see that O0 = {ααα ̸= 0} is the open orbit and Oρ = {ααα = 0} = T is
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its complement. The torus Hom(M(ρ),K×) for the sublattice M(ρ) = ρ⊥ ∩ M in M is
identi�ed with Oρ, so K[T ] = K[M(ρ)].
Since K[Gχ] = K[T ][ααα], the semigroup Sρ is generated by the lattice M(ρ) and a ∈ Sρ,

where ααα = χa. Notice that ⟨p, u1 + u2⟩ = ⟨p, u1⟩ + ⟨p, u2⟩ and χu1+u2 = χu1χu2 . Then it is
su�cient to check formula (7) for u ∈M(ρ) and for u = a.
For u ∈ M(ρ) we obtain χu 7→ χu ⊗ χu since χu ∈ K[T ] are multiplied as characters

in T ⊆ Gχ. Notice that for u ∈ M(ρ) formula (7) also turns into χu 7→ χu ⊗ χu since
⟨p, u⟩ = 0.
By equation (2) we also have ααα 7→ ααα⊗ 1 + χ(t)⊗ααα. Let us check that it coincides with

formula (7) for χu = ααα, i.e. for u = a. Notice that

ααα⊗ 1 + χ(t)⊗ααα = ααα⊗ααα (1⊗ααα−1 + χ(t)ααα−1 ⊗ 1),

where χ(t)ααα−1 = βββ−1. The exponent ⟨p, a⟩ is equal to 1 since the sublattice M(ρ) =
{u ∈ M | ⟨p, u⟩ = 0} and the element a ∈ ρ∨ generate a semigroup Sρ in M such that
ZSρ =M . □

5.3. Derivations and Demazure roots. By Lemma 3, the comultiplication on K[Xσ] is
the restriction of the comultiplication on K[Gχ], see equation (7):

χu 7→ χu ⊗ χu (1⊗ααα−1 + βββ−1 ⊗ 1)⟨p,u⟩.

Denote e1 = −a and e2 = −b, where ααα = χa and βββ = χb, a, b ∈ Sρ. We have seen in the
proof of Lemma 3 that ⟨p, a⟩ = 1, so ⟨p, e1⟩ = −1. In the same way ⟨p, e2⟩ = −1.
Consider two Ga-actions on Gχ coming from left and right multiplication by Ga ⊆ Gχ:

Ga ×Gχ → Gχ, α′ · (α, t] = (α′ + α, t];

Gχ ×Ga → Gχ, [t, β) · β′ = [t, β + β′).

To obtain the corresponding LNDs on K[Gχ] = K[T ][ααα] = K[T ][βββ], we di�erentiate dual
actions of Ga on K[Gχ] at α

′ = 0 and β′ = 0:

δl =
d

dααα
; δr =

d

dβββ
.

Left and right multiplications on Gχ can be extended to Xσ. Since the algebra K[Xσ] is
invariant with respect to the action by left and right multiplication, the algebra K[Xσ] is
also invariant with respect to derivations δl and δr. Notice that δl and δr are homogeneous
LNDs on K[X] with respect to the grading K[Xσ] =

⊕
u∈Sσ

Kχu with degrees e1 and e2,

respectively, since ααα−1 = χe1 and βββ−1 = χe2 . It follows that e1 and e2 are Demazure roots
of Xσ. Since ⟨p, e1⟩ = ⟨p, e2⟩ = −1, they correspond to the ray ρ. Thus we proved that the
comultiplication on K[Xσ] is given by formula (5).

5.4. The inverse implication. First let us provide the proof of the following lemma.

Lemma 4. Let G be an a�ne algebraic group and G ↪→ X be an open embedding into an
a�ne algebraic variety X. Let µ : K[G] → K[G] ⊗ K[G] be the comultiplication on K[G]
and µ(K[X]) ⊆ K[X]⊗K[X]. Then the restriction of µ to K[X] de�nes a comultiplication
on K[X] that corresponds to some monoid structure on X.

Proof. If µ(K[X]) ⊆ K[X] ⊗ K[X], then the dual map X ×X → X is a morphism, which
restricts to the group multiplication G×G→ G. Since the former is associative and admits
a unity, the same holds for X ×X → X. □
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Now let Xσ be an a�ne toric variety, p be the primitive vector on a ray ρ of the cone
σ ⊆ NQ, and e1, e2 ∈ M be Demazure roots corresponding to p. First let us prove that
formula (5) de�nes a map to K[Xσ]⊗K[Xσ]. We have

χu 7→ χu ⊗ χu (1⊗ χe1 + χe2 ⊗ 1)⟨p,u⟩ =
∑

i+j=⟨p,u⟩

(
⟨p, u⟩
i

)
χu+ie2 ⊗ χu+je1 . (8)

Notice that, according to the de�nition of a Demazure root, ⟨p, u + ie2⟩ = ⟨p, u⟩ − i ⩾ 0,
and for the primitive vector p′ on any other ray of the cone σ we have ⟨p′, u + ie2⟩ =
⟨p′, u⟩+ i⟨p′, e2⟩ ⩾ 0 + 0 = 0 as well. So χu+ie2 ∈ K[Xσ]. Similarly, χu+je1 ∈ K[Xσ].
Consider the natural open embedding of the toric variety Xρ with the cone ρ into Xσ,

see subsection 3.2. Let us show that the unity of the given multiplication is the point xρ,
see subsection 3.3. Recall that by the de�nition of this point for u ∈ Sρ we have χ

u(xρ) = 1
if u ∈ ρ⊥ and χu(xρ) = 0 otherwise. Suppose x ∈ Xσ, u ∈ Sσ. Then

χu(x ∗ xρ) =
∑

i+j=⟨p,u⟩

(
⟨p, u⟩
i

)
χu+ie2(x)χu+je1(xρ) = χu(x).

Indeed, the last equality holds since ⟨p, u+ je1⟩ = 0 if and only if j = ⟨p, u⟩.
Let us prove that the set of invertible elements in the monoid Xσ is a subset of Xρ.

