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Abstract. An additive action on an irreducible algebraic variety X is an effective action
Gn

a ×X → X with an open orbit of the vector group Gn
a . Any two additive actions on X

are conjugate by a birational automorphism of X. We prove that, if X is the projective
space, the conjugating element can be chosen in the affine Cremona group and it is given
by so-called basic polynomials of the corresponding local algebra.

1. Introduction

Let K be an algebraically closed field of characteristic zero and Ga = (K,+) be the
additive group of the field K. It is well known that any commutative unipotent linear
algebraic group over K is isomorphic to the vector group Gn

a .
An additive action on an irreducible algebraic varietyX is an effective action Gn

a×X → X
with an open orbit. In the study of additive actions it is natural to look for analogies with
toric geometry. Namely, we consider the multiplicative group Gm of the field K and an
algebraic torus T = Gn

m. Let us recall that a normal variety X is toric if it admits a regular
action T ×X → X with an open orbit.

It is known that an effective torus action with an open orbit on a toric variety X is unique
up to automorphism of X. Namely, if X is a complete toric variety, it is shown in [8] that
the automorphism group Aut(X) is a linear algebraic group, and the claim follows from the
fact that any two maximal tori in a linear algebraic group are conjugate. For an arbitrary
toric variety more specific arguments are needed; see [6, Theorem 4.1].

At the same time, many varieties X admit several non-equivalent additive actions. For
the first time, this effect was observed by Hassett and Tschinkel in the case of projective
spaces. More precisely, in [14] a correspondence between commutative associative unital
local algebras A with dimA = n+1 and additive actions on Pn was established; see also [15].
Using a classification of local algebras of small dimensions, one can conclude that starting
from n = 2 an additive action on Pn is not unique, and starting from n = 6 there are
infinitely many equivalence classes of such actions.

During last decades, many results on additive actions on complete algebraic varieties
were obtained. In particular, results on uniqueness of an additive action on non-degenerate
quadrics and, more generally, arbitrary non-degenerate projective hypersurfaces, flag va-
rieties, and other types of varieties can be found in [4, 9, 10, 12, 13, 21]. On the
other hand, examples of non-equivalent additive actions on complete varieties are given
in [1, 2, 3, 5, 11, 17, 20]. For a recent survey of these results, see [4].

Returning to linear algebraic groups, it is well known that in any such group all max-
imal unipotent subgroups are conjugate. At the same time, every additive action on Pn

2010 Mathematics Subject Classification. Primary 14L30, 14R10; Secondary 13E10, 14E07, 14J50.
Key words and phrases. Algebraic variety, projective space, automorphism, birational isomorphism,

Cremona group, algebraic group action, local algebra, Hassett-Tschinkel correspondence.
Supported by the Russian Science Foundation grant 23-21-00472.

1



2 IVAN ARZHANTSEV

gives rise to a separate conjugacy class of maximal commutative unipotent subgroups in
PGL(n+ 1). Moreover, one can construct commutative unipotent subgroups in PGL(n+1)
whose dimension is greater than n.

This note originates from attempts to analyze these effects. It is easy to see that any
two additive actions on a variety X are birationally equivalent or, in other words, they are
conjugate in the group of birational automorphisms of X. More precisely, if two additive
actions on X share the same open orbit U , they are conjugate in the automorphism group
Aut(U); see Proposition 1. Since the orbit U is isomorphic to an affine space, the group
Aut(U) is the affine Cremona group.

The aim of this note is to show that in the case of the projective space Pn an element that
conjugates a given additive action to the standard one has a remarkable interpretation in
terms of the Hassett-Tschinkel correspondence. Namely, any local algebra A with dimA =
n + 1 defines a so-called basic subspace V in the polynomial algebra K[x1, . . . , xn]. This
subspace can be defined in terms of exponents of elements in A; see Section 3 for details. The
subspace V is (n + 1)-dimensional, invariant under all translations (x1 + c1, . . . , xn + cn),
ci ∈ K, and generates the algebra K[x1, . . . , xn]. Moreover, equivalence classes of such
subspaces are in natural bijection with isomorphism classes of (n + 1)-dimensional local
algebras; see [14, Theorem 2.14] and [4, Theorem 1.48].

