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Abstract 

Once a scoring model has been developed for use in assessing a borrower's credit risk, under the internal ratings-based (IRB) 
approach, it must be calibrated to a real-world measure of default frequency. The conservativeness of the calibration is tightly 
controlled, if it is not violated in the allowed number of digits of the rating scale, only then the model is authorized for use. If 
violated, the calibration probability of default must be raised, placing additional strain on the bank's capital and reserves. In the 
presented paper, two new methods to improve the calibration accuracy are proposed. The methods have been tested in practice and 
provide significantly positive results in certain segments of the loan portfolio. 
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1. Introduction  

Supposed there is a scoring model (for example, constructs by methods [9]) for determining the rating score 𝑠𝑠 such 
that: 

• the central tendency (𝑅𝑅𝐶𝐶) of the default rate was statistically calculated, 
• the Gini coefficient (𝐴𝐴𝑅𝑅) and also second-order accuracy metrics as 𝐿𝐿𝐴𝐴𝑅𝑅 and 𝑅𝑅𝐴𝐴𝑅𝑅 [9] have been measured 

on default and non-default samples. 

There is required to construct a calibration function 𝑃𝑃𝑃𝑃(𝑠𝑠, 𝐴𝐴) = 𝑝𝑝𝐴𝐴(𝑠𝑠) with corresponding to 𝑅𝑅𝐶𝐶 and accuracy metrics, 
where 𝐴𝐴 is the required vector of parameters. There are many approaches to solving the problem of calibration function 
selection, the best known of which are described in the sources [12],[13]. There are several approaches in the literature 
that are quite difficult to implement in practice [1],[5].  We propose two new approaches for selecting a calibration 
function that have proven themselves in practice. 
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Let there are 𝑛𝑛 measurements of the score 𝑥𝑥𝑖𝑖 for 𝑖𝑖 = 1, … , 𝑛𝑛 representative to the full calibration sample. 
𝑃𝑃𝑃𝑃, first and second-order accuracy metrics are calculated: 

𝑃𝑃𝑘𝑘(𝐴𝐴) = ∑  𝑝𝑝𝐴𝐴(𝑥𝑥𝑖𝑖)𝑘𝑘
𝑖𝑖=1 ,𝑃𝑃�̂�𝑃(𝐴𝐴) = 𝐷𝐷𝑛𝑛(�⃗�𝐴)

𝑛𝑛 , 𝐴𝐴�̂�𝐴(𝐴𝐴) = 2
(𝑛𝑛−𝐷𝐷𝑛𝑛(�⃗�𝐴))∙𝐷𝐷𝑛𝑛(�⃗�𝐴)

∙ ∑ 𝑃𝑃𝑘𝑘(𝐴𝐴) ∙ (1 −  𝑝𝑝𝐴𝐴(𝑥𝑥𝑘𝑘)) − 1𝑛𝑛
𝑘𝑘=1 , 

𝐿𝐿𝐴𝐴�̂�𝐴(𝐴𝐴) = 2
𝑛𝑛−𝐷𝐷𝑛𝑛(�⃗�𝐴) ∙ ∑ 1− 𝑝𝑝𝐴𝐴(𝑥𝑥𝑘𝑘)

(𝑘𝑘−𝐷𝐷𝑘𝑘(�⃗�𝐴))∙𝐷𝐷𝑘𝑘(�⃗�𝐴)
∑ 𝑃𝑃𝑠𝑠(𝐴𝐴) ∙ (1 −  𝑝𝑝𝐴𝐴(𝑥𝑥𝑠𝑠)) − 1𝑘𝑘

𝑠𝑠=1
𝑛𝑛
𝑘𝑘=1 ,  

𝐴𝐴𝐴𝐴�̂�𝐴(𝐴𝐴) = 1 − 2
𝐷𝐷𝑛𝑛(𝐴𝐴) ∙ ∑ (𝑛𝑛

𝑘𝑘=1 𝑃𝑃𝑛𝑛(𝐴𝐴) − 𝑃𝑃𝑘𝑘(𝐴𝐴)) ∙ (1 − 𝑝𝑝𝐴𝐴(𝑥𝑥𝑘𝑘)) ∙ ∑ 𝑝𝑝𝐴𝐴(𝑥𝑥𝑠𝑠)
(𝑛𝑛−𝐷𝐷𝑛𝑛(𝐴𝐴)−(𝑠𝑠−𝐷𝐷𝑠𝑠(𝐴𝐴))+1

2(1− 𝑝𝑝𝐴𝐴(𝑥𝑥𝑠𝑠)))∙((𝐷𝐷𝑛𝑛(𝐴𝐴)−𝐷𝐷𝑠𝑠(𝐴𝐴))+1
2𝑝𝑝𝐴𝐴(𝑥𝑥𝑠𝑠))

𝑘𝑘
𝑠𝑠=1 . 

(1) 

A logistic calibration is determined using the following function: 
1

1 + 𝑒𝑒𝑠𝑠∙𝐴𝐴+𝐵𝐵 =: 𝑃𝑃𝑃𝑃(𝑠𝑠, 𝐴𝐴, 𝐵𝐵), 
where 𝐴𝐴 = 𝐴𝐴, 𝐵𝐵 are parameters of the calibration selected based on the equalities: 

𝑃𝑃�̂�𝑃(𝐴𝐴, 𝐵𝐵) = 𝐶𝐶𝐶𝐶,    𝐴𝐴�̂�𝐴(𝐴𝐴, 𝐵𝐵) = 𝐴𝐴𝐴𝐴, 
where 𝐶𝐶𝐶𝐶  and 𝐴𝐴𝐴𝐴  are the central tendency and the Gini index respectively which the model is configured, 
𝑃𝑃�̂�𝑃(𝐴𝐴, 𝐵𝐵), 𝐴𝐴�̂�𝐴(𝐴𝐴, 𝐵𝐵) the formula (1). 

In practice, to find the calibration parameters (𝐴𝐴 and 𝐵𝐵), it is enough to minimize the value of the following 
functional: 

𝐹𝐹(𝐴𝐴, 𝐵𝐵) = (𝑃𝑃�̂�𝑃(𝐴𝐴, 𝐵𝐵) − 𝐶𝐶𝐶𝐶)2

𝜎𝜎𝑃𝑃𝐷𝐷
2 + (𝐴𝐴�̂�𝐴(𝐴𝐴, 𝐵𝐵) − 𝐴𝐴𝐴𝐴)2

𝜎𝜎𝐴𝐴𝐴𝐴
2 → min

𝐴𝐴,𝐵𝐵
𝐹𝐹, 

where 𝜎𝜎𝑃𝑃𝐷𝐷 and 𝜎𝜎𝐴𝐴𝐴𝐴 [4] are statistical measurement errors (standard deviations) of the probability of default and the 
Gini index  respectively, 

𝜎𝜎𝑃𝑃𝐷𝐷 ≔ √𝐶𝐶𝐶𝐶∙(1−𝐶𝐶𝐶𝐶)
𝑛𝑛 , 𝜎𝜎𝐴𝐴𝐴𝐴 ≔ √1−𝐴𝐴𝐴𝐴2+(𝑛𝑛∙𝐶𝐶𝐶𝐶−1)∙(1−𝐴𝐴𝐴𝐴)2∙(1+𝐴𝐴𝐴𝐴)

3−𝐴𝐴𝐴𝐴 +(𝑛𝑛∙(1−𝐶𝐶𝐶𝐶)−1)∙(1+𝐴𝐴𝐴𝐴)2∙(1−𝐴𝐴𝐴𝐴)
3+𝐴𝐴𝐴𝐴

𝑛𝑛2∙𝐶𝐶𝐶𝐶∙(1−𝐶𝐶𝐶𝐶)   (2) 

 
𝐴𝐴0 and 𝐵𝐵0 are selected as the initial approximation [7] of the minimization problem 𝐹𝐹(𝐴𝐴, 𝐵𝐵): 

�̑�𝑎 = 𝐴𝐴𝐴𝐴√𝜋𝜋 ⋅ 𝑒𝑒𝑥𝑥𝑝𝑝 (𝐴𝐴𝐴𝐴2𝜋𝜋
12 ⋅ (1 + 6 ⋅ 𝑃𝑃𝑃𝑃 ⋅ 𝑒𝑒𝑥𝑥𝑝𝑝 (− 𝐴𝐴𝐴𝐴2𝜋𝜋

2 ))) , �̑�𝑏 = − 𝑙𝑙𝑛𝑛 𝑃𝑃𝑃𝑃 + �̑�𝑎2

2 − 𝑃𝑃𝑃𝑃 ⋅ 𝑒𝑒𝑥𝑥𝑝𝑝(�̑�𝑎2), 
(3) 

𝐴𝐴0 = �̑�𝑎
𝑑𝑑𝑠𝑠 , 𝐵𝐵0 = �̑�𝑏 − �̑�𝑎

⟨𝑠𝑠⟩
𝑑𝑑𝑠𝑠 , 

where 〈𝑠𝑠〉  and 𝑑𝑑𝑠𝑠  are mean and standard deviation of scores 𝑠𝑠  of the sample 𝑥𝑥𝑖𝑖, 𝑖𝑖 = 1, … , 𝑛𝑛 . The algorithm for 
minimizing the functional 𝐹𝐹(𝐴𝐴, 𝐵𝐵) stops working when the value 𝑭𝑭(𝑨𝑨, 𝑩𝑩) < 𝟏𝟏 is reached, which guarantees that the 
estimating error of the arguments is less than the statistical “one sigma”. 

2.  Binomial test analytics of logistics calibration 

To check the rating scale (calibration), a mandatory binomial test [2] is carried out on the entire sample to 
validate the calibration. The binomial test is applied for each element of the researched section and validates the 
hypothesis 𝐻𝐻0 about the assessment of the explained variable on this element of the researched section 𝐻𝐻0: the target 
variable on the considered element of the researched section is underestimated. Alternative hypothesis 𝐻𝐻1 for a one-
sided test validates the alternative statement – at the given confidence level is impossible to state that the variable is 
underestimated. 
The null hypothesis is rejected at the given significance level 𝛼𝛼, if the number of default samples 𝑘𝑘 on the considered 
element of the researched section is less than or equal to the critical value 𝑘𝑘∗, which is defined below: 

𝑘𝑘𝑗𝑗
∗ ≔ 𝑚𝑚𝑖𝑖𝑛𝑛 {𝑘𝑘 |∑ (𝑁𝑁𝑗𝑗

𝑖𝑖 )
𝑁𝑁𝑗𝑗

𝑖𝑖=𝑘𝑘
∙ 𝑃𝑃𝑃𝑃𝑗𝑗

𝑖𝑖 ∙ (1 − 𝑃𝑃𝑃𝑃𝑗𝑗)𝑁𝑁𝑗𝑗−𝑖𝑖 ≤ 1 − 𝛼𝛼}, 

where 𝑁𝑁𝑗𝑗 is number of samples in j-th rank of the rating scale. The critical value 𝑘𝑘∗ can be approximated using the 
central limit theorem: 𝑘𝑘𝑗𝑗

∗ ≔ 𝑁𝑁𝑗𝑗 ∙ 𝑃𝑃𝑃𝑃𝑗𝑗 + Φ−1(𝛼𝛼)√𝑁𝑁𝑗𝑗 ∙ 𝑃𝑃𝑃𝑃𝑗𝑗 ∙ (1 − 𝑃𝑃𝑃𝑃𝑗𝑗),  where Φ−1  is standard normal distribution. 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2024.08.175&domain=pdf
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(𝑛𝑛−𝐷𝐷𝑛𝑛(�⃗�𝐴))∙𝐷𝐷𝑛𝑛(�⃗�𝐴)