Consider a point x ∈ Xσ, and assume that there exists the inverse y = x−1 ∈ Xσ. Then for
any u ∈ Sσ in the relative interior of the facet ρ⊥ ∩ σ∨ we have ⟨p, u⟩ = 0, so formula (8)
gives

χu(x ∗ y) = χu(x)χu(y),

that has to equal 1 since

χu(xρ) =

{
1 if u ∈ ρ⊥,

0 otherwise.

So χu(x) ∈ K× if u is in the relative interior of the facet ρ⊥ ∩ σ∨. According to the
description of the open subset Xρ in subsection 3.2, we obtain x ∈ Xρ.
Finally, since e1, e2 are Demazure roots with ⟨p, e1⟩ = ⟨p, e2⟩ = −1, it follows that

−e1,−e2 ∈ ρ∨, so the characters ααα := χ−e1 and βββ := χ−e2 are regular functions on Xρ. The
restriction of comultiplication (5) to the open subset Xρ coincides with formula (7), so all
points in Xρ are invertible and Xρ

∼= Gχ, where χ = ααα/βββ. Thus Xσ is a monoid with the
group of invertible elements Xρ of corank one by Lemma 4. This completes the proof of
Theorem 1.

6. Idempotent elements

The classi�cation of a�ne monoids of corank one from Theorem 1 allows us to study
algebraic properties of such monoids.

Let us give the classi�cation of idempotents in X, i.e. elements x ∈ X such that x∗x = x.

Theorem 3. In the notation of Theorem 1, for any face γ of the cone σ the set of idem-
potents Eγ in the orbit Oγ in X is as follows:

(a) Eγ = {xγ} if ρ is a ray of γ;
(b) Eγ = ∅ if ρ is not a ray of γ and e1, e2 /∈ γ⊥;
(c) Eγ = ∅ if ρ is not a ray of γ and e1, e2 ∈ γ⊥;
(d) Eγ = Oγ ∩ {χu = 1 ∀u ∈ cone(γ, ρ)⊥ ∩ Sσ} otherwise.
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Remark 2. Let e be a Demazure root corresponding to the ray ρ of the cone σ, which is
not a ray of the cone γ, and e ∈ γ⊥. Then cone(γ, ρ) is a face of σ, see subsection 3.4.

A proof of Theorem 3 is given at the end of this section.

Example 5. Let X = A2 and the multiplication be given by formula

(x1, x2) ∗ (y1, y2) = (x1y1, x
a
1y2 + x2), a > 0.

Denote a basis of N by s1, s2. According to the proof of Theorem 2, the monoid corresponds
to the cone σ = cone(s1, s2), the ray ρ with the primitive vector p = s2 ∈ N and Demazure
roots e1 = (a,−1) ∈M , e2 = (0,−1) ∈M , see Figure 2.

0

ρ
σ

γs1

p = s2

N

0

γ⊥
σ∨

ρ⊥

u1

u2

M

e1 = (a,−1)
e2 = (0,−1)

Eγ = Oγ

Oρ

(1, 0) ∈ Eρ

Eσ = Oσ

(0, 0)

O0

A2

Figure 2. The cones, T-orbits, and idempotents in X in Example 5.

The cone σ has four faces 0, ρ, γ = cone(s1), and σ. According to Theorem 3, idempo-
tents in X belong to toric orbits Oρ, Oσ in item (a), and Oγ in item (d). In Oρ and Oσ we
obtain idempotents xρ = (1, 0) and xσ = (0, 0). The set Eγ of idempotents in Oγ is given
by equations χu = 1 for u ∈ cone(γ, ρ)⊥ = 0, whence Eγ = Oγ. So the set of idempotents
consists of the line (0, x2), x2 ∈ K, and the point (1, 0). It coincides with the solutions of
(x21, x

a
1x2 + x2) = (x1, x2).

Example 6. Let X = A4 and the multiplication rule be as follows:

(x1, x2, x3, x4) ∗ (y1, y2, y3, y4) = (x1y1, x2y2, x3y3, x
a
3y4 + yb2y

c
3x4), a, b, c > 0. (9)

Denote a basis of N by si, 1 ⩽ i ⩽ 4. According to the proof of Theorem 2, the monoid cor-
responds to the cone σ = cone(s1, s2, s3, s4), the ray ρ with the primitive vector p = s4 ∈ N ,
and Demazure roots e1 = (0, b, c,−1) ∈M , e2 = (0, 0, a,−1) ∈M .
For any subset I ⊆ {1, 2, 3, 4}, consider the face γ = γ(I) = conei∈I si of the cone σ,

which corresponds to the torus orbit

Oγ = {(x1, x2, x3, x4) | xi = 0 if i ∈ I and xi ̸= 0 if i /∈ I}.

The point xγ ∈ Oγ is the point with i-th coordinate 0 if i ∈ I and 1 if i /∈ I. Notice that
e1 ∈ γ⊥ if and only if I ⊆ {1}, and e2 ∈ γ⊥ if and only if I ⊆ {1, 2}.
Let us �nd the set of idempotents in an orbit Oγ, γ = γ(I), comparing results of Theo-

rem 3 and direct computations. By equation (9), a point (x1, x2, x3, x4) ∈ A4 is an idem-
potent if

(x21, x
2
2, x

2
3, x

a
3x4 + xb2x

c
3x4) = (x1, x2, x3, x4). (10)

(a) Let ρ be a ray of γ, i.e. 4 ∈ I (there are eight such cones γ). Then by Theorem 3,
there exists exactly one idempotent xγ = (x1, x2, x3, 0) in Oγ, where xi = 0 if i ∈ I and
xi = 1 otherwise. The same follows from equation (10) under the assumption x4 = 0.
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(b) Let ρ be not a ray of γ and e1, e2 /∈ γ⊥, i.e. 4 /∈ I, 3 ∈ I. Then there are no
idempotents in Oγ by Theorem 3. This agrees with formula (10): from x4 ̸= 0, x3 = 0 it
follows that xa3x4 + xb2x

c
3x4 = 0 ̸= x4.