We prove that a basis 1, f1, . . . , fn of the basic subspace V defines an automorphism
x1 7→ f1, . . . , xn 7→ fn from the affine Cremona group that conjugates the additive action
corresponding to the algebra A to the standard additive action; see Theorem 1. This result
shows that one conjugacy class of Gn

a-subgroups in the affine Cremona group intersects
the subgroups of the group PGL(n + 1) in several PGL(n + 1)-conjugacy classes. Such
an intersection is called in [7] the trace on PGL(n + 1) of a conjugacy class in Aut(U);
see [7] and references therein for results on an interplay of conjugacy classes of elements in
the groups we are dealing with. Also Theorem 1 provides a new characterization of basic
subspaces in the polynomial algebra.

The author is grateful to Ivan Beldiev and Yulia Zaitseva for useful comments.

2. General results on conjugation

We denote by Aut(X) the group of regular automorphisms and by Bir(X) the group
of birational automorphisms of an irreducible algebraic variety X. Let Aut(n,K) be the
group of K-automorphisms of the polynomial algebra K[x1, . . . , xn] and Bir(n,K) be the
group of K-automorphisms of its field of fractions K(x1, . . . , xn). The group Bir(n,K) is
the Cremona group; it can be identified with Bir(An), with Bir(Pn), and with Bir(X) for
any rational variety X. In particular, the group Bir(n,K) coincides with Bir(X) for any
irreducible variety X admitting an additive action.

The group Aut(n,K) is called the affine Cremona group; it can be identified with the
group Aut(An). The group Aut(Pn) is much smaller, it is isomorphic to PGL(n+ 1).

Proposition 1. Let X be an irreducible algebraic variety. Then
(1) any two additive actions on X are conjugate in the group Bir(X);
(2) if two additive actions have the same open orbit U in X, then these actions are

conjugate in the affine Cremona group Aut(U) ⊆ Bir(X).

Proof. Let U1 and U2 be the open orbits of two given additive actions on X. Then an iso-
morphism of varieties ψ : U1 → U2 defines a birational automorphism of X, and conjugating



ON CONJUGACY OF ADDITIVE ACTIONS 3

by this automorphism, we may assume that the two additive actions have the same open
orbit U .

So it suffices to prove claim (2). By definition of an additive action, the transitive action
Gn

a × U → U is effective, so it is free. Fixing a point x0 ∈ U , the orbit map Gn
a → U ,

g 7→ g · x0 defines an isomorphism Gn
a
∼= U . Having two such isomorphisms corresponding

to the two given additive actions, we obtain two structures of the affine space on the open
subset U . The passage from one such structure to another gives rise to an element of the
group Aut(U) that conjugates the first additive action to the second one. □

Remark 1. Proposition 1 (1) reflects a more general and rather obvious fact: any two
actions of an algebraic group G with an open orbit on an irreducible variety X which have
the same generic stabilizers are birationally equivalent.

Remark 2. It follows from the description of additive actions on projective spaces that in
the case X = Pn the map ψ from the proof above is an automorphism of the variety X.
We do not know whether it is the case in general.

We finish this section with one more general observation. Let α : Gn
a × X → X be an

additive action on an irreducible variety X. Denote by β : Gn
a → Aut(X) the corresponding

injective homomorphism and consider the subgroup H = β(Gn
a) in Aut(X).

Proposition 2. The subgroup H is a maximal connected commutative algebraic subgroup
both in Aut(X) and Bir(X).

Proof. It suffices to prove the claim for the group Bir(X). Assume that G is a connected
commutative algebraic subgroup in Bir(X) that contains the subgroup H properly. Then
dimG > n. On the other hand, by the Regularization Theorem of André Weil [23] (see [16]
for a modern proof) there exist a variety Y with a regular action of G and a G-equivariant
birational map X → Y . Since the group H acts on X with an open orbit, the field of
rational invariants K(X)H coincides with K. But the group G contains H, so we have
K(X)G = K(Y )G = K. We conclude that the effective regular action G × Y → Y has an
open orbit. This contradicts the condition dimG > n = dimY . □

At the same time, for n ⩾ 2 the groups Aut(n,K) and Bir(n,K) contain commutative
unipotent algebraic subgroups of arbitrary dimensions: one can take all transformations of
the form

(x1 + f(x2), x2, . . . , xn),

where f runs through all polynomials of degree less than d for some positive integer d.