∙ ∑ 𝑃𝑃𝑘𝑘(𝐴𝐴) ∙ (1 −  𝑝𝑝𝐴𝐴(𝑥𝑥𝑘𝑘)) − 1𝑛𝑛
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𝐿𝐿𝐴𝐴�̂�𝐴(𝐴𝐴) = 2
𝑛𝑛−𝐷𝐷𝑛𝑛(�⃗�𝐴) ∙ ∑ 1− 𝑝𝑝𝐴𝐴(𝑥𝑥𝑘𝑘)

(𝑘𝑘−𝐷𝐷𝑘𝑘(�⃗�𝐴))∙𝐷𝐷𝑘𝑘(�⃗�𝐴)
∑ 𝑃𝑃𝑠𝑠(𝐴𝐴) ∙ (1 −  𝑝𝑝𝐴𝐴(𝑥𝑥𝑠𝑠)) − 1𝑘𝑘

𝑠𝑠=1
𝑛𝑛
𝑘𝑘=1 ,  

𝐴𝐴𝐴𝐴�̂�𝐴(𝐴𝐴) = 1 − 2
𝐷𝐷𝑛𝑛(𝐴𝐴) ∙ ∑ (𝑛𝑛

𝑘𝑘=1 𝑃𝑃𝑛𝑛(𝐴𝐴) − 𝑃𝑃𝑘𝑘(𝐴𝐴)) ∙ (1 − 𝑝𝑝𝐴𝐴(𝑥𝑥𝑘𝑘)) ∙ ∑ 𝑝𝑝𝐴𝐴(𝑥𝑥𝑠𝑠)
(𝑛𝑛−𝐷𝐷𝑛𝑛(𝐴𝐴)−(𝑠𝑠−𝐷𝐷𝑠𝑠(𝐴𝐴))+1

2(1− 𝑝𝑝𝐴𝐴(𝑥𝑥𝑠𝑠)))∙((𝐷𝐷𝑛𝑛(𝐴𝐴)−𝐷𝐷𝑠𝑠(𝐴𝐴))+1
2𝑝𝑝𝐴𝐴(𝑥𝑥𝑠𝑠))

𝑘𝑘
𝑠𝑠=1 . 

(1) 

A logistic calibration is determined using the following function: 
1

1 + 𝑒𝑒𝑠𝑠∙𝐴𝐴+𝐵𝐵 =: 𝑃𝑃𝑃𝑃(𝑠𝑠, 𝐴𝐴, 𝐵𝐵), 
where 𝐴𝐴 = 𝐴𝐴, 𝐵𝐵 are parameters of the calibration selected based on the equalities: 

𝑃𝑃�̂�𝑃(𝐴𝐴, 𝐵𝐵) = 𝐶𝐶𝐶𝐶,    𝐴𝐴�̂�𝐴(𝐴𝐴, 𝐵𝐵) = 𝐴𝐴𝐴𝐴, 
where 𝐶𝐶𝐶𝐶  and 𝐴𝐴𝐴𝐴  are the central tendency and the Gini index respectively which the model is configured, 
𝑃𝑃�̂�𝑃(𝐴𝐴, 𝐵𝐵), 𝐴𝐴�̂�𝐴(𝐴𝐴, 𝐵𝐵) the formula (1). 

In practice, to find the calibration parameters (𝐴𝐴 and 𝐵𝐵), it is enough to minimize the value of the following 
functional: 

𝐹𝐹(𝐴𝐴, 𝐵𝐵) = (𝑃𝑃�̂�𝑃(𝐴𝐴, 𝐵𝐵) − 𝐶𝐶𝐶𝐶)2

𝜎𝜎𝑃𝑃𝐷𝐷
2 + (𝐴𝐴�̂�𝐴(𝐴𝐴, 𝐵𝐵) − 𝐴𝐴𝐴𝐴)2

𝜎𝜎𝐴𝐴𝐴𝐴
2 → min

𝐴𝐴,𝐵𝐵
𝐹𝐹, 

where 𝜎𝜎𝑃𝑃𝐷𝐷 and 𝜎𝜎𝐴𝐴𝐴𝐴 [4] are statistical measurement errors (standard deviations) of the probability of default and the 
Gini index  respectively, 

𝜎𝜎𝑃𝑃𝐷𝐷 ≔ √𝐶𝐶𝐶𝐶∙(1−𝐶𝐶𝐶𝐶)
𝑛𝑛 , 𝜎𝜎𝐴𝐴𝐴𝐴 ≔ √1−𝐴𝐴𝐴𝐴2+(𝑛𝑛∙𝐶𝐶𝐶𝐶−1)∙(1−𝐴𝐴𝐴𝐴)2∙(1+𝐴𝐴𝐴𝐴)

3−𝐴𝐴𝐴𝐴 +(𝑛𝑛∙(1−𝐶𝐶𝐶𝐶)−1)∙(1+𝐴𝐴𝐴𝐴)2∙(1−𝐴𝐴𝐴𝐴)
3+𝐴𝐴𝐴𝐴

𝑛𝑛2∙𝐶𝐶𝐶𝐶∙(1−𝐶𝐶𝐶𝐶)   (2) 

 
𝐴𝐴0 and 𝐵𝐵0 are selected as the initial approximation [7] of the minimization problem 𝐹𝐹(𝐴𝐴, 𝐵𝐵): 

�̑�𝑎 = 𝐴𝐴𝐴𝐴√𝜋𝜋 ⋅ 𝑒𝑒𝑥𝑥𝑝𝑝 (𝐴𝐴𝐴𝐴2𝜋𝜋
12 ⋅ (1 + 6 ⋅ 𝑃𝑃𝑃𝑃 ⋅ 𝑒𝑒𝑥𝑥𝑝𝑝 (− 𝐴𝐴𝐴𝐴2𝜋𝜋

2 ))) , �̑�𝑏 = − 𝑙𝑙𝑛𝑛 𝑃𝑃𝑃𝑃 + �̑�𝑎2

2 − 𝑃𝑃𝑃𝑃 ⋅ 𝑒𝑒𝑥𝑥𝑝𝑝(�̑�𝑎2), 
(3) 

𝐴𝐴0 = �̑�𝑎
𝑑𝑑𝑠𝑠 , 𝐵𝐵0 = �̑�𝑏 − �̑�𝑎

⟨𝑠𝑠⟩
𝑑𝑑𝑠𝑠 , 

where 〈𝑠𝑠〉  and 𝑑𝑑𝑠𝑠  are mean and standard deviation of scores 𝑠𝑠  of the sample 𝑥𝑥𝑖𝑖, 𝑖𝑖 = 1, … , 𝑛𝑛 . The algorithm for 
minimizing the functional 𝐹𝐹(𝐴𝐴, 𝐵𝐵) stops working when the value 𝑭𝑭(𝑨𝑨, 𝑩𝑩) < 𝟏𝟏 is reached, which guarantees that the 
estimating error of the arguments is less than the statistical “one sigma”. 

2.  Binomial test analytics of logistics calibration 

To check the rating scale (calibration), a mandatory binomial test [2] is carried out on the entire sample to 
validate the calibration. The binomial test is applied for each element of the researched section and validates the 
hypothesis 𝐻𝐻0 about the assessment of the explained variable on this element of the researched section 𝐻𝐻0: the target 
variable on the considered element of the researched section is underestimated. Alternative hypothesis 𝐻𝐻1 for a one-
sided test validates the alternative statement – at the given confidence level is impossible to state that the variable is 
underestimated. 
The null hypothesis is rejected at the given significance level 𝛼𝛼, if the number of default samples 𝑘𝑘 on the considered 
element of the researched section is less than or equal to the critical value 𝑘𝑘∗, which is defined below: 

𝑘𝑘𝑗𝑗
∗ ≔ 𝑚𝑚𝑖𝑖𝑛𝑛 {𝑘𝑘 |∑ (𝑁𝑁𝑗𝑗

𝑖𝑖 )
𝑁𝑁𝑗𝑗

𝑖𝑖=𝑘𝑘
∙ 𝑃𝑃𝑃𝑃𝑗𝑗

𝑖𝑖 ∙ (1 − 𝑃𝑃𝑃𝑃𝑗𝑗)𝑁𝑁𝑗𝑗−𝑖𝑖 ≤ 1 − 𝛼𝛼}, 

where 𝑁𝑁𝑗𝑗 is number of samples in j-th rank of the rating scale. The critical value 𝑘𝑘∗ can be approximated using the 
central limit theorem: 𝑘𝑘𝑗𝑗

∗ ≔ 𝑁𝑁𝑗𝑗 ∙ 𝑃𝑃𝑃𝑃𝑗𝑗 + Φ−1(𝛼𝛼)√𝑁𝑁𝑗𝑗 ∙ 𝑃𝑃𝑃𝑃𝑗𝑗 ∙ (1 − 𝑃𝑃𝑃𝑃𝑗𝑗),  where Φ−1  is standard normal distribution. 
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The critical value of the number of defaulted borrowers (𝑘𝑘∗) in each rank of the rating scale is calculated for the 
significance level 𝛼𝛼  (95% and 99%). The obtained values (𝑘𝑘∗ ) for the significance level 𝛼𝛼  (95% and 99%) are 
compared with the number of defaulted borrowers (𝑘𝑘) for each rank of the rating scale. Moreover, if 𝑘𝑘 ≤ 𝑘𝑘∗ (𝛼𝛼 =
95%) then the rank is in “green zone”, if 𝑘𝑘 >  𝑘𝑘∗ (𝛼𝛼 = 99%) then the rank is in “red zone” (hypothesis 𝐻𝐻0 about 
underestimation is correct at the significance level 99%), otherwise the rank is in “yellow zone”. 

Practical criteria for conservatism that determine the resulting zone are given in Table 1. 

Table 1. Criteria for estimating the rating scale 

Deviation of forecast 𝑃𝑃𝑃𝑃  from 𝑃𝑃𝐷𝐷  by 
ranks of the rating scale for corporate and 
retail borrowers 

Red zone Yellow zone Green zone 
3 and more ranks are in 
“red zone” or 5 and more 
ranks are in “yellow zone” 
or “red zone” 

Other cases 

2 and less ranks are in 
“yellow zone” and 
other ranks are in 
“green zone” 

 
To find for calibration parameters 𝐴𝐴 and 𝐵𝐵 that satisfy the binomial test, it makes sense to resort to visual 

analysis on the [𝑃𝑃𝑃𝑃: 𝐴𝐴𝐷𝐷] plane, since the transformation from 𝐴𝐴 and 𝐵𝐵 to 𝑃𝑃𝑃𝑃 and 𝐴𝐴𝐷𝐷 is one-to-one, but at the same 
time the calculated values of 𝑃𝑃𝑃𝑃 and 𝐴𝐴𝐷𝐷 (1) have a clear interpretation. To determine the correct 𝑃𝑃𝑃𝑃 level to satisfy 
the binomial test for conservativeness, the entire [𝑃𝑃𝑃𝑃: 𝐴𝐴𝐷𝐷]  plane can be colored based on the test color at the 
appropriate 𝑃𝑃𝑃𝑃 and 𝐴𝐴𝐷𝐷 values. This will allow the analyst to visually determine the appropriate 𝑃𝑃𝑃𝑃 and 𝐴𝐴𝐷𝐷 values 
based on the requirements being considered (satisfying binomial or other test, as well as the set of calibration 
requirements). It is possible to determine the minimum 𝑃𝑃𝑃𝑃 value at a given 𝐴𝐴𝐷𝐷 level for which a requirement is 
satisfied, such as satisfying a binomial test for conservativeness with “green zone” or “yellow”. Figure 1 provides 
examples of color-coded planes for the binomial test of conservatism for consumer and mortgage loans segments 
lending models for logistic calibration: 

 

Figure 1. Coloring the [𝑃𝑃𝑃𝑃: 𝐴𝐴𝐷𝐷] plane by the color of the binomial test for conservatism for the scoring model in logistic calibration (left: for 
consumer loans segment, right: mortgage loans segment). 