(c) Let ρ be not a ray of γ and e1, e2 ∈ γ⊥, i.e. I ⊆ {1}. There are no idempotents in
such Oγ by Theorem 3 as well. Also, from equation (10) and x2, x3, x4 ̸= 0 it follows that
x2 = x3 = 1, x4 + x4 = x4, x4 ̸= 0, a contradiction.
(d) Let ρ be not a ray of γ and e1 /∈ γ⊥, e2 ∈ γ⊥, i.e. I ⊆ {1, 2} and 2 ∈ I. Consider two

possible cases.
(d1) Let I = {1, 2}, i.e. Oγ = {(0, 0, x3, x4) | x3, x4 ∈ K×}. Denote by ui, 1 ⩽ i ⩽ 4, the

basis of M dual to si, 1 ⩽ i ⩽ 4. The semigroup of integer points in the face

cone(γ, ρ)⊥ ∩ σ∨ = cone(s1, s2, s4)
⊥ ∩ cone(u1, u2, u3, u4) = cone(u3)

of the dual cone σ∨ is generated by u3, so by Theorem 3 the set of idempotents in Oγ equals

Eγ = Oγ ∩ {χu = 1 ∀u ∈ cone(γ, ρ)⊥ ∩ Sσ} = {(0, 0, 1, x4) | x4 ∈ K×}.
This agrees with equation (10), which is equivalent to x3 = 1 under the assumptions
x1 = x2 = 0, x3, x4 ̸= 0.
(d2) Let I = {2}. In the same way we obtain

cone(γ, ρ)⊥ ∩ σ∨ = cone(u1, u3)

and
Eγ = Oγ ∩ {χu = 1 ∀u ∈ γ⊥ ∩ ρ⊥ ∩ Sσ} = {(1, 0, 1, x4) | x4 ∈ K×}.

Gathering all cases together, we obtain that the set of idempotents consists of two lines
(0, 0, 1, x4) and (1, 0, 1, x4), x4 ∈ K, and six points

(0, 0, 0, 0), (0, 1, 0, 0), (0, 1, 1, 0), (1, 0, 0, 0), (1, 1, 0, 0), (1, 1, 1, 0).

It is known that an irreducible commutative algebraic monoid in characteristic zero has a
�nite number of idempotents [17, Section 3.5.3, Exercise 16b]. This agrees with our result.

Corollary 1. In the notation of Theorem 1, the number of idempotents in X is �nite if
and only if e1, e2 belong to γ⊥ simultaneously, where γ ranges over faces of σ such that ρ is
not a ray of γ. In such a case, the number of idempotents equals the number of faces of σ
that contain ρ. In particular, this holds if X is commutative.

Proof. The number of idempotents is �nite if and only if case (d) is impossible. If X is
commutative, then e1 = e2. □

Proof of Theorem 3. Let x ∈ Oγ be an idempotent in Xσ. From now on u ∈ Sσ. First recall
that, according to (8), for any x1, x2 ∈ Xσ the multiplication is given by

χu(x1 ∗ x2) =
∑

i+j=⟨p,u⟩

(
⟨p, u⟩
i

)
χu+ie2(x1)χ

u+je1(x2). (11)

Informally, u+ ie1 and u+ ie2, 0 ⩽ i ⩽ ⟨p, u⟩, form two segments in Sσ between u and the
facet ρ⊥ ∩ σ∨, see Figure 3 below. As i increases, the element u + iek, k = 1, 2, becomes
closer to the facet ρ⊥∩σ∨ and not closer to all other facets by the de�nition of a Demazure
root, see subsection 5.4. In particular, u+ iek ∈ ρ⊥ if and only if i = ⟨p, u⟩, where k = 1, 2.
First consider u ∈ ρ⊥, see Figure 3. Then the sum in (11) has only one summand, so for

the idempotent x we have χu(x) = χu(x ∗ x) = χu(x)χu(x). Thus

χu(x) = 0, 1 for any u ∈ ρ⊥. (12)
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0

ρ⊥

γ⊥

u

0,1

0

ρ⊥

γ⊥

u /∈ ρ⊥
0

e1
0

0

e20
0

(a) γ⊥ ⊆ ρ⊥

0

ρ⊥

γ⊥

u ∈ γ⊥ \ ρ⊥
̸= 0

e10
0

0
e2

0

0

0

(b) e1, e2 /∈ γ⊥

0

ρ⊥

γ⊥
ρ⊥ ∩ γ⊥

⟨p, u⟩ = 1
u ∈ γ⊥

̸= 0

e1
1

e2

1

(c) e1, e2 ∈ γ⊥

0

ρ⊥

γ⊥

u /∈ γ⊥
0

e20
0

0

e10
0

0

(d) e1 /∈ γ⊥, e2 ∈ γ⊥

0

ρ⊥

γ⊥
ρ⊥ ∩ γ⊥

u ∈ γ⊥

̸= 0

e21

e1
0

0

0

(d) e1 /∈ γ⊥, e2 ∈ γ⊥

Figure 3. The dual cone in four cases of Theorem 3.

Recall that from x ∈ Oγ it follows that χu(x) ̸= 0 if and only if u ∈ γ⊥.
(a) Let ρ be a ray of the face γ. Then γ⊥ ⊆ ρ⊥, so, according to the above, we obtain

χu(x) =

{
1 if u ∈ γ⊥

0 otherwise
, i.e. x = xγ.

Conversely, let us check that x = xγ is an idempotent, i.e. χu(xγ ∗ xγ) = χu(xγ) for
any u ∈ Sσ. If u ∈ ρ⊥, then the sum in equation (11) consists of one summand and
χu(xγ ∗ xγ) = χu(xγ)χ

u(xγ) = χu(xγ) since χu(xγ) = 0, 1. If u /∈ ρ⊥, then the sum in
equation (11) consists of more than one summand, but in each summand u+ ie2 or u+ ie1
do not belong to ρ⊥, i.e. each summand equals zero. So if u /∈ ρ⊥, then χu(xγ ∗ xγ) = 0 =
χu(xγ).