3. Hassett-Tschinkel correspondence

In [14], a bijective correspondence between additive actions on the projective space Pn

and commutative associative unital local algebras A with dimA = n+ 1 is established; see
also [15]. Let us fix a basis s1, . . . , sn in the maximal ideal m of the algebra A. Under this
correspondence, the space Pn is identified with the projectivization P(A), and an element
y = (y1, . . . , yn) ∈ Gn

a acts on P(A) by multiplication by an element exp(y1s1 + . . .+ ynsn).
A classification of local algebras up to dimension 6 is given in [14] with a reference

to [22]; see also [4, Table 1]. This classification was obtained independently in [18]; one
more approach can be found in [19]. As a result of the classification, we have the following
number of isomorphism classes of local algebras of dimension n+ 1:

n+ 1 1 2 3 4 5 6 ⩾ 7
1 1 2 4 9 25 ∞ (1)
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With any local algebra A one associates polynomials f1, . . . , fn ∈ K[x1, . . . , xn] defined be
the formula

exp(x1s1 + . . .+ xnsn) = 1 + f1(x)s1 + . . .+ fn(x)sn.

Choosing a basis s1, . . . , sn in m compatible with the filtration

m ⊇ m2 ⊇ . . . ⊇ md−1 ⊇ md = 0,

we observe that each polynomial fi has the form xi + hi(x1, . . . , xi−1). So the endomor-
phism of the algebra K[x1, . . . , xn] given by x1 → f1(x), . . . , xn → fn(x) is a triangular
automorphism.

Let us give three examples illustrating the concepts discussed above. In all cases we
realize a local algebra A as a factor of the polynomial algebra K[S1, . . . , Sm], and denote
by si the image of Si in A.

Example 1. Take a local algebra A = K[S1, . . . , Sn]/(SiSj, 1 ⩽ i, j ⩽ n). We have

exp(x1s1 + . . . xnsn) = 1 + x1s1 + . . . xnsn.

It corresponds to an additive action on Pn given by

(y1, . . . , yn) ◦ [z0 : z1 : . . . : zn] = [z0 : z1 + y1z0 : . . . : zn + ynz0].

We call this additive action standard. Here the basic polynomials are f1 = x1, . . . , fn = xn.

Example 2. Take A = K[S1]/(S
3
1) with the basis s1, s2 = s21 in m. We have

exp(x1s1 + x2s2) = 1 + x1s1 + (x2 +
x21
2
)s2.

It corresponds to an additive action on P2 given by

(y1, y2) ∗ [z0 : z1 : z2] = [z0 : z1 + y1z0 : z2 + y1z1 + (y2 +
y21
2
)z0].

In this case the basic polynomials are f1 = x1 and f2 = x2 +
x2
1

2
.

Example 3. Take a local algebra A = K[S1, S2]/(S1S2, S
3
1 − S2

2) with the basis

s1, s2, s3 = s21, s4 = s31 = s22

in m. We have

exp(x1s1 + x2s2 + x3s3 + x4s4) = 1 + x1s1 + x2s2 + (x3 +
x21
2
)s3 + (x4 + x1x3 +

x22
2

+
x31
6
)s4.

It corresponds to an additive action on P4 given by

(y1, y2, y3, y4) ∗ [z0 : z1 : z2 : z3 : z4] = [z0 : z1 + y1z0 : z2 + y2z0 :

: z3 + y1z1 + (y3 +
y21
2
)z0 : z4 + y1z3 + y2z2 + (y3 +

y21
2
)z1 + (y4 + y1y3 +

y21
2

+
y31
6
)z0].

In this case the basic polynomials are

f1 = x1, f2 = x2, f3 = x3 +
x21
2
, f4 = x4 + x1x3 +

x22
2

+
x31
6
.



ON CONJUGACY OF ADDITIVE ACTIONS 5

It is shown in [4, Lemma 1.40] that the linear span V = ⟨1, f1, . . . , fn⟩ is an (n + 1)-
dimensional subspace that generates the algebra K[x1, . . . , xn] and is invariant under all
translations (x1 + c1, . . . , xn + cn), ci ∈ K. Subspaces with these properties are called basic
subspaces of the algebra K[x1, . . . , xn]. It is proved in [14, Theorem 2.14] that (n + 1)-
dimensional local algebras are in bijection with basic subspaces in K[x1, . . . , xn]; see also
[4, Theorem 1.48]. In particular, the number of equivalence classes of basic subspaces in
K[x1, . . . , xn] is indicated in the table in (1).

4. The main result

We are ready to formulate the main result of this note.

Theorem 1. The additive action on Pn corresponding to a local algebra A is conjugate to the
standard additive action by the automorphism given by basic polynomials of the algebra A.

Proof. Let x = x1s1 + . . .+ xnsn and y = y1s1 + . . .+ ynsn be two elements of the maximal
ideal m of the algebra A. By definition of basic polynomials, we have

exp(x) = 1 + f1(x)s1 + . . .+ fn(x)sn.