In practice, it is not necessary to color the entire plane, but rather some area of interest is sufficient, which can be 
realized if we consider the parallelogram �̂�𝑎 = 0, … ,6, �̂�𝑏 = 0, … ,10 in terms of formula (3), the coloring intensity or 
steps along the axes should be chosen based on the computing power and time available for calculation, for example, 
a uniform step equal to one hundredth/thousandth of a segment along each axis. 

Practical examples explaining necessary to move to precision calibration: logistic calibration, statistical test 
is binomial test for conservatism, number of ranks of rating scale is “20+1”. The results are shown in Table 2. 

Table 2. Comparison of values of probability of default (Min 𝑃𝑃𝑃𝑃) and target 𝐶𝐶𝐶𝐶 acceptable for passing the binomial test. 

Model Number of 
samples AR CT Min 𝑃𝑃𝑃𝑃  with 

“green zone” 
Min 𝑃𝑃𝑃𝑃  with 
“yellow zone” 

Consumer loans segment 23 231 154 80,4% 4,76% 6,14% 5,79% 
Mortgage loans segment 2 425 852 89,5% 0,48% 3,46% 2,95% 

It can be seen that logistic calibration gives overestimated probability of default relative to 𝐶𝐶𝐶𝐶 in the calibration model 
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that satisfies the test passing criteria required for validation (comparative analysis). This will lead to increased 
capital/reserve requirements in the IRB. 
Clearly, higher accuracy calibration models need to be explored in these segments. 

3. Cubic logistic calibration 

A cubic logistic calibration is a refinement of the usual logistic calibration by increasing the order of the 
polynomial in the argument of the logistic function. This calibration is applied using the function: 

1
1 + 𝑒𝑒𝑎𝑎0+𝑎𝑎1∙𝑠𝑠+𝑎𝑎2∙𝑠𝑠2+𝑎𝑎3∙𝑠𝑠3 =: 𝑃𝑃𝑃𝑃(𝑠𝑠, 𝐴𝐴), 

where 𝐴𝐴 ≔ (𝑎𝑎0, 𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3) are parameters of the calibration selected based on the following inequalities: 
|𝑃𝑃�̂�𝑃(𝐴𝐴) − 𝐶𝐶𝐶𝐶| < 𝜎𝜎𝑃𝑃𝑃𝑃,    |𝐴𝐴�̂�𝐴(𝐴𝐴) − 𝐴𝐴𝐴𝐴| < 𝜎𝜎𝐴𝐴𝐴𝐴, |𝐿𝐿𝐴𝐴�̂�𝐴(𝐴𝐴) − 𝐿𝐿𝐴𝐴𝐴𝐴| < 𝜎𝜎𝐴𝐴𝐴𝐴,    |𝐴𝐴𝐴𝐴�̂�𝐴(𝐴𝐴) − 𝐴𝐴𝐴𝐴𝐴𝐴| < 𝜎𝜎𝐴𝐴𝐴𝐴, 
where 𝐶𝐶𝐶𝐶 is the central tendency for calibration of model, 𝐴𝐴𝐴𝐴, 𝐿𝐿𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴𝐴𝐴 are the Gini index, left and right integral 
Gini indices (second-order accuracy metrics) respectively. 𝜎𝜎𝑃𝑃𝑃𝑃 and 𝜎𝜎𝐴𝐴𝐴𝐴 are estimated errors (standard deviations) of 
the probability of default and the Gini index respectively, calculated using formula (2), 
𝑃𝑃�̂�𝑃(𝐴𝐴), 𝐴𝐴�̂�𝐴(𝐴𝐴), 𝐿𝐿𝐴𝐴�̂�𝐴(𝐴𝐴), 𝐴𝐴𝐴𝐴�̂�𝐴(𝐴𝐴) are defined in formula (1). 
To find the calibration parameters (𝐴𝐴), it is enough to minimize the value of the following functional: 

𝐹𝐹(𝐴𝐴) = (𝑃𝑃�̂�𝑃(𝐴𝐴) − 𝐶𝐶𝐶𝐶)2

𝜎𝜎𝑃𝑃𝑃𝑃
2 + (𝐴𝐴�̂�𝐴(𝐴𝐴) − 𝐴𝐴𝐴𝐴)2

𝜎𝜎𝐴𝐴𝐴𝐴
2 + (𝐿𝐿𝐴𝐴�̂�𝐴(𝐴𝐴) − 𝐿𝐿𝐴𝐴𝐴𝐴)2

𝜎𝜎𝐴𝐴𝐴𝐴
2 + (𝐴𝐴𝐴𝐴�̂�𝐴(𝐴𝐴) − 𝐴𝐴𝐴𝐴𝐴𝐴)2

𝜎𝜎𝐴𝐴𝐴𝐴
2 → min

�⃗�𝐴
𝐹𝐹. 

There should select 𝐴𝐴 ≔ (𝐵𝐵0, 𝐴𝐴0, 0,0) (𝐴𝐴0 and 𝐵𝐵0 from formula (3)) as an initial approximation. There should stop 
the optimization process, just like for first-order logistic calibration, when F(A⃗⃗⃗) < 1 is reached. 

After obtaining a solution, it must be checked to satisfy the obvious monotonicity requirement 𝑃𝑃𝑃𝑃: 𝑝𝑝𝐴𝐴(𝑥𝑥)′ ≤
0, whence follows the condition for 𝑓𝑓(𝐴𝐴, 𝑥𝑥) = 𝑎𝑎1 + 2𝑎𝑎2 ∙ 𝑥𝑥 + 3𝑎𝑎3 ∙ 𝑥𝑥2 ≥ 0 which is equivalent to the conditions: 
𝑎𝑎3 ≥ 0, 𝑎𝑎2

2 ≤ 3𝑎𝑎1𝑎𝑎3. 
The main failure of the cubic logistic calibration, as well as first order (3), is a significant increase 𝑃𝑃𝑃𝑃 (up to 

one) for low rating points and a decrease (down to zero) for high ones. Not all scoring models have these discrimination 
properties as determined by their 𝐴𝐴𝑅𝑅𝐶𝐶 curve. This leads, for example, to high expectations of a high ranking for high 
scores, which negatively affects the results of the binomial test of conservatism. The three-segment hyperbolic 
calibration model does not have this failure. 

4. Three-segment hyperbolic calibration  

First of all, accuracy metrics 𝐴𝐴𝐴𝐴, 𝐿𝐿𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴𝐴𝐴 (1) are calculated for the scoring model. After, its trapezoidal 
approximation is constructed and parameters 𝑎𝑎 and 𝑏𝑏 are calculated for this trapezoid (Appendix 1). Then, you need 
to split the model's 𝐴𝐴𝑅𝑅𝐶𝐶 curve into three segments: 1.(0,0) − (𝑎𝑎, 𝐴𝐴𝑎𝑎), 2. (𝑎𝑎, 𝐴𝐴𝑎𝑎) − (1 − 𝑏𝑏, 𝐴𝐴𝑏𝑏), 3.(1 − 𝑏𝑏, 𝐴𝐴𝑏𝑏) − (1,1), 

where  (𝐴𝐴𝑎𝑎 ≔ 𝐴𝐴𝑅𝑅𝐶𝐶(𝑎𝑎) is the corresponding value of the ordinate axis 
for the value 𝑎𝑎 of the abscissa axis, such that point (𝑎𝑎, 𝐴𝐴𝑎𝑎) belongs to 
the 𝐴𝐴𝑅𝑅𝐶𝐶  curve, 𝐴𝐴𝑏𝑏 ≔ 𝐴𝐴𝑅𝑅𝐶𝐶(1 − 𝑏𝑏)   and similarly point (1 − 𝑏𝑏, 𝐴𝐴𝑏𝑏) 
belongs to the 𝐴𝐴𝑅𝑅𝐶𝐶 curve) and for each segment there is necessary to 
calculate the Gini indices (the segment is scaled by the square 
([0,1]: [0,1]).  

Figure 2 presents the geometric interpretation of the segments, 
the areas relative to which rectangles are presented to obtain the 
corresponding Gini indices for the segments (the Gini index will be 

equal to the ratio of the corresponding 
blue area to the half-area of the 
corresponding red rectangle). 

𝑆𝑆𝑛𝑛 and �̂�𝑆𝑑𝑑 are scores of non-default and default samples respectively for 𝑛𝑛 = 1, … , 𝐺𝐺 and 𝑑𝑑 = 1, … , 𝐵𝐵. 

Figure 2. An example of a three-segment partition of an 𝐴𝐴𝑅𝑅𝐶𝐶 curve. The blue background shows 
the areas of local 𝐴𝐴𝑅𝑅𝐶𝐶 curves that determine the local Gini indices. 
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The critical value of the number of defaulted borrowers (𝑘𝑘∗) in each rank of the rating scale is calculated for the 
significance level 𝛼𝛼  (95% and 99%). The obtained values (𝑘𝑘∗ ) for the significance level 𝛼𝛼  (95% and 99%) are 
compared with the number of defaulted borrowers (𝑘𝑘) for each rank of the rating scale. Moreover, if 𝑘𝑘 ≤ 𝑘𝑘∗ (𝛼𝛼 =
95%) then the rank is in “green zone”, if 𝑘𝑘 >  𝑘𝑘∗ (𝛼𝛼 = 99%) then the rank is in “red zone” (hypothesis 𝐻𝐻0 about 
underestimation is correct at the significance level 99%), otherwise the rank is in “yellow zone”. 

Practical criteria for conservatism that determine the resulting zone are given in Table 1. 

Table 1. Criteria for estimating the rating scale 

Deviation of forecast 𝑃𝑃𝑃𝑃  from 𝑃𝑃𝐷𝐷  by 
ranks of the rating scale for corporate and 
retail borrowers 

Red zone Yellow zone Green zone 
3 and more ranks are in 
“red zone” or 5 and more 
ranks are in “yellow zone” 
or “red zone” 

Other cases 

2 and less ranks are in 
“yellow zone” and 
other ranks are in 
“green zone” 

 
To find for calibration parameters 𝐴𝐴 and 𝐵𝐵 that satisfy the binomial test, it makes sense to resort to visual 

analysis on the [𝑃𝑃𝑃𝑃: 𝐴𝐴𝐷𝐷] plane, since the transformation from 𝐴𝐴 and 𝐵𝐵 to 𝑃𝑃𝑃𝑃 and 𝐴𝐴𝐷𝐷 is one-to-one, but at the same 
time the calculated values of 𝑃𝑃𝑃𝑃 and 𝐴𝐴𝐷𝐷 (1) have a clear interpretation. To determine the correct 𝑃𝑃𝑃𝑃 level to satisfy 
the binomial test for conservativeness, the entire [𝑃𝑃𝑃𝑃: 𝐴𝐴𝐷𝐷]  plane can be colored based on the test color at the 
appropriate 𝑃𝑃𝑃𝑃 and 𝐴𝐴𝐷𝐷 values. This will allow the analyst to visually determine the appropriate 𝑃𝑃𝑃𝑃 and 𝐴𝐴𝐷𝐷 values 
based on the requirements being considered (satisfying binomial or other test, as well as the set of calibration 
requirements). It is possible to determine the minimum 𝑃𝑃𝑃𝑃 value at a given 𝐴𝐴𝐷𝐷 level for which a requirement is 
satisfied, such as satisfying a binomial test for conservativeness with “green zone” or “yellow”. Figure 1 provides 
examples of color-coded planes for the binomial test of conservatism for consumer and mortgage loans segments 
lending models for logistic calibration: 

 

Figure 1. Coloring the [𝑃𝑃𝑃𝑃: 𝐴𝐴𝐷𝐷] plane by the color of the binomial test for conservatism for the scoring model in logistic calibration (left: for 
consumer loans segment, right: mortgage loans segment). 