(b) Let ρ be not a ray of the face γ and e1, e2 /∈ γ⊥. Since e1 /∈ γ, there exists a ray ρ′

of γ with the primitive vector p′ such that ⟨p′, e1⟩ ̸= 0. Moreover, ρ′ ̸= ρ since ρ is not a
ray of γ, so ⟨p′, e1⟩ > 0.
Take any u ∈ γ⊥ \ ρ⊥. Then for any 1 ⩽ j ⩽ ⟨p, u⟩ we have ⟨p′, u+ je1⟩ = j⟨p′, e1⟩ > 0,

so u+ je1 /∈ γ⊥ and χu+je1(x) = 0. In the same way, χu+ie2(x) = 0 for 1 ⩽ i ⩽ ⟨p, u⟩. Since
u /∈ ρ⊥, it follows that the sum in χu(x ∗ x) has at least two summands and equals zero.
However, χu(x) ̸= 0 since u ∈ γ⊥. Thus there is no idempotents in case (b).

(c) Let ρ be not a ray of the face γ and e1, e2 ∈ γ⊥. Take u ∈ γ⊥ such that ⟨p, u⟩ = 1.
Such u ∈ Sσ exists since the rational plane γ⊥∩{⟨p, · ⟩ = 1} contains a lattice element −e1,
so one can �nd a lattice element in the intersection of this plane and the cone σ∨ as well.
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Then u+e1, u+e2 ∈ γ⊥∩ρ⊥, whence χu+e1(x) = χu+ie2(x) = 1 and formula (11) gives for
an idempotent x the equation χu(x) = χu(x∗x) = χu(x)+χu(x). It follows that χu(x) = 0,
which contradicts u ∈ γ⊥.

(d) Let ρ be not a ray of the face γ and e1 /∈ γ⊥, e2 ∈ γ⊥. From e1 /∈ γ⊥ it follows
that there exists a ray of γ with the primitive vector p′ such that ⟨p′, e1⟩ > 0, see case (b).
Consider two cases.
Let u /∈ γ⊥. Since p′ ∈ γ and u ∈ σ∨ \ γ⊥, we have

⟨p′, u+ je1⟩ > 0 + j⟨p′, e1⟩ ⩾ 0 for any 0 ⩽ j ⩽ ⟨p, u⟩,
⟨p′, u+ ie2⟩ > 0 + i⟨p′, e2⟩ ⩾ 0 for any 0 ⩽ i ⩽ ⟨p, u⟩,

so
u+ je1 /∈ γ⊥ for any 0 ⩽ j ⩽ ⟨p, u⟩,
u+ ie2 /∈ γ⊥ for any 0 ⩽ i ⩽ ⟨p, u⟩.

Then χu(x) = 0 = χu(x ∗ x) for any u /∈ γ⊥.
Let u ∈ γ⊥. In this case, we have

⟨p′, u+ je1⟩ = 0 + j⟨p′, e1⟩ > 0 for any 1 ⩽ j ⩽ ⟨p, u⟩,
⟨p′, u+ ie2⟩ = 0 + i⟨p′, e2⟩ = 0 for any 0 ⩽ i ⩽ ⟨p, u⟩,

i.e.
u+ je1 /∈ γ⊥ for any 1 ⩽ j ⩽ ⟨p, u⟩,
u+ ie2 ∈ γ⊥ for any 0 ⩽ i ⩽ ⟨p, u⟩.

Then for x ∈ Oγ, the condition χ
u(x) = χu(x∗x) is equivalent to χu(x) = χu(x)χu+⟨p,u⟩e2(x),

i.e. χu+⟨p,u⟩e2(x) = 1. Notice that u + ⟨p, u⟩e2 ∈ ρ⊥ ∩ γ⊥ = cone(γ, ρ)⊥, so the condition
χu+⟨p,u⟩e2(x) = 1 is equivalent (12). This completes the proof. □

7. Geometry of the set E(X)

Let us take a closer look at the geometric structure of the set of idempotents. Denote
the set of all idempotents in X by E(X). It is closed in X. The set of idempotents Eγ in
Oγ in item (d) of Theorem 3 is closed in Oγ and may be not closed in X. We are going to
prove that the closure of Eγ in X is the union of Eγ and one point, which is an idempotent
from item (a) of Theorem 3. Idempotents are also connected with the action of the group
Gχ × Gχ by left and right multiplication, where Gχ is the group of invertible elements in
the monoid. More precisely, the following statement holds.

Proposition 3. In the notation of Theorems 1 and 3, the following assertions hold.

(a) For any face γ of the cone σ such that ρ is not a ray of γ and exactly one of
Demazure roots e1, e2 belongs to γ⊥

Eγ = Eγ ∪ {xcone(γ,ρ)}.
(b) Irreducible components of the subvariety E(X) do not intersect, each of them is

either a point or is isomorphic to the a�ne line.
(c) Any irreducible component of E(X) is a subset of a (Gχ × Gχ)-orbit, and any

(Gχ ×Gχ)-orbit contains at most one irreducible component of E(X).