Let us consider the map φ : 1+m → 1+m given by φ(1+x) = exp(x) as an automorphism
of the affine space 1 +m. The inverse map is given by φ−1(1 + x) = 1 + ln(1 + x).

Let
Gn

a × Pn → Pn, (y, [z0, . . . , zn]) 7→ y ◦ [z0 : . . . : zn]
be the standard additive action on Pn and

Gn
a × Pn → Pn, (y, [z0, . . . , zn]) 7→ y ∗ [z0 : . . . : zn]

be the additive action on Pn corresponding to the local algebra A.
Clearly, an additive action on P(A) is uniquely determined by its restriction to the in-

variant affine chart 1 +m, which is the open orbit of this action.
So the claim of Theorem 1 can be reformulated in the following form.

Lemma 1. In the notation introduced above, we have

φ(y ◦ (1 + x)) = y ∗ φ(1 + x)

for all y ∈ Gn
a and x ∈ m.

Proof. By definition of the standard additive action, we have y ◦ (1 + x) = 1 + x + y. So,
we obtain

φ(y ◦ (1 + x)) = φ(1 + x+ y) = exp(x+ y) = exp(y) exp(x) = y ∗ φ(1 + x).

□

The proof of Theorem 1 is completed. □

Remark 3. It is easy to see that the group A× of invertible elements of a local algebra A
with dimA = n+ 1 is isomorphic to Gm ×Gn

a . At the same time, for non-isomorphic local
algebras (A,+, ◦) and (A′,+, ∗) we can not establish a polynomial bijection φ : A → A′

such that φ(a ◦ b) = φ(a) ∗ φ(b) for all a, b ∈ A. Indeed, it is proved in [1, Lemma 7] that
for any two non-isomorphic finite-dimensional associative (not necessarily commutative)
unital algebras A and A′ their multiplicative monoids (A, ◦) and (A, ∗) are not isomorphic
as affine algebraic monoids.



6 IVAN ARZHANTSEV

Summing up, Theorem 1 shows that one Aut(U)-conjugacy class of Gn
a-subgroups in

Bir(Pn) corresponding to additive actions on Pn intersects the set of subgroups of the group
PGL(n+ 1) in several PGL(n+ 1)-conjugacy classes, and the number of such classes is
indicated in the table in (1).
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Norm. Supér. 3 (1970), 507-588

[9] Rostislav Devyatov. Unipotent commutative group actions on flag varieties and nilpotent multiplica-
tions. Transform. Groups 20 (2015), no. 1, 21-64

[10] Adrien Dubouloz, Takashi Kishimoto, and Pedro Montero. Del Pezzo quintics as equivariant compact-
ifications of vector groups. arXiv:2209.04152, 18 pages

[11] Sergey Dzhunusov. Additive actions on complete toric surfaces. Internat. J. Algebra Comput. 31 (2021),
no. 1, 19-35

[12] Sergey Dzhunusov. On uniqueness of additive actions on complete toric varieties. J. Algebra 609 (2022),
642-656

[13] Baohua Fu and Jun-Muk Hwang. Uniqueness of equivariant compactifications of Cn by a Fano manifold
of Picard number 1. Math. Res. Lett. 21 (2014), no. 1, 121-125

[14] Brendan Hassett and Yuri Tschinkel. Geometry of equivariant compactifications of Gn
a . Int. Math. Res.

Not. IMRN 1999 (1999), no. 22, 1211-1230
[15] Friedrich Knop and Herbert Lange. Commutative algebraic groups and intersections of quadrics. Math.

Ann. 267 (1984), no. 4, 555-571
[16] Hanspeter Kraft. Regularization of rational group actions. arXiv:1808.08729,
[17] Yingqi Liu. Additive actions on hyperquadrics of corank two. Electron. Res. Arch. 30 (2022), no. 1,

1-34
[18] Guerino Mazzola. Generic finite schemes and Hochschild cocycles. Comment. Math. Helv. 55 (1980),

267-293
[19] Bjorn Poonen. Isomorphism types of commutative algebras of finite rank over an algebraically closed

field. Computational Arithmetic Geometry, 111-120, Contemp. Math. 463, Amer. Math. Soc., Provi-
dence, RI, 2008

[20] Anton Shafarevich. Additive actions on toric projective hypersurfaces. Results Math. 76 (2021), no. 3,
art. 145

[21] Elena Sharoiko. Hassett-Tschinkel correspondence and automorphisms of a quadric. Sb. Math. 200
(2009), no. 11, 1715-1729

[22] Dmitri Suprunenko and Regina Tyshkevich. Commutative Matrices. Academic Press, New York, 1968
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