In practice, it is not necessary to color the entire plane, but rather some area of interest is sufficient, which can be 
realized if we consider the parallelogram �̂�𝑎 = 0, … ,6, �̂�𝑏 = 0, … ,10 in terms of formula (3), the coloring intensity or 
steps along the axes should be chosen based on the computing power and time available for calculation, for example, 
a uniform step equal to one hundredth/thousandth of a segment along each axis. 

Practical examples explaining necessary to move to precision calibration: logistic calibration, statistical test 
is binomial test for conservatism, number of ranks of rating scale is “20+1”. The results are shown in Table 2. 

Table 2. Comparison of values of probability of default (Min 𝑃𝑃𝑃𝑃) and target 𝐶𝐶𝐶𝐶 acceptable for passing the binomial test. 

Model Number of 
samples AR CT Min 𝑃𝑃𝑃𝑃  with 

“green zone” 
Min 𝑃𝑃𝑃𝑃  with 
“yellow zone” 

Consumer loans segment 23 231 154 80,4% 4,76% 6,14% 5,79% 
Mortgage loans segment 2 425 852 89,5% 0,48% 3,46% 2,95% 

It can be seen that logistic calibration gives overestimated probability of default relative to 𝐶𝐶𝐶𝐶 in the calibration model 
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that satisfies the test passing criteria required for validation (comparative analysis). This will lead to increased 
capital/reserve requirements in the IRB. 
Clearly, higher accuracy calibration models need to be explored in these segments. 

3. Cubic logistic calibration 

A cubic logistic calibration is a refinement of the usual logistic calibration by increasing the order of the 
polynomial in the argument of the logistic function. This calibration is applied using the function: 

1
1 + 𝑒𝑒𝑎𝑎0+𝑎𝑎1∙𝑠𝑠+𝑎𝑎2∙𝑠𝑠2+𝑎𝑎3∙𝑠𝑠3 =: 𝑃𝑃𝑃𝑃(𝑠𝑠, 𝐴𝐴), 

where 𝐴𝐴 ≔ (𝑎𝑎0, 𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3) are parameters of the calibration selected based on the following inequalities: 
|𝑃𝑃�̂�𝑃(𝐴𝐴) − 𝐶𝐶𝐶𝐶| < 𝜎𝜎𝑃𝑃𝑃𝑃,    |𝐴𝐴�̂�𝐴(𝐴𝐴) − 𝐴𝐴𝐴𝐴| < 𝜎𝜎𝐴𝐴𝐴𝐴, |𝐿𝐿𝐴𝐴�̂�𝐴(𝐴𝐴) − 𝐿𝐿𝐴𝐴𝐴𝐴| < 𝜎𝜎𝐴𝐴𝐴𝐴,    |𝐴𝐴𝐴𝐴�̂�𝐴(𝐴𝐴) − 𝐴𝐴𝐴𝐴𝐴𝐴| < 𝜎𝜎𝐴𝐴𝐴𝐴, 
where 𝐶𝐶𝐶𝐶 is the central tendency for calibration of model, 𝐴𝐴𝐴𝐴, 𝐿𝐿𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴𝐴𝐴 are the Gini index, left and right integral 
Gini indices (second-order accuracy metrics) respectively. 𝜎𝜎𝑃𝑃𝑃𝑃 and 𝜎𝜎𝐴𝐴𝐴𝐴 are estimated errors (standard deviations) of 
the probability of default and the Gini index respectively, calculated using formula (2), 
𝑃𝑃�̂�𝑃(𝐴𝐴), 𝐴𝐴�̂�𝐴(𝐴𝐴), 𝐿𝐿𝐴𝐴�̂�𝐴(𝐴𝐴), 𝐴𝐴𝐴𝐴�̂�𝐴(𝐴𝐴) are defined in formula (1). 
To find the calibration parameters (𝐴𝐴), it is enough to minimize the value of the following functional: 

𝐹𝐹(𝐴𝐴) = (𝑃𝑃�̂�𝑃(𝐴𝐴) − 𝐶𝐶𝐶𝐶)2

𝜎𝜎𝑃𝑃𝑃𝑃
2 + (𝐴𝐴�̂�𝐴(𝐴𝐴) − 𝐴𝐴𝐴𝐴)2

𝜎𝜎𝐴𝐴𝐴𝐴
2 + (𝐿𝐿𝐴𝐴�̂�𝐴(𝐴𝐴) − 𝐿𝐿𝐴𝐴𝐴𝐴)2

𝜎𝜎𝐴𝐴𝐴𝐴
2 + (𝐴𝐴𝐴𝐴�̂�𝐴(𝐴𝐴) − 𝐴𝐴𝐴𝐴𝐴𝐴)2

𝜎𝜎𝐴𝐴𝐴𝐴
2 → min

�⃗�𝐴
𝐹𝐹. 

There should select 𝐴𝐴 ≔ (𝐵𝐵0, 𝐴𝐴0, 0,0) (𝐴𝐴0 and 𝐵𝐵0 from formula (3)) as an initial approximation. There should stop 
the optimization process, just like for first-order logistic calibration, when F(A⃗⃗⃗) < 1 is reached. 

After obtaining a solution, it must be checked to satisfy the obvious monotonicity requirement 𝑃𝑃𝑃𝑃: 𝑝𝑝𝐴𝐴(𝑥𝑥)′ ≤
0, whence follows the condition for 𝑓𝑓(𝐴𝐴, 𝑥𝑥) = 𝑎𝑎1 + 2𝑎𝑎2 ∙ 𝑥𝑥 + 3𝑎𝑎3 ∙ 𝑥𝑥2 ≥ 0 which is equivalent to the conditions: 
𝑎𝑎3 ≥ 0, 𝑎𝑎2

2 ≤ 3𝑎𝑎1𝑎𝑎3. 
The main failure of the cubic logistic calibration, as well as first order (3), is a significant increase 𝑃𝑃𝑃𝑃 (up to 

one) for low rating points and a decrease (down to zero) for high ones. Not all scoring models have these discrimination 
properties as determined by their 𝐴𝐴𝑅𝑅𝐶𝐶 curve. This leads, for example, to high expectations of a high ranking for high 
scores, which negatively affects the results of the binomial test of conservatism. The three-segment hyperbolic 
calibration model does not have this failure. 

4. Three-segment hyperbolic calibration  

First of all, accuracy metrics 𝐴𝐴𝐴𝐴, 𝐿𝐿𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴𝐴𝐴 (1) are calculated for the scoring model. After, its trapezoidal 
approximation is constructed and parameters 𝑎𝑎 and 𝑏𝑏 are calculated for this trapezoid (Appendix 1). Then, you need 
to split the model's 𝐴𝐴𝑅𝑅𝐶𝐶 curve into three segments: 1.(0,0) − (𝑎𝑎, 𝐴𝐴𝑎𝑎), 2. (𝑎𝑎, 𝐴𝐴𝑎𝑎) − (1 − 𝑏𝑏, 𝐴𝐴𝑏𝑏), 3.(1 − 𝑏𝑏, 𝐴𝐴𝑏𝑏) − (1,1), 

where  (𝐴𝐴𝑎𝑎 ≔ 𝐴𝐴𝑅𝑅𝐶𝐶(𝑎𝑎) is the corresponding value of the ordinate axis 
for the value 𝑎𝑎 of the abscissa axis, such that point (𝑎𝑎, 𝐴𝐴𝑎𝑎) belongs to 
the 𝐴𝐴𝑅𝑅𝐶𝐶  curve, 𝐴𝐴𝑏𝑏 ≔ 𝐴𝐴𝑅𝑅𝐶𝐶(1 − 𝑏𝑏)   and similarly point (1 − 𝑏𝑏, 𝐴𝐴𝑏𝑏) 
belongs to the 𝐴𝐴𝑅𝑅𝐶𝐶 curve) and for each segment there is necessary to 
calculate the Gini indices (the segment is scaled by the square 
([0,1]: [0,1]).  

Figure 2 presents the geometric interpretation of the segments, 
the areas relative to which rectangles are presented to obtain the 
corresponding Gini indices for the segments (the Gini index will be 

equal to the ratio of the corresponding 
blue area to the half-area of the 
corresponding red rectangle). 

𝑆𝑆𝑛𝑛 and �̂�𝑆𝑑𝑑 are scores of non-default and default samples respectively for 𝑛𝑛 = 1, … , 𝐺𝐺 and 𝑑𝑑 = 1, … , 𝐵𝐵. 

Figure 2. An example of a three-segment partition of an 𝐴𝐴𝑅𝑅𝐶𝐶 curve. The blue background shows 
the areas of local 𝐴𝐴𝑅𝑅𝐶𝐶 curves that determine the local Gini indices. 
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1. There is calculated trapezoidal triangulation: {𝑎𝑎, 𝑏𝑏, 𝐼𝐼 ≔ 1 − 𝑎𝑎 − 𝑏𝑏
𝑅𝑅𝑎𝑎, 𝑅𝑅𝑏𝑏 ,  

2. There are calculated local Gini indices of the segments:  𝐴𝐴𝑅𝑅𝑎𝑎 ≔ 2 ∙ 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎 − 1, 𝐴𝐴𝑅𝑅𝐼𝐼: = 2 ∙ 𝐴𝐴𝐴𝐴𝐴𝐴𝐼𝐼 − 1, 
 𝐴𝐴𝑅𝑅𝑏𝑏 ≔ 2 ∙ 𝐴𝐴𝐴𝐴𝐴𝐴𝑏𝑏 − 1,  
where 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎 ≔

1
𝑎𝑎∙𝐺𝐺∙𝑅𝑅𝑎𝑎∙𝐵𝐵

∙ ∑ ∑ 𝛿𝛿𝑆𝑆𝑛𝑛(�̂�𝑆𝑑𝑑),
𝑅𝑅𝑎𝑎∙𝐵𝐵
𝑑𝑑=1  𝑎𝑎∙𝐺𝐺

𝑛𝑛=1  𝐴𝐴𝐴𝐴𝐴𝐴𝐼𝐼 ≔
1

𝐼𝐼∙𝐺𝐺∙(𝑅𝑅𝑏𝑏−𝑅𝑅𝑎𝑎)∙𝐵𝐵
∙ ∑ ∑ 𝛿𝛿𝑆𝑆𝑛𝑛(�̂�𝑆𝑑𝑑),

𝑅𝑅𝑏𝑏∙𝐵𝐵
𝑑𝑑=𝑅𝑅𝑎𝑎∙𝐵𝐵+1  (1−𝑏𝑏)∙𝐺𝐺

𝑛𝑛=𝑎𝑎∙𝐺𝐺+1  

 𝐴𝐴𝐴𝐴𝐴𝐴𝑏𝑏 ≔
1

𝑏𝑏∙𝐺𝐺∙(1−𝑅𝑅𝑏𝑏)∙𝐵𝐵
∙ ∑ ∑ 𝛿𝛿𝑆𝑆𝑛𝑛(�̂�𝑆𝑑𝑑),𝐵𝐵

𝑑𝑑=𝑅𝑅𝑏𝑏∙𝐵𝐵+1  𝐺𝐺
𝑛𝑛=(1−𝑏𝑏)∙𝐺𝐺+1   𝛿𝛿𝑢𝑢(𝑤𝑤) = {

1, if 𝑢𝑢 > 𝑤𝑤
1
2 , if 𝑢𝑢 = 𝑤𝑤
0, if 𝑢𝑢 < 𝑤𝑤

.  