Before a proof we recall some results of [3]. Let X = Xσ be an a�ne toric variety with
an acting torus T, p be the primitive vector on a ray of σ, and e be a Demazure root
corresponding to p. Denote by He the one-parameter subgroup in Aut(X) normalized by
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the torus T and corresponding to e, i.e. to a homogeneous locally nilpotent derivation with
degree e, see subsection 3.4.
In [3, Proposition 2.1] it is proved that any orbit of the group He in X is either a point or

intersects exactly two T-orbits O1, O2, where dimO1 = dimO2+1 and O2 ⊆ O1. Moreover,
in the latter case

O1 ∩Hex = Rpx,

O2 ∩Hex = {pt}, (13)

where x is any point in O1 and Rp
∼= K× is the one-parameter subgroup in Aut(X) given

by the primitive vector p ∈ N . Such a pair of T-orbits (O1, O2) is called He-connected.
Recall that there is a one-to-one correspondence between faces τ of the cone σ and T-

orbits Oτ on X, see subsection 3.3. In [3, Lemma 2.2], a combinatorial condition on faces
of σ corresponding to He-connected orbits is given. Namely, a pair of T-orbits (Oτ1 , Oτ2) is
He-connected if and only if ⟨τ2, e⟩ ⩽ 0, the cone τ1 is a facet of τ2, and τ1 = τ2 ∩ e⊥.

Proof of Proposition 3. Let γ be a face of σ and e be a Demazure root corresponding to
the ray ρ of σ. First we are going to note that

for a face γ′ the pair (Oγ, Oγ′) is He-connected ⇔


ρ is not a ray of γ,

γ′ = cone(γ, ρ),

e ∈ γ⊥.

(14)

Indeed, if the pair (Oγ, Oγ′) is He-connected, then γ is a facet of γ′ by [3, Lemma 2.2], so
γ′ = cone(γ, ρ1, . . . , ρk) for some rays ρi of σ, where ρi ⊈ γ. By [3, Lemma 2.2], γ = γ′ ∩ e⊥
and ⟨γ′, e⟩ ⩽ 0, so ⟨ρi, e⟩ < 0. Then according to the de�nition of a Demazure root
γ′ = cone(γ, ρ). Also, ρ is not a ray of γ since γ is a facet of γ′, and γ = γ′ ∩ e⊥ implies
e ∈ γ⊥.
Conversely, let the right-hand side of (14) hold. Then it follows from the de�nition of a

Demazure root that γ′ is a face of σ, see Remark 2. Since ⟨γ, e⟩ = 0 and ⟨ρ, e⟩ ⩽ 0, it is also
easy to see that conditions of [3, Lemma 2.2] hold, so the pair (Oγ, Oγ′) is He-connected.
Let γ be a face from case (d) of Theorem 3. Without loss of generality, one can assume

that e1 ∈ γ⊥ and e2 /∈ γ⊥. Consider the set of idempotents

Eγ = Oγ ∩ {χu = 1 ∀u ∈ cone(γ, ρ)⊥ ∩ Sσ}.
It is invariant with respect to Rp since the action of Rp on K[X] is de�ned by the formula
t · χu = t⟨p,u⟩χu and ⟨p, u⟩ = 0 for any u ∈ cone(γ, ρ)⊥. So Eγ is a union of some Rp-orbits.
According to (14), the pair (Oγ, Oγ′) is He1-connected. Since He1 is unipotent and X

is a�ne, any He1-orbit is closed in X, see [15, Section 1.3]. So taking the closure of
any Rp-orbit in Oγ adds one point, which belongs to Oγ′ , and gives an He1-orbit by [3,
Proposition 2.1], see equation (13). We apply this toRp-orbits in Eγ. The set of idempotents
in X is closed, so the added points in Oγ′ are idempotents in X as well. However, ρ is a
ray of the face γ′ = cone(γ, ρ), so according to case (a) of Theorem 3 there is exactly
one idempotent xγ′ in Oγ′ . It follows that Eγ consists of one Rp-orbit and gives the �rst
statement of Proposition 3.
The group of invertible elements in X equals Gχ = Ga ⋋ T, where left and right mul-

tiplications by Ga on X correspond to e1 and e2. So the orbits of the natural action of
the group Gχ × Gχ on X are the unions of He1- and He2-connected T-orbits. So if a face
γ corresponds to case (b) of Theorem 3, then Oγ is a (Gχ × Gχ)-orbit and there is no
idempotents in Oγ. If a face γ corresponds to case (c) of Theorem 3, then Oγ ∪ Ocone(γ,ρ)

is a (Gχ ×Gχ)-orbit and there is one idempotent xcone(γ,ρ) in Oγ. For a face γ in case (d),
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Oγ ∪ Ocone(γ,ρ) is a (Gχ × Gχ)-orbit and the set of idempotents in it equals Eγ, which is
isomorphic to He

∼= A1. If γ′ is a face from case (a) such that there is no γ from cases (b)
or (d) with γ′ = cone(γ, ρ), then Oγ is a (Gχ × Gχ)-orbit with one idempotent xγ′ in it.
This completes the proof of Proposition 3. □

Recall that an element 0 in a monoid X is called the zero if 0 ∗ x = x ∗ 0 = 0 for any
x ∈ X. Clearly, the zero element is unique if it exists. Note that 0 ∈ E(X) and {0} is one
of (Gχ ×Gχ)-orbits, so 0 is an isolated point in E(X) by Proposition 3(c) if it exists.

Proposition 4. In the notation of Theorem 1, the monoid X has zero if and only if σ⊥ = 0
and −e1,−e2 /∈ σ∨. In such a case, the zero element equals xσ.

Proof. An element 0 is a zero element if and only if χu(x ∗ 0) = χu(0 ∗ x) = χu(0) for any
u ∈ Sσ and x ∈ X. It holds for u = 0 since χ0 = 1; let u ̸= 0. Consider the sum

χu(x ∗ 0)− χu(0) =
(
χu+⟨p,u⟩e2(x)− 1

)
χu(0) +

∑
i+j=⟨p,u⟩

j ̸=0

(
⟨p, u⟩
i

)
χu+ie2(x)χu+je1(0).

It equals zero for any x ∈ X if and only if

χu+je1(0) = 0 for any 0 ⩽ j ⩽ ⟨p, u⟩. (15)

Indeed, for u ̸= 0 the functions χu+⟨p,u⟩e2−1, χu+ie2 , 0 ⩽ i < ⟨p, u⟩, are linearly independent
in K[X] =

⊕
v∈Sσ

Kχv. In particular, it follows that

χu(0) =

{
0 if u ̸= 0,

1 if u = 0,

i.e. 0 = xσ and σ⊥ = 0, see subsection 3.3. Conversely, the point 0 = xσ satis�es
equations (15) if and only if u + ie1 ̸= 0 for any 0 ⩽ i ⩽ ⟨p, u⟩ and any u ∈ Sσ \ {0},
which is equivalent to −e1 /∈ σ∨. Similarly, χu(0 ∗ x)− χu(0) = 0 if and only if 0 = xσ and
−e2 /∈ σ∨. □

Corollary 2. In the notation of Theorem 2, the monoid on An admits no zero element if
and only if a1 = . . . = an−1 = 0 or b1 = . . . = bn−1 = 0. Otherwise, the zero element is
(0, . . . , 0) ∈ An.

For example, there is no zero element in the monoid from Example 5, while the point
(0, 0, 0, 0) ∈ A4 is the zero element in Example 6.

Proof. According to the proof of Theorem 2, two Demazure roots are e1 = (b1, . . . , bn−1,−1),
e2 = (a1, . . . , an−1,−1), a1, . . . , an−1, b1, . . . , bn−1 ∈ Z⩾0, and σ and σ∨ are the positive
octants in NQ andMQ, respectively. Then Proposition 4 implies the required condition. □

8. The center

Consider the center of a monoid X:

Z(X) = {x ∈ X | x ∗ y = y ∗ x ∀y ∈ X}.
We �nd equations that de�ne Z(X) and study the dimensions of its irreducible components.

Proposition 5. In the notation of Theorem 1, we have

Z(X) =

{
Oρ ∩ {χu+e1 = χu+e2 ∀u ∈ Sσ : ⟨p, u⟩ = 1} if e1 ̸= e2;

X if e1 = e2.
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Remark 3. One can leave only equations χui+e1 = χui+e2 , where

{u ∈ Sσ : ⟨p, u⟩ = 1} ⊆
⋃
i

(ui + Sσ).

Indeed, for any v ∈ Sσ the equation χu+e1 = χu+e2 implies χv+u+e1 = χv+u+e2 .

Proof. If e1 = e2, then X is commutative; from now on e1 ̸= e2. Since the set of invertible
elements Gχ is dense in X,

Z(X) = {x ∈ X | x ∗ y = y ∗ x ∀y ∈ Gχ} = {x ∈ X | x = y ∗ x ∗ y−1 ∀y ∈ Gχ}.
First let us check that for y ∈ Gχ the inverse element is given by

χu(y−1) = (−1)⟨p,u⟩χ−u−⟨p,u⟩(e1+e2)(y), u ∈ Sσ. (16)

It us easy to see that the map that takes u to the right-hand side of (16) is a homomorphism
of semigroups Sσ → K×, so formula (16) de�nes a point z in X. Let us multiply y by z.
According to equation (11),

χu(y ∗ z) =
∑

i+j=⟨p,u⟩

(
⟨p, u⟩
i

)
χu+ie2(y)χu+je1(z).

For u′ = u+je1 we have ⟨p, u′⟩ = ⟨p, u⟩−j = i and −u′−⟨p, u′⟩(e1+e2) = −u−ie2−⟨p, u⟩e1,
so

χu(y ∗ z) =
∑

i+j=⟨p,u⟩

(
⟨p, u⟩
i

)
(−1)iχu+ie2(y)χ−u−ie2−⟨p,u⟩e1(y) =

= χ−⟨p,u⟩e1(y)
∑

i+j=⟨p,u⟩

(
⟨p, u⟩
i

)
(−1)i =

{
1, if ⟨p, u⟩ = 0

0, if ⟨p, u⟩ ≠ 0
= χu(xρ),

where xρ is a unity in X, see subsections 3.3 and 5.4. Thus y ∗ z = xρ, in the same way
z ∗ y = xρ, whence z = y−1.
Now we can calculate χu(y ∗ x ∗ y−1) for u ∈ Sσ:

χu(y ∗ x ∗ y−1) =
∑

i+j=⟨p,u⟩

(
⟨p, u⟩
i

)
χu+ie2(y ∗ x)χu+je1(y−1) =

=
∑

i+j=⟨p,u⟩

(
⟨p, u⟩
i

)
(−1)iχu+ie2(y ∗ x)χ−u−ie2−⟨p,u⟩e1(y) =

=
∑

i+k+l=⟨p,u⟩

(
⟨p, u⟩
i

)(
⟨p, u⟩ − i

k

)
(−1)iχu+ie2+ke2(y)χu+ie2+le1(x)χ−u−ie2−⟨p,u⟩e1(y) =

=
∑

i+k+l=⟨p,u⟩

⟨p, u⟩!
i!k!l!

(−1)iχu+ie2+le1(x)χke2−⟨p,u⟩e1(y) =

=

⟨p,u⟩∑
k=0

(
⟨p, u⟩
k

) ∑
i+l=⟨p,u⟩−k

(
⟨p, u⟩ − k

i

)
(−1)iχu+ie2+le1(x)

χke2−⟨p,u⟩e1(y) =

=

⟨p,u⟩∑
k=0

(
⟨p, u⟩
k

)(
χu(χe1 − χe2)⟨p,u⟩−k

)
(x) · χke2−⟨p,u⟩e1(y).
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Note that the summand for k = ⟨p, u⟩ equals χu(x)χ⟨p,u⟩(e2−e1)(y). A point x belongs to
Z(X) if and only if χu(y ∗ x ∗ y−1)− χu(x) = 0 for any y ∈ Gχ, i.e.