3. Need to calculate segmental probabilities of default for the given calibration 𝑃𝑃𝑃𝑃 =: 𝑝𝑝: 

𝑃𝑃𝑎𝑎 ≔
𝑅𝑅𝑎𝑎∙𝑝𝑝

𝑎𝑎∙(1−𝑝𝑝)+𝑅𝑅𝑎𝑎∙𝑝𝑝
, 𝑃𝑃𝐼𝐼 ≔

(𝑅𝑅𝑏𝑏−𝑅𝑅𝑎𝑎)∙𝑝𝑝
(1−𝑎𝑎−𝑏𝑏)∙(1−𝑝𝑝)+(𝑅𝑅𝑏𝑏−𝑅𝑅𝑎𝑎)∙𝑝𝑝

, 𝑃𝑃𝑏𝑏 ≔
(1−𝑅𝑅𝑏𝑏)∙𝑝𝑝

𝑏𝑏∙(1−𝑝𝑝)+(1−𝑅𝑅𝑏𝑏)∙𝑝𝑝
.  

4. There is calculated parameter 𝛽𝛽𝐼𝐼 as a solution to the equation: 𝐴𝐴𝑅𝑅𝐼𝐼 = 2(1 + 𝛽𝛽𝐼𝐼) (1 − 𝛽𝛽𝐼𝐼 ∙ ln (1 +
1
𝛽𝛽𝐼𝐼
)) − 1, 

with initial approximation 𝛽𝛽𝐼𝐼 ≔ 1. 

After this, need to find approximate solutions to the following minimization problems: 
For the left side: 𝛽𝛽𝑎𝑎 ≔ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝛽𝛽>0 |𝐴𝐴𝑅𝑅𝑎𝑎 − 𝑑𝑑𝑎𝑎(𝛽𝛽) ∙ (2(1 + 𝛽𝛽) (1 − 𝛽𝛽 ∙ ln (1 +

1
𝛽𝛽)) − 1)|,      

where 𝑑𝑑𝑎𝑎(𝛽𝛽) ≔
𝛽𝛽

1−𝑃𝑃𝑎𝑎
∙ (𝑃𝑃𝑎𝑎 ∙

1+𝛽𝛽𝐼𝐼 𝑃𝑃𝐼𝐼⁄
1+𝛽𝛽𝐼𝐼

− 1), with initial approximation 𝛽𝛽𝑎𝑎 ≔ 0.1.  

And for the right side: 𝛽𝛽𝑏𝑏 ≔ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝛽𝛽>0 |𝐴𝐴𝑅𝑅𝑏𝑏 − 𝑑𝑑𝑏𝑏(𝛽𝛽) ∙ (2(1 + 𝛽𝛽) (1 − 𝛽𝛽 ∙ ln (1 +
1
𝛽𝛽)) − 1)| ,  

where 𝑑𝑑𝑏𝑏(𝛽𝛽) ≔ 𝛽𝛽 ∙ (𝛽𝛽𝐼𝐼∙(𝑃𝑃𝐼𝐼−𝑃𝑃𝑏𝑏)−𝑃𝑃𝑏𝑏∙(1−𝑃𝑃𝐼𝐼)𝑃𝑃𝑏𝑏∙(1−𝑃𝑃𝐼𝐼)∙(1+𝛽𝛽𝐼𝐼)
), with initial approximation 𝛽𝛽𝑏𝑏 ≔ 0.1. 

5. Probability of default is calculated for the quantile 𝑥𝑥(𝑠𝑠) of the score 𝑠𝑠 by formulas from [8]: 

𝑃𝑃𝑃𝑃(𝑥𝑥) ≔

{ 
 
  

𝑃𝑃𝑃𝑃𝑅𝑅 (
𝑥𝑥
�̂�𝑎 , 𝛽𝛽𝑎𝑎, 𝑑𝑑𝑎𝑎, 𝑃𝑃𝑎𝑎) 𝑎𝑎𝑖𝑖 𝑥𝑥 ∈ [0, �̂�𝑎]

𝑃𝑃𝑃𝑃𝐶𝐶 (
𝑥𝑥−�̂�𝑎
1−�̂�𝑎−�̂�𝑏 , 𝛽𝛽𝐼𝐼, 𝑃𝑃𝐼𝐼) 𝑎𝑎𝑖𝑖 𝑥𝑥 ∈ (�̂�𝑎, 1 − �̂�𝑏]

𝑃𝑃𝑃𝑃𝐿𝐿 (
𝑥𝑥−1+�̂�𝑏
�̂�𝑏 , 𝛽𝛽𝑏𝑏, 𝑑𝑑𝑏𝑏, 𝑃𝑃𝑏𝑏) 𝑎𝑎𝑖𝑖 𝑥𝑥 ∈ (1 − �̂�𝑏, 1]

, 

where �̂�𝑎 ≔ 𝑎𝑎 ∙ (1 − 𝑝𝑝) + 𝑅𝑅𝑎𝑎 ∙ 𝑝𝑝, �̂�𝑏 ≔ 𝑏𝑏 ∙ (1 − 𝑝𝑝) + (1 − 𝑅𝑅𝑏𝑏) ∙ 𝑝𝑝, 
𝑃𝑃𝑃𝑃C(𝑦𝑦, 𝛽𝛽, 𝑃𝑃) ≔

1
2 (1 −

𝑦𝑦+𝛽𝛽−𝐷𝐷−2𝛽𝛽𝐷𝐷
√(𝑦𝑦−𝛽𝛽−𝐷𝐷)2+4𝛽𝛽(1−𝐷𝐷)𝑦𝑦),  𝑃𝑃𝑃𝑃𝑅𝑅(𝑦𝑦, 𝛽𝛽, 𝑑𝑑, 𝑃𝑃) ≔

D
2(1−𝑑𝑑+𝑑𝑑𝐷𝐷) (1 − 𝑃𝑃 ∙

𝑦𝑦+𝛽𝛽(2𝑑𝑑(1−𝐷𝐷)−1)+𝑑𝑑(1−𝐷𝐷)−1
√𝐷𝐷𝑅𝑅(𝑦𝑦,𝛽𝛽,𝑑𝑑,𝐷𝐷) ),  

𝑃𝑃𝑅𝑅(𝑦𝑦, 𝛽𝛽, 𝑑𝑑, 𝑃𝑃) ≔ (𝑦𝑦(𝑃𝑃 + 2(1 − 𝑃𝑃)(1 − 𝑑𝑑)) − 𝑃𝑃(1 + 𝛽𝛽 − 𝑑𝑑(1 − 𝑃𝑃)))
2
+ 4y(1 − 𝑃𝑃)(1 − 𝑑𝑑 + d𝑃𝑃)((1 + 𝛽𝛽 − 𝑑𝑑)𝑃𝑃 − 𝑦𝑦(1 − 𝑑𝑑)), 

𝑃𝑃𝑃𝑃𝐿𝐿(𝑦𝑦, 𝛽𝛽, 𝑑𝑑,𝑃𝑃) ≔
1

2(1−𝑑𝑑𝐷𝐷) (1 + 𝑃𝑃 − 2𝑑𝑑𝑃𝑃 − (1 − 𝑃𝑃) ∙
𝑦𝑦+𝛽𝛽−𝑑𝑑𝐷𝐷(1+2𝛽𝛽)
√𝐷𝐷𝐿𝐿(𝑦𝑦,𝛽𝛽,𝑑𝑑,𝐷𝐷) ), 𝑃𝑃𝐷𝐷(𝑦𝑦, 𝛽𝛽, 𝑑𝑑, 𝑃𝑃) ≔ (𝑦𝑦 − 𝛽𝛽 − 𝑑𝑑𝑃𝑃)2 + 4𝑦𝑦𝛽𝛽(1 − 𝑑𝑑𝑃𝑃). 

The method of balanced approximation of the quantile 𝑥𝑥(𝑠𝑠) of the score 𝑠𝑠 is presented in Appendix 2. 

5. Comparison of calibration methods in consumer and mortgage banking segments 

There is presents a comparison of metrics of three different calibration methods for the consumer loans 
segment in Table 3 (there are calibrated at one level of central tendency 𝐴𝐴𝐶𝐶 = 4,76%): 

Table 3. Comparison of metrics of three different calibration methods for the consumer loans segment. 

Metrics 𝑃𝑃𝑃𝑃 𝐴𝐴𝑅𝑅 𝐷𝐷𝐴𝐴𝑅𝑅 𝑅𝑅𝐴𝐴𝑅𝑅 
Model (no calibration) 4,76% 80,4% 64,1% 64,5% 
Estimation error 0,001% 0,14% 1,39% 1,42% 
Logistics calibration (LC) 4,76% 80,4% 62,7% 66,5% 
Cubic logistics calibration (CLC) 4,76% 80,4% 64,4% 64,8% 
Three-segment hyperbolic calibration (TSHC) 4,76% 80,0% 63,7% 63,3% 

Figure 3 shows the 𝑅𝑅𝑅𝑅𝐴𝐴 curves corresponding to the calibrations and a graph of 𝑃𝑃𝑃𝑃 depending on the score. 
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Figure 3. 𝑅𝑅𝑅𝑅𝑅𝑅 curves and 𝑃𝑃𝑃𝑃 graph corresponding to the calibrations of the consumer loans segment model depending on the score. 

There is presents a comparison of metrics of three different calibration methods for the mortgage loans segment in 
Table 4 (there are calibrated at one level of central tendency 𝑅𝑅𝐶𝐶 = 0,48%): 

Table 4. Comparison of metrics of three different calibration methods for the mortgage loans segment. 

Metrics 𝑃𝑃𝑃𝑃 𝐴𝐴𝑅𝑅 𝐿𝐿𝐴𝐴𝑅𝑅 𝑅𝑅𝐴𝐴𝑅𝑅 
Model (no calibration) 0,48% 89,5% 78,0% 76,4% 
Estimation error   0,004% 0,33% 6,61% 5,85% 
Logistics calibration (LC) 0,48% 89,5% 80,3% 74,7% 
Cubic logistics calibration (CLC) 0,48% 89,5% 79,2% 75,6% 
Three-segment hyperbolic calibration (TSHC) 0,48% 89,1% 77,6% 75,4% 

Figure 4.  shows the 𝑅𝑅𝑅𝑅𝑅𝑅 curves corresponding to the calibrations and a graph of 𝑃𝑃𝑃𝑃 depending on the score. 

 

Figure 4. 𝑅𝑅𝑅𝑅𝑅𝑅 curves and 𝑃𝑃𝑃𝑃 graph corresponding to the calibrations of the mortgage loans segment model depending on the score. 

The binomial test for conservatism based on the “20+1” ranks rating scale gives the lowest acceptable values 
of the calibration 𝑃𝑃𝑃𝑃 at which is satisfied the “green zone”. The results are presented in Table 5 and Table 6. 

Table 5. The lowest calibration 𝑃𝑃𝑃𝑃 values for “green zone” of binomial test without quantile approximation 𝑥𝑥(𝑠𝑠) of score 𝑠𝑠 (used all samples). 