χu(x)
(
χ⟨p,u⟩(e2−e1)(y)− 1

)
+

⟨p,u⟩−1∑
k=0

(
⟨p, u⟩
k

)(
χu(χe1 − χe2)⟨p,u⟩−k

)
(x)·χke2−⟨p,u⟩e1(y) = 0

for any y ∈ Gχ. By Theorem 1, the set of invertible elements in X equals the open
subset Xρ = Gχ. If ⟨p, u⟩ ̸= 0, then the functions χ⟨p,u⟩(e2−e1)(y) − 1, χke2−⟨p,u⟩e1(y), where
0 ⩽ k ⩽ ⟨p, u⟩ − 1, are linearly independent in K[Xρ] =

⊕
v∈Sρ

Kχv. If ⟨p, u⟩ ≠ 0, then the
�rst function is zero and other are linearly independent. So the equations on a point x in
Z(X) are as follows: {

χu(x) = 0 if ⟨p, u⟩ ≠ 0;

χu(χe1 − χe2)m = 0 for 1 ⩽ m ⩽ ⟨p, u⟩.
(17)

The �rst line of (17) is equivalent to x ∈ Oρ, see subsection 3.3. Let us show that the
equation for m = 1 implies all other in the second line of (17). We use induction on m; let
m ⩾ 2. For shortness we assume

(
m
i

)
= 0 if i < 0 or i > m. Then

χu(χe1 − χe2)m =
∑

i+l=m

(
m
i

)
(−1)iχu+ie2+le1 =

=
m∑
i=0

((
m− 1
i

)
+

(
m− 1
i− 1

))
(−1)iχu+ie2+(m−i)e1 =

=
m−1∑
j=0

(
m− 1
j

)(
(−1)jχu+je2+(m−j)e1 + (−1)j+1χu+(j+1)e2+(m−j−1)e1

)
, (18)

where any summand equals 0 by induction hypothesis for u+ je2 + (m− j − 1)e1.
Moreover, for any u ∈ Sσ with ⟨p, u⟩ > 1 and x ∈ Oρ, we have χ

u+e1(x) = 0 = χu+e2(x)
since χv(x) = 0 if ⟨p, v⟩ ≠ 0. Thus, we need only equations χu+e1 −χu+e2 = 0 for ⟨p, u⟩ = 1.

□

Corollary 3. In the notation of Theorem 1, we have dimZ(X) = dimX − 2 if X is
noncommutative.

Proof. By Theorem 1, the set of invertible elements in X equals the open subset Xρ = Gχ.
The intersection Z(X) ∩Xρ is the center Z(Gχ) of the group of invertible elements, which
is isomorphic to Kerχ for the character χ of the torus of dimension dimX−1 by Lemma 1.
So there exists the irreducible component Z(Gχ) of Z(X) of dimension dimX − 2.
By Proposition 5, we have Z(X) ⊆ Oρ. Since Xρ = Oρ ∪ O0, any other irreducible

components of Z(X) is a subset of Oρ \ Oρ of dimension dimOρ − 1 = dimX − 2, see
subsection 3.3. This completes the proof. □

Corollary 4. In the notation of Theorem 2, the center of the monoid on An equals

Z(An) = {xn = 0, xa11 . . . x
an−1

n−1 = xb11 . . . x
bn−1

n−1 }

if the monoid is noncommutative. In particular, all irreducible components of Z(An) are of
dimension n− 2.
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Proof. We use the notation of the proof of Theorem 2. Notice that for the basis vector
un = (0, . . . , 0, 1) ∈ M and the primitive vector p = (0, . . . , 0, 1) ∈ N on the ray ρ, we
have the inclusion {u ∈ Sσ : ⟨p, u⟩ = 1} ⊆ un + Sσ. So, according to Proposition 5 and
Remark 3, the center Z(An) in Oρ = {xn = 0} is given by the equation χun+e1 = χun+e2 ,
where e1 = (b1, . . . , bn−1,−1), e2 = (a1, . . . , an−1,−1). This gives the required formula. □

Example 7. Let us provide an example of a monoid such that irreducible components of
the center have di�erent dimensions.
Consider the monoid structure on X = {vw = zt} ⊆ A4 from Example 4 for Demazure

roots e1 = (−1, 0, 1) and e2 = (−1, 1, 2). Let us �nd the center using Proposition 5. By
de�nition,

Sσ = σ∨ ∩M = {(a, b, c) ∈M | a, b, a+ c, b+ c ⩾ 0},
see Figure 1. Substituting a = 0 and a = 1, we obtain two sections {u ∈ Sσ : ⟨p, u⟩ = 0}
and {u ∈ Sσ : ⟨p, u⟩ = 1}, see Figure 4. One can see that the latter one is a subset of
(u1 + Sσ) ∪ (u2 + Sσ) for u1 = (1, 0, 0) and u2 = (1, 1,−1). Then, according to Remark 3,
the center is de�ned by

Z(X) = Oρ ∩ {χui+e1 = χui+e2 , i = 1, 2}.

b

c

{u ∈ Sσ : ⟨p, u⟩ = 0}

b

c

u1

u2

{u ∈ Sσ : ⟨p, u⟩ = 1}

Figure 4. The semigroup Sσ in Example 7 in {a = 0} and {a = 1}.

Recall that X = {vw = zt} is a quadratic cone of dimension 3, where v = χ(1,0,0),
w = χ(0,1,0), z = χ(0,0,1), and t = χ(1,1,−1). Then

x = (v, w, z, t) ∈ Z(X) ⇔


χu(x) = 0 for any u ∈ Sσ, ⟨p, u⟩ > 0,

χ(0,0,1)(x) = χ(0,1,2)(x),

χ(0,1,0)(x) = χ(0,2,1)(x),

⇔


v = t = 0,

z = wz2,

w = w2z,

whence Z(X) consists of the hyperbola {v = t = 0, wz = 1} of dimension 1 and the point
(0, 0, 0, 0) of dimension 0.

9. Interplay between the center and idempotents

In this section, we study the connection of the center with the set of idempotents.
Consider the action of the group of invertible elements Gχ of X on X by conjugation:

Gχ ×X → X, (g, x) 7→ g ∗x ∗ g−1. We call the orbits of this action conjugacy classes of X.
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Proposition 6. In the notation of Theorem 1, let X = Xσ be an a�ne monoid of corank
one. Then any irreducible component of E(X) is a conjugacy class of X. In particular,
irreducible components of E(X) that are isomorphic to the a�ne line do not intersect Z(X),
and isolated points in E(X) belong to Z(X).