Calibration method consumer 
loans segment 

mortgage 
loans segment 

Logistics calibration (LC) 6,14% 3,46% 
Cubic logistics calibration (CLC) 5,75% 2,22% 
Three-segment hyperbolic calibration (TSHC) 
without approximation 𝑥𝑥(𝑠𝑠) 5,51% 0,73% 

If there is applyed the approximation of the quantile 𝑥𝑥(𝑠𝑠) according to the algorithm in Appendix 2, then the result of 
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1. There is calculated trapezoidal triangulation: {𝑎𝑎, 𝑏𝑏, 𝐼𝐼 ≔ 1 − 𝑎𝑎 − 𝑏𝑏
𝑅𝑅𝑎𝑎, 𝑅𝑅𝑏𝑏 ,  

2. There are calculated local Gini indices of the segments:  𝐴𝐴𝑅𝑅𝑎𝑎 ≔ 2 ∙ 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎 − 1, 𝐴𝐴𝑅𝑅𝐼𝐼: = 2 ∙ 𝐴𝐴𝐴𝐴𝐴𝐴𝐼𝐼 − 1, 
 𝐴𝐴𝑅𝑅𝑏𝑏 ≔ 2 ∙ 𝐴𝐴𝐴𝐴𝐴𝐴𝑏𝑏 − 1,  
where 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎 ≔

1
𝑎𝑎∙𝐺𝐺∙𝑅𝑅𝑎𝑎∙𝐵𝐵

∙ ∑ ∑ 𝛿𝛿𝑆𝑆𝑛𝑛(�̂�𝑆𝑑𝑑),
𝑅𝑅𝑎𝑎∙𝐵𝐵
𝑑𝑑=1  𝑎𝑎∙𝐺𝐺

𝑛𝑛=1  𝐴𝐴𝐴𝐴𝐴𝐴𝐼𝐼 ≔
1

𝐼𝐼∙𝐺𝐺∙(𝑅𝑅𝑏𝑏−𝑅𝑅𝑎𝑎)∙𝐵𝐵
∙ ∑ ∑ 𝛿𝛿𝑆𝑆𝑛𝑛(�̂�𝑆𝑑𝑑),

𝑅𝑅𝑏𝑏∙𝐵𝐵
𝑑𝑑=𝑅𝑅𝑎𝑎∙𝐵𝐵+1  (1−𝑏𝑏)∙𝐺𝐺

𝑛𝑛=𝑎𝑎∙𝐺𝐺+1  

 𝐴𝐴𝐴𝐴𝐴𝐴𝑏𝑏 ≔
1

𝑏𝑏∙𝐺𝐺∙(1−𝑅𝑅𝑏𝑏)∙𝐵𝐵
∙ ∑ ∑ 𝛿𝛿𝑆𝑆𝑛𝑛(�̂�𝑆𝑑𝑑),𝐵𝐵

𝑑𝑑=𝑅𝑅𝑏𝑏∙𝐵𝐵+1  𝐺𝐺
𝑛𝑛=(1−𝑏𝑏)∙𝐺𝐺+1   𝛿𝛿𝑢𝑢(𝑤𝑤) = {

1, if 𝑢𝑢 > 𝑤𝑤
1
2 , if 𝑢𝑢 = 𝑤𝑤
0, if 𝑢𝑢 < 𝑤𝑤

.  

3. Need to calculate segmental probabilities of default for the given calibration 𝑃𝑃𝑃𝑃 =: 𝑝𝑝: 

𝑃𝑃𝑎𝑎 ≔
𝑅𝑅𝑎𝑎∙𝑝𝑝

𝑎𝑎∙(1−𝑝𝑝)+𝑅𝑅𝑎𝑎∙𝑝𝑝
, 𝑃𝑃𝐼𝐼 ≔

(𝑅𝑅𝑏𝑏−𝑅𝑅𝑎𝑎)∙𝑝𝑝
(1−𝑎𝑎−𝑏𝑏)∙(1−𝑝𝑝)+(𝑅𝑅𝑏𝑏−𝑅𝑅𝑎𝑎)∙𝑝𝑝

, 𝑃𝑃𝑏𝑏 ≔
(1−𝑅𝑅𝑏𝑏)∙𝑝𝑝

𝑏𝑏∙(1−𝑝𝑝)+(1−𝑅𝑅𝑏𝑏)∙𝑝𝑝
.  

4. There is calculated parameter 𝛽𝛽𝐼𝐼 as a solution to the equation: 𝐴𝐴𝑅𝑅𝐼𝐼 = 2(1 + 𝛽𝛽𝐼𝐼) (1 − 𝛽𝛽𝐼𝐼 ∙ ln (1 +
1
𝛽𝛽𝐼𝐼
)) − 1, 

with initial approximation 𝛽𝛽𝐼𝐼 ≔ 1. 

After this, need to find approximate solutions to the following minimization problems: 
For the left side: 𝛽𝛽𝑎𝑎 ≔ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝛽𝛽>0 |𝐴𝐴𝑅𝑅𝑎𝑎 − 𝑑𝑑𝑎𝑎(𝛽𝛽) ∙ (2(1 + 𝛽𝛽) (1 − 𝛽𝛽 ∙ ln (1 +

1
𝛽𝛽)) − 1)|,      

where 𝑑𝑑𝑎𝑎(𝛽𝛽) ≔
𝛽𝛽

1−𝑃𝑃𝑎𝑎
∙ (𝑃𝑃𝑎𝑎 ∙

1+𝛽𝛽𝐼𝐼 𝑃𝑃𝐼𝐼⁄
1+𝛽𝛽𝐼𝐼

− 1), with initial approximation 𝛽𝛽𝑎𝑎 ≔ 0.1.  

And for the right side: 𝛽𝛽𝑏𝑏 ≔ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝛽𝛽>0 |𝐴𝐴𝑅𝑅𝑏𝑏 − 𝑑𝑑𝑏𝑏(𝛽𝛽) ∙ (2(1 + 𝛽𝛽) (1 − 𝛽𝛽 ∙ ln (1 +
1
𝛽𝛽)) − 1)| ,  

where 𝑑𝑑𝑏𝑏(𝛽𝛽) ≔ 𝛽𝛽 ∙ (𝛽𝛽𝐼𝐼∙(𝑃𝑃𝐼𝐼−𝑃𝑃𝑏𝑏)−𝑃𝑃𝑏𝑏∙(1−𝑃𝑃𝐼𝐼)𝑃𝑃𝑏𝑏∙(1−𝑃𝑃𝐼𝐼)∙(1+𝛽𝛽𝐼𝐼)
), with initial approximation 𝛽𝛽𝑏𝑏 ≔ 0.1. 

5. Probability of default is calculated for the quantile 𝑥𝑥(𝑠𝑠) of the score 𝑠𝑠 by formulas from [8]: 

𝑃𝑃𝑃𝑃(𝑥𝑥) ≔

{ 
 
  

𝑃𝑃𝑃𝑃𝑅𝑅 (
𝑥𝑥
�̂�𝑎 , 𝛽𝛽𝑎𝑎, 𝑑𝑑𝑎𝑎, 𝑃𝑃𝑎𝑎) 𝑎𝑎𝑖𝑖 𝑥𝑥 ∈ [0, �̂�𝑎]

𝑃𝑃𝑃𝑃𝐶𝐶 (
𝑥𝑥−�̂�𝑎
1−�̂�𝑎−�̂�𝑏 , 𝛽𝛽𝐼𝐼, 𝑃𝑃𝐼𝐼) 𝑎𝑎𝑖𝑖 𝑥𝑥 ∈ (�̂�𝑎, 1 − �̂�𝑏]

𝑃𝑃𝑃𝑃𝐿𝐿 (
𝑥𝑥−1+�̂�𝑏
�̂�𝑏 , 𝛽𝛽𝑏𝑏, 𝑑𝑑𝑏𝑏, 𝑃𝑃𝑏𝑏) 𝑎𝑎𝑖𝑖 𝑥𝑥 ∈ (1 − �̂�𝑏, 1]

, 

where �̂�𝑎 ≔ 𝑎𝑎 ∙ (1 − 𝑝𝑝) + 𝑅𝑅𝑎𝑎 ∙ 𝑝𝑝, �̂�𝑏 ≔ 𝑏𝑏 ∙ (1 − 𝑝𝑝) + (1 − 𝑅𝑅𝑏𝑏) ∙ 𝑝𝑝, 
𝑃𝑃𝑃𝑃C(𝑦𝑦, 𝛽𝛽, 𝑃𝑃) ≔

1
2 (1 −

𝑦𝑦+𝛽𝛽−𝐷𝐷−2𝛽𝛽𝐷𝐷
√(𝑦𝑦−𝛽𝛽−𝐷𝐷)2+4𝛽𝛽(1−𝐷𝐷)𝑦𝑦),  𝑃𝑃𝑃𝑃𝑅𝑅(𝑦𝑦, 𝛽𝛽, 𝑑𝑑, 𝑃𝑃) ≔

D
2(1−𝑑𝑑+𝑑𝑑𝐷𝐷) (1 − 𝑃𝑃 ∙

𝑦𝑦+𝛽𝛽(2𝑑𝑑(1−𝐷𝐷)−1)+𝑑𝑑(1−𝐷𝐷)−1
√𝐷𝐷𝑅𝑅(𝑦𝑦,𝛽𝛽,𝑑𝑑,𝐷𝐷) ),  

𝑃𝑃𝑅𝑅(𝑦𝑦, 𝛽𝛽, 𝑑𝑑, 𝑃𝑃) ≔ (𝑦𝑦(𝑃𝑃 + 2(1 − 𝑃𝑃)(1 − 𝑑𝑑)) − 𝑃𝑃(1 + 𝛽𝛽 − 𝑑𝑑(1 − 𝑃𝑃)))
2
+ 4y(1 − 𝑃𝑃)(1 − 𝑑𝑑 + d𝑃𝑃)((1 + 𝛽𝛽 − 𝑑𝑑)𝑃𝑃 − 𝑦𝑦(1 − 𝑑𝑑)), 

𝑃𝑃𝑃𝑃𝐿𝐿(𝑦𝑦, 𝛽𝛽, 𝑑𝑑,𝑃𝑃) ≔
1

2(1−𝑑𝑑𝐷𝐷) (1 + 𝑃𝑃 − 2𝑑𝑑𝑃𝑃 − (1 − 𝑃𝑃) ∙
𝑦𝑦+𝛽𝛽−𝑑𝑑𝐷𝐷(1+2𝛽𝛽)
√𝐷𝐷𝐿𝐿(𝑦𝑦,𝛽𝛽,𝑑𝑑,𝐷𝐷) ), 𝑃𝑃𝐷𝐷(𝑦𝑦, 𝛽𝛽, 𝑑𝑑, 𝑃𝑃) ≔ (𝑦𝑦 − 𝛽𝛽 − 𝑑𝑑𝑃𝑃)2 + 4𝑦𝑦𝛽𝛽(1 − 𝑑𝑑𝑃𝑃). 

The method of balanced approximation of the quantile 𝑥𝑥(𝑠𝑠) of the score 𝑠𝑠 is presented in Appendix 2. 

5. Comparison of calibration methods in consumer and mortgage banking segments 

There is presents a comparison of metrics of three different calibration methods for the consumer loans 
segment in Table 3 (there are calibrated at one level of central tendency 𝐴𝐴𝐶𝐶 = 4,76%): 

Table 3. Comparison of metrics of three different calibration methods for the consumer loans segment. 

Metrics 𝑃𝑃𝑃𝑃 𝐴𝐴𝑅𝑅 𝐷𝐷𝐴𝐴𝑅𝑅 𝑅𝑅𝐴𝐴𝑅𝑅 
Model (no calibration) 4,76% 80,4% 64,1% 64,5% 
Estimation error 0,001% 0,14% 1,39% 1,42% 
Logistics calibration (LC) 4,76% 80,4% 62,7% 66,5% 
Cubic logistics calibration (CLC) 4,76% 80,4% 64,4% 64,8% 
Three-segment hyperbolic calibration (TSHC) 4,76% 80,0% 63,7% 63,3% 

Figure 3 shows the 𝑅𝑅𝑅𝑅𝐴𝐴 curves corresponding to the calibrations and a graph of 𝑃𝑃𝑃𝑃 depending on the score. 
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Figure 3. 𝑅𝑅𝑅𝑅𝑅𝑅 curves and 𝑃𝑃𝑃𝑃 graph corresponding to the calibrations of the consumer loans segment model depending on the score. 

There is presents a comparison of metrics of three different calibration methods for the mortgage loans segment in 
Table 4 (there are calibrated at one level of central tendency 𝑅𝑅𝐶𝐶 = 0,48%): 

Table 4. Comparison of metrics of three different calibration methods for the mortgage loans segment. 

Metrics 𝑃𝑃𝑃𝑃 𝐴𝐴𝑅𝑅 𝐿𝐿𝐴𝐴𝑅𝑅 𝑅𝑅𝐴𝐴𝑅𝑅 
Model (no calibration) 0,48% 89,5% 78,0% 76,4% 
Estimation error   0,004% 0,33% 6,61% 5,85% 
Logistics calibration (LC) 0,48% 89,5% 80,3% 74,7% 
Cubic logistics calibration (CLC) 0,48% 89,5% 79,2% 75,6% 
Three-segment hyperbolic calibration (TSHC) 0,48% 89,1% 77,6% 75,4% 

Figure 4.  shows the 𝑅𝑅𝑅𝑅𝑅𝑅 curves corresponding to the calibrations and a graph of 𝑃𝑃𝑃𝑃 depending on the score. 

 

Figure 4. 𝑅𝑅𝑅𝑅𝑅𝑅 curves and 𝑃𝑃𝑃𝑃 graph corresponding to the calibrations of the mortgage loans segment model depending on the score. 

The binomial test for conservatism based on the “20+1” ranks rating scale gives the lowest acceptable values 
of the calibration 𝑃𝑃𝑃𝑃 at which is satisfied the “green zone”. The results are presented in Table 5 and Table 6. 

Table 5. The lowest calibration 𝑃𝑃𝑃𝑃 values for “green zone” of binomial test without quantile approximation 𝑥𝑥(𝑠𝑠) of score 𝑠𝑠 (used all samples). 

Calibration method consumer 
loans segment 

mortgage 
loans segment 

Logistics calibration (LC) 6,14% 3,46% 
Cubic logistics calibration (CLC) 5,75% 2,22% 
Three-segment hyperbolic calibration (TSHC) 
without approximation 𝑥𝑥(𝑠𝑠) 5,51% 0,73% 

If there is applyed the approximation of the quantile 𝑥𝑥(𝑠𝑠) according to the algorithm in Appendix 2, then the result of 
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the minimum 𝑃𝑃𝑃𝑃 values for a three-segment calibration will deteriorate slightly (Table 6). 

Table 6. The lowest calibration 𝑃𝑃𝑃𝑃 values for “green zone” of binomial test with quantile approximation 𝑥𝑥(𝑠𝑠) of score 𝑠𝑠 (used some samples). 

 
 
 

After all comparative tables implies that precision calibration is necessary for significant savings in capital 
and bank reserves for the mortgage loan segment. 

Appendix 1. Calculation of additional parameters of  𝑹𝑹𝑹𝑹𝑹𝑹-curve 

There are formulas for calculating some indicators below that were used for three-segment calibration [10]. 
The indicators 𝜇𝜇𝐿𝐿 and 𝜇𝜇𝑅𝑅 are calculated as solutions to the following equations: 
𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐴𝐴𝑅𝑅

𝜇𝜇𝐿𝐿−1 ln ( 𝐴𝐴𝑅𝑅
𝜇𝜇𝐿𝐿−1) − 𝜇𝜇𝐿𝐿−1−𝐴𝐴𝑅𝑅

𝜇𝜇𝐿𝐿∙(1−𝐴𝐴𝑅𝑅)−1 ∙ 𝐴𝐴𝑅𝑅∙𝜇𝜇𝐿𝐿
𝜇𝜇𝐿𝐿−1 ln (𝐴𝐴𝑅𝑅∙𝜇𝜇𝐿𝐿

𝜇𝜇𝐿𝐿−1 ) , 𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐴𝐴𝑅𝑅
𝜇𝜇𝑅𝑅−1 ln ( 𝐴𝐴𝑅𝑅

𝜇𝜇𝑅𝑅−1) − 𝜇𝜇𝑅𝑅−1−𝐴𝐴𝑅𝑅
𝜇𝜇𝑅𝑅∙(1−𝐴𝐴𝑅𝑅)−1 ∙ 𝐴𝐴𝑅𝑅∙𝜇𝜇𝑅𝑅

𝜇𝜇𝑅𝑅−1 ln (𝐴𝐴𝑅𝑅∙𝜇𝜇𝑅𝑅
𝜇𝜇𝑅𝑅−1 ),  

where 𝐿𝐿𝐿𝐿, 𝐿𝐿𝐿𝐿𝐿𝐿, 𝐿𝐿𝐿𝐿𝐿𝐿 are calculated by formulas from (1), 𝑎𝑎 and 𝑏𝑏 are calculated by 
formulas below: 
𝑎𝑎 ≔ 𝐴𝐴𝑅𝑅

(𝜇𝜇𝐿𝐿−1)∙(1+√1−𝐴𝐴𝑅𝑅∙(1+ 1
𝜇𝜇𝐿𝐿−1+ 1

𝜇𝜇𝑅𝑅−1))
,    

𝑏𝑏 ≔ 𝜇𝜇𝑅𝑅∙𝐴𝐴𝑅𝑅

(𝜇𝜇𝑅𝑅−1)∙(1+√1−𝐴𝐴𝑅𝑅∙(1+ 1
𝜇𝜇𝐿𝐿−1+ 1

𝜇𝜇𝑅𝑅−1))
.  

 

 

Appendix 2. Approximation of the distribution of scoring points  

There are the values of scoring points 𝐿𝐿𝑗𝑗 ∈ 𝐿𝐿 ordered in increasing order for 𝑘𝑘 periods (𝑘𝑘 ≥ 5) as sets 𝐿𝐿𝑘𝑘. 
Unified set of points is 𝐿𝐿 = ⋃ 𝐿𝐿𝑘𝑘

𝑘𝑘 . The capacity of the set 𝐿𝐿 is equal to 𝑁𝑁. The capacities of the sets 𝐿𝐿𝑘𝑘 are equal to 
𝑁𝑁𝑘𝑘 thus ∑ 𝑁𝑁𝑘𝑘 = 𝑁𝑁𝑘𝑘 . 

The problem is to determine 𝑋𝑋𝑖𝑖 ∈ 𝐿𝐿 , as well as their minimum number 𝑛𝑛 , 𝑖𝑖 = 0, … , 𝑛𝑛  such that the 
Kolmogorov–Smirnov (𝐾𝐾𝐾𝐾) metric for the resulting distribution 𝐹𝐹𝑛𝑛(𝑥𝑥) with respect to 𝐿𝐿 is not more than the minimum 
of the 𝐾𝐾𝐾𝐾 metrics 𝐿𝐿𝑘𝑘 with respect to 𝐿𝐿. Give an effective distribution function 𝐹𝐹𝑋𝑋(𝑥𝑥) such that 𝐹𝐹𝑋𝑋(min(𝐿𝐿) − 𝜀𝜀) = 0,
𝐹𝐹𝑋𝑋(max(𝐿𝐿) + 𝜀𝜀) = 1 for some 𝜀𝜀 > 0. 

The simplest formula for approximating the distribution on 𝐿𝐿 according to the values of 𝐿𝐿𝑗𝑗, 𝑗𝑗 = 1. . 𝑁𝑁 is as 

follows 𝐹𝐹𝑅𝑅(𝑥𝑥) ≔ 1
𝑁𝑁 ∑ 𝐼𝐼𝑅𝑅𝑗𝑗(𝑥𝑥),𝑁𝑁

𝑗𝑗=1  where  𝐼𝐼𝑅𝑅𝑗𝑗(𝑥𝑥) = {
1 𝑖𝑖𝑖𝑖 𝑥𝑥 ≥ 𝐿𝐿𝑗𝑗
0 𝑖𝑖𝑖𝑖 𝑥𝑥 < 𝐿𝐿𝑗𝑗

. Similarly, the distribution is constructed for any of the 

𝑘𝑘 periods 𝐹𝐹𝑅𝑅𝑘𝑘(𝑥𝑥) ≔ 1
𝑁𝑁𝑘𝑘 ∑ 𝐼𝐼𝑅𝑅𝑘𝑘𝑗𝑗

(𝑥𝑥)𝑁𝑁𝑘𝑘
𝑗𝑗=1 . Metrics of the 𝐾𝐾𝐾𝐾-type which are the distance between the distributions on 𝐿𝐿𝑘𝑘 

and the reference 𝐿𝐿 are defined as 𝑀𝑀𝑘𝑘 ≔ max
𝑗𝑗=1…𝑁𝑁

|𝐹𝐹𝑅𝑅𝑘𝑘(𝐿𝐿𝑗𝑗) − 𝑗𝑗
𝑁𝑁|. In this case, the minimum metric of confidence is 

𝑀𝑀 ≔ min
𝑘𝑘

𝑀𝑀𝑘𝑘, it is also the threshold for determining 𝑋𝑋𝑖𝑖 ∈ 𝐿𝐿 and 𝑛𝑛. 
Definition 

The approximating distribution 𝐹𝐹𝑛𝑛(𝑥𝑥) is determined by increasing values of 𝑋𝑋𝑖𝑖 ∈ 𝐿𝐿 for 𝑖𝑖 = 0, … , 𝑛𝑛 as: 

𝐹𝐹𝑛𝑛(𝑥𝑥) ≔ 1
𝑛𝑛 ∑ 𝐼𝐼(𝑥𝑥, 𝑋𝑋𝑖𝑖, 𝑋𝑋𝑖𝑖+1),𝑛𝑛−1

𝑖𝑖=0  where 𝐼𝐼(𝑥𝑥, 𝑋𝑋𝑖𝑖, 𝑋𝑋𝑖𝑖+1) ≔ {
0 , 𝑖𝑖𝑖𝑖 𝑥𝑥 < 𝑋𝑋𝑖𝑖
1 , 𝑖𝑖𝑖𝑖 𝑥𝑥 > 𝑋𝑋𝑖𝑖 𝑎𝑎𝑛𝑛𝑎𝑎 𝑥𝑥 ≥ 𝑋𝑋𝑖𝑖+1

𝑥𝑥−𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖+1−𝑋𝑋𝑖𝑖

, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒
. 

For a given 𝑛𝑛 to select 𝑋𝑋𝑖𝑖  as point with the minimum distance from the boundaries of 𝐿𝐿 (i.e., 𝑚𝑚𝑖𝑖𝑛𝑛(𝐿𝐿), 𝑚𝑚𝑎𝑎𝑥𝑥(𝐿𝐿)), 

Calibration method consumer 
loans segment 

mortgage 
loans segment 

Logistics calibration (LC) 6,14% 3,46% 
Three-segment hyperbolic calibration (TSHC) with 
approximation 𝑥𝑥(𝑠𝑠) 5,77% 1,50% 

Figure 5. Trapezoidal triangulation of 𝐿𝐿𝑅𝑅𝑅𝑅 curve. 
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which is assumed to be non-extremal. Let this be a natural 𝑚𝑚 (i.e. 𝑚𝑚 − 1 of the first points and 𝑚𝑚 − 1 of the last points 
of 𝑅𝑅 are not considered). Find the minimum 𝐿𝐿 such that 

{
𝑁𝑁 − 𝐿𝐿

𝑛𝑛 = 𝑀𝑀 ∈ ℕ
𝐿𝐿 ≥ 2𝑚𝑚

, 

then 𝑋𝑋0 ≔ 𝑅𝑅𝑚𝑚+1, 𝑋𝑋𝑛𝑛 ≔ 𝑅𝑅𝑁𝑁−𝑚𝑚, 𝑋𝑋𝑖𝑖 ≔ 𝑅𝑅𝑖𝑖∙𝑀𝑀+[𝐿𝐿
2] for 𝑖𝑖 = 1, … , 𝑛𝑛 − 1. The metric 𝑀𝑀𝑛𝑛 ≔ max

𝑗𝑗=1…𝑁𝑁
|𝐹𝐹𝑛𝑛(𝑅𝑅𝑗𝑗) − 𝑗𝑗

𝑁𝑁| is compared 

with the metric M. There is selected the minimum 𝑛𝑛 such that 𝑀𝑀𝑛𝑛 ≤ 𝑀𝑀. 
Approximation testing. Examples: 

1) Consumer loans segment: number of samples is 𝑛𝑛 =  23 231 154, number of approximation points is 𝑁𝑁 =
16, metric value is 𝑀𝑀 = 2.16%; 

2) Mortgage loans segment: number of samples is 𝑛𝑛 =  2 425 852, number of approximation points is 𝑁𝑁 = 26, 
metric value is 𝑀𝑀 = 2.39%. 