Proof. If x ∈ X is an idempotent, then g ∗ x ∗ g−1 is an idempotent as well. So E(X) is
a union of conjugacy classes. Notice also that any conjugacy class is irreducible since the
group Gχ is connected.
By Proposition 3(b), irreducible components of E(X) do not intersect and any irreducible

component of E(X) is either an isolated point or isomorphic to the a�ne line. So any
isolated point in E(X) belongs to Z(X). By de�nition, x ∈ Z(X) if and only if its conjugacy
class is trivial, so it remains to prove that any irreducible component E ′ of E(X) such that
E ′ ∼= A1 is one conjugacy class.
Consider a point x ∈ E ′. Let us show that x /∈ Z(X). According to the proof of

Proposition 3, x ∈ Eγ for the face γ from item (d) of Theorem 3. Since x ∈ Oγ we have
χu(x) = 0 for u /∈ γ⊥, and Theorem 3 implies χu(x) = 1 for u ∈ cone(γ, ρ)⊥, where u ∈ Sσ.
We can assume that e1 ∈ γ⊥ and e2 /∈ γ⊥. Consider u ∈ cone(γ, ρ)⊥ = γ⊥ ∩ ρ⊥ ∩ σ∨ such
that ⟨p, u⟩ = 1. Then χu+e1(x) = 1 and χu+e2(x) = 0 by the above. So x /∈ Z(X) according
to Proposition 5.
Thus, points in E ′ ∼= A1 have nontrivial conjugacy classes, which do not intersect, are

locally closed as orbits, and are subsets of E ′. It is possible only if E ′ is one conjugacy
class. □

Example 8. Let X = A2 and the multiplication be (x1, x2) ∗ (y1, y2) = (x1y1, x
a
1y2 + x2),

where a > 0, see Example 5 and Figure 2. By Corollary 4, we have

Z(X) = {x2 = 0, xa1 = 1}.

So the center Z(X) consists of a points (ξi, 0), where {ξ1, . . . , ξa} = a
√
1.

This agrees with Proposition 6: the isolated idempotent (1, 0) belongs to Z(X), and the
line of idempotents (0, x2), x2 ∈ K, does not intersect Z(X).

Example 9. Let X = A4 and the multiplication be given by formula (9), see Example 6.
According to Corollary 4, we have

Z(X) = {x4 = 0, xb2x
c
3 = xa3}.

Let us �nd the irreducible components of Z(X), the closure Z(Gχ) of the center of the

group of invertible elements, and the set of idempotents E(X). It is clear that Z(Gχ) is a
subvariety of Z(X) and the unity is the unique idempotent in Z(Gχ). We show that in our

example Z(Gχ) ̸= Z(X), and idempotents can belong to di�erent irreducible components
depending on parameters.
Denote d = gcd(b, a− c) and d

√
1 = {ξ1, . . . , ξd}. Then Z(X) has d + 1 two-dimensional

irreducible components; their equations depend on a, b, c, see Table 9.
The set of invertible elements equals Gχ = {x1, x2, x3 ̸= 0} and Z(Gχ) = Z(X)∩Gχ. We

call the plane {x3 = x4 = 0} the external component of Z(X) as it does not intersect Gχ.

In Figure 5, one can see the illustration in the subspace {x4 = 0} if d = 2; suppose
b = 4, a−c = ±6 or b = 2, a−c = 0. Irreducible components of Z(X) have di�erent colors,

the external one is horizontal. Note that Z(Gχ) is the union of non-external irreducible
components of Z(X). The external component intersects the non-external ones if c < a
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case c < a case c = a case c > a
{x3 = x4 = 0}∪ {x3 = x4 = 0}∪ {x3 = x4 = 0}∪

Z(X) ∪{x
b
d
2 = ξ1x

a−c
d

3 , x4 = 0}∪ ∪{x2 = ξ1, x4 = 0}∪ ∪{x
b
d
2 x

c−a
d

3 = ξ1, x4 = 0}∪
. . . . . . . . .

∪{x
b
d
2 = ξdx

a−c
d

3 , x4 = 0} ∪ {x2 = ξd, x4 = 0} ∪ {x
b
d
2 x

c−a
d

3 = ξd, x4 = 0}

Table 1. Irreducible components of Z(X) in Example 9.

b = 4, a− c = 6

x1

x2
2 = −x3

3

x3 = 0

x2

x3
x2
2 = x3

3

b = 2, c = a

x2 = −1

x1

x3 = 0

x2

x3
x2 = 1

b = 4, c− a = 6

x1

x2
2x

3
3 = −1

x3 = 0

x2

x3
x2
2x

3
3 = 1

Figure 5. The center and idempotents in X in Example 9 in {x4 = 0}.

or c = a. The group center Z(Gχ) is the union of non-external components without the
boundary of Z(Gχ), which is colored in black.
Idempotents are �gured as small circles, squares and stars. Recall that according to

Example 6 the set of idempotents consists of two lines (0, 0, 1, x4) and (1, 0, 1, x4), x4 ∈ K,
and six isolated points

(0, 0, 0, 0), (0, 1, 0, 0), (0, 1, 1, 0), (1, 0, 0, 0), (1, 1, 0, 0), (1, 1, 1, 0).

In the subspace {x4 = 0} we see six isolated points that belong to Z(X) and two points
of two lines that do not. This agrees with Proposition 6. The distribution of six isolated
points between the irreducible components depends on parameters a, c, see Figure 5 and
Table 2.

The number of isolated idempotents case c < a case c = a case c > a
In Z(Gχ) (the unity) 1 1 1
On the boundary of Z(Gχ) 3 3 1

In Z(X) \ Z(Gχ) 2 2 4

Table 2. The interplay of E(X), Z(X), and Z(Gχ) in Example 9.
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