  

Figure 6. Testing the approximation of scoring distributions. 
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the minimum 𝑃𝑃𝑃𝑃 values for a three-segment calibration will deteriorate slightly (Table 6). 

Table 6. The lowest calibration 𝑃𝑃𝑃𝑃 values for “green zone” of binomial test with quantile approximation 𝑥𝑥(𝑠𝑠) of score 𝑠𝑠 (used some samples). 

 
 
 

After all comparative tables implies that precision calibration is necessary for significant savings in capital 
and bank reserves for the mortgage loan segment. 

Appendix 1. Calculation of additional parameters of  𝑹𝑹𝑹𝑹𝑹𝑹-curve 

There are formulas for calculating some indicators below that were used for three-segment calibration [10]. 
The indicators 𝜇𝜇𝐿𝐿 and 𝜇𝜇𝑅𝑅 are calculated as solutions to the following equations: 
𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐴𝐴𝑅𝑅

𝜇𝜇𝐿𝐿−1 ln ( 𝐴𝐴𝑅𝑅
𝜇𝜇𝐿𝐿−1) − 𝜇𝜇𝐿𝐿−1−𝐴𝐴𝑅𝑅

𝜇𝜇𝐿𝐿∙(1−𝐴𝐴𝑅𝑅)−1 ∙ 𝐴𝐴𝑅𝑅∙𝜇𝜇𝐿𝐿
𝜇𝜇𝐿𝐿−1 ln (𝐴𝐴𝑅𝑅∙𝜇𝜇𝐿𝐿

𝜇𝜇𝐿𝐿−1 ) , 𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐴𝐴𝑅𝑅
𝜇𝜇𝑅𝑅−1 ln ( 𝐴𝐴𝑅𝑅

𝜇𝜇𝑅𝑅−1) − 𝜇𝜇𝑅𝑅−1−𝐴𝐴𝑅𝑅
𝜇𝜇𝑅𝑅∙(1−𝐴𝐴𝑅𝑅)−1 ∙ 𝐴𝐴𝑅𝑅∙𝜇𝜇𝑅𝑅

𝜇𝜇𝑅𝑅−1 ln (𝐴𝐴𝑅𝑅∙𝜇𝜇𝑅𝑅
𝜇𝜇𝑅𝑅−1 ),  

where 𝐿𝐿𝐿𝐿, 𝐿𝐿𝐿𝐿𝐿𝐿, 𝐿𝐿𝐿𝐿𝐿𝐿 are calculated by formulas from (1), 𝑎𝑎 and 𝑏𝑏 are calculated by 
formulas below: 
𝑎𝑎 ≔ 𝐴𝐴𝑅𝑅

(𝜇𝜇𝐿𝐿−1)∙(1+√1−𝐴𝐴𝑅𝑅∙(1+ 1
𝜇𝜇𝐿𝐿−1+ 1

𝜇𝜇𝑅𝑅−1))
,    

𝑏𝑏 ≔ 𝜇𝜇𝑅𝑅∙𝐴𝐴𝑅𝑅

(𝜇𝜇𝑅𝑅−1)∙(1+√1−𝐴𝐴𝑅𝑅∙(1+ 1
𝜇𝜇𝐿𝐿−1+ 1

𝜇𝜇𝑅𝑅−1))
.  

 

 

Appendix 2. Approximation of the distribution of scoring points  

There are the values of scoring points 𝐿𝐿𝑗𝑗 ∈ 𝐿𝐿 ordered in increasing order for 𝑘𝑘 periods (𝑘𝑘 ≥ 5) as sets 𝐿𝐿𝑘𝑘. 
Unified set of points is 𝐿𝐿 = ⋃ 𝐿𝐿𝑘𝑘

𝑘𝑘 . The capacity of the set 𝐿𝐿 is equal to 𝑁𝑁. The capacities of the sets 𝐿𝐿𝑘𝑘 are equal to 
𝑁𝑁𝑘𝑘 thus ∑ 𝑁𝑁𝑘𝑘 = 𝑁𝑁𝑘𝑘 . 

The problem is to determine 𝑋𝑋𝑖𝑖 ∈ 𝐿𝐿 , as well as their minimum number 𝑛𝑛 , 𝑖𝑖 = 0, … , 𝑛𝑛  such that the 
Kolmogorov–Smirnov (𝐾𝐾𝐾𝐾) metric for the resulting distribution 𝐹𝐹𝑛𝑛(𝑥𝑥) with respect to 𝐿𝐿 is not more than the minimum 
of the 𝐾𝐾𝐾𝐾 metrics 𝐿𝐿𝑘𝑘 with respect to 𝐿𝐿. Give an effective distribution function 𝐹𝐹𝑋𝑋(𝑥𝑥) such that 𝐹𝐹𝑋𝑋(min(𝐿𝐿) − 𝜀𝜀) = 0,
𝐹𝐹𝑋𝑋(max(𝐿𝐿) + 𝜀𝜀) = 1 for some 𝜀𝜀 > 0. 

The simplest formula for approximating the distribution on 𝐿𝐿 according to the values of 𝐿𝐿𝑗𝑗, 𝑗𝑗 = 1. . 𝑁𝑁 is as 

follows 𝐹𝐹𝑅𝑅(𝑥𝑥) ≔ 1
𝑁𝑁 ∑ 𝐼𝐼𝑅𝑅𝑗𝑗(𝑥𝑥),𝑁𝑁

𝑗𝑗=1  where  𝐼𝐼𝑅𝑅𝑗𝑗(𝑥𝑥) = {
1 𝑖𝑖𝑖𝑖 𝑥𝑥 ≥ 𝐿𝐿𝑗𝑗
0 𝑖𝑖𝑖𝑖 𝑥𝑥 < 𝐿𝐿𝑗𝑗

. Similarly, the distribution is constructed for any of the 

𝑘𝑘 periods 𝐹𝐹𝑅𝑅𝑘𝑘(𝑥𝑥) ≔ 1
𝑁𝑁𝑘𝑘 ∑ 𝐼𝐼𝑅𝑅𝑘𝑘𝑗𝑗

(𝑥𝑥)𝑁𝑁𝑘𝑘
𝑗𝑗=1 . Metrics of the 𝐾𝐾𝐾𝐾-type which are the distance between the distributions on 𝐿𝐿𝑘𝑘 

and the reference 𝐿𝐿 are defined as 𝑀𝑀𝑘𝑘 ≔ max
𝑗𝑗=1…𝑁𝑁

|𝐹𝐹𝑅𝑅𝑘𝑘(𝐿𝐿𝑗𝑗) − 𝑗𝑗
𝑁𝑁|. In this case, the minimum metric of confidence is 

𝑀𝑀 ≔ min
𝑘𝑘

𝑀𝑀𝑘𝑘, it is also the threshold for determining 𝑋𝑋𝑖𝑖 ∈ 𝐿𝐿 and 𝑛𝑛. 
Definition 

The approximating distribution 𝐹𝐹𝑛𝑛(𝑥𝑥) is determined by increasing values of 𝑋𝑋𝑖𝑖 ∈ 𝐿𝐿 for 𝑖𝑖 = 0, … , 𝑛𝑛 as: 

𝐹𝐹𝑛𝑛(𝑥𝑥) ≔ 1
𝑛𝑛 ∑ 𝐼𝐼(𝑥𝑥, 𝑋𝑋𝑖𝑖, 𝑋𝑋𝑖𝑖+1),𝑛𝑛−1

𝑖𝑖=0  where 𝐼𝐼(𝑥𝑥, 𝑋𝑋𝑖𝑖, 𝑋𝑋𝑖𝑖+1) ≔ {
0 , 𝑖𝑖𝑖𝑖 𝑥𝑥 < 𝑋𝑋𝑖𝑖
1 , 𝑖𝑖𝑖𝑖 𝑥𝑥 > 𝑋𝑋𝑖𝑖 𝑎𝑎𝑛𝑛𝑎𝑎 𝑥𝑥 ≥ 𝑋𝑋𝑖𝑖+1

𝑥𝑥−𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖+1−𝑋𝑋𝑖𝑖

, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒
. 

For a given 𝑛𝑛 to select 𝑋𝑋𝑖𝑖  as point with the minimum distance from the boundaries of 𝐿𝐿 (i.e., 𝑚𝑚𝑖𝑖𝑛𝑛(𝐿𝐿), 𝑚𝑚𝑎𝑎𝑥𝑥(𝐿𝐿)), 

Calibration method consumer 
loans segment 

mortgage 
loans segment 

Logistics calibration (LC) 6,14% 3,46% 
Three-segment hyperbolic calibration (TSHC) with 
approximation 𝑥𝑥(𝑠𝑠) 5,77% 1,50% 

Figure 5. Trapezoidal triangulation of 𝐿𝐿𝑅𝑅𝑅𝑅 curve. 
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which is assumed to be non-extremal. Let this be a natural 𝑚𝑚 (i.e. 𝑚𝑚 − 1 of the first points and 𝑚𝑚 − 1 of the last points 
of 𝑅𝑅 are not considered). Find the minimum 𝐿𝐿 such that 

{
𝑁𝑁 − 𝐿𝐿

𝑛𝑛 = 𝑀𝑀 ∈ ℕ
𝐿𝐿 ≥ 2𝑚𝑚

, 

then 𝑋𝑋0 ≔ 𝑅𝑅𝑚𝑚+1, 𝑋𝑋𝑛𝑛 ≔ 𝑅𝑅𝑁𝑁−𝑚𝑚, 𝑋𝑋𝑖𝑖 ≔ 𝑅𝑅𝑖𝑖∙𝑀𝑀+[𝐿𝐿
2] for 𝑖𝑖 = 1, … , 𝑛𝑛 − 1. The metric 𝑀𝑀𝑛𝑛 ≔ max

𝑗𝑗=1…𝑁𝑁
|𝐹𝐹𝑛𝑛(𝑅𝑅𝑗𝑗) − 𝑗𝑗

𝑁𝑁| is compared 

with the metric M. There is selected the minimum 𝑛𝑛 such that 𝑀𝑀𝑛𝑛 ≤ 𝑀𝑀. 
Approximation testing. Examples: 

1) Consumer loans segment: number of samples is 𝑛𝑛 =  23 231 154, number of approximation points is 𝑁𝑁 =
16, metric value is 𝑀𝑀 = 2.16%; 

2) Mortgage loans segment: number of samples is 𝑛𝑛 =  2 425 852, number of approximation points is 𝑁𝑁 = 26, 
metric value is 𝑀𝑀 = 2.39%. 

  

Figure 6. Testing the approximation of scoring distributions. 
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University Higher School of Economics (HSE University). 
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