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7.4.5. Prove that there are infinitely many integers m and n such that
If — 2| is less than

n

b) s () & (@) o

7.4.6.* (a) For any € > 0 there exists a countable set of intervals, the
sum of whose lengths is less than e, such that, if a is not in any of the

intervals and ¢ is any positive number, there exist m,n € Z, n > 0, such

1
that ‘Ol— % < “2Fe-

(Rigorous reformulation: for any € > 0, the set of real numbers that are
not (2 + e)-approximated has measure 0.) ,
(b) Hurwitz-Borel theorem. For any irrational number «, there are

infinitely many m/n € Q, such that [a — %‘ <
(¢) The number v/5 in the Hurwitz-Borel theorem cannot be increased:
for any ¢ > /5 there is an irrational number o such that the inequality

_m 1
o n <cn2

holds for only a finite number of m/n € Q,

Suggestions, solutions, and answers

7.4.3. This problem is analyzed in [Bol78] and [Ar98].
7.4.5. (b) For any positive integers N, k and any irrational number «
there are at least k different fractions m/n € Q for which n < Nk and

.a = %' < —A}—n For details, see the suggestion to problem 7.5.14 below.

5. The pigeonhole principle and its application to geometry!
(3) By I. V. Arzhantsev

The area of a figure

We will call a planar figure A simple if it can be cut into a finite num-
ber of triangles. Its area S(A) is defined as the sum of the areas of the
corresponding triangles.

Recall that a point (20,y0) € A is called an interior point of A if there
Is a circle with center (zg, 1) entirely lying in A.

It is easy to verify that the function “area” on the set of simple figures
has the following properties:

e if A has interior points, then S(A4) > 0;

¢ if A is the union of simple figures 4; and As without common interior
points, then S(A) = S(A;) + S(A);

e congruent figures have the same area;

e the area of a unit square is 1.

'Based on [Yad].
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B

FIGURE 9

More generally, a planar set B is called measurable if for any € > 0 there
exist simple figures A; and Aj such that A; C B C A and S(A42) —S(A;) <
e (see Fig. 9). For measurable sets, one can also define the concept of area
and prove that the area is the only function on the set of measurable sets
that has the four properties listed above.

Note that not every plane set is measurable (see, for example, problem
7.5.2). To those who want to learn more about the concept of area and its
generalizations we can recommend the book [Leb].

7.5.1. Prove that a bounded figure whose boundary consists of a finite num-
ber of segments and arcs of circles is measurable.

Recall that a planar set is called bounded if it is contained in some circle.

7.5.2. Prove that any measurable set is bounded.

The pigeonhole principle for areas

The following geometric statement resembles the well-known “pigeonhole
principle” and is therefore usually called the geometric pigeonhole principle
or the pigeonhole principle for areas.

7.5.3. Pigeonhole principle for areas. Let A be a measurable set, and
let Ay, ..., Ay be measurable subsets of A. Suppose that

S(A) < S(A1) + S(Az) + - - + S(Am).

Then at least two of the sets A, ..., A, have a common interior point.
Suggestion. Assume, to the contrary, that the sets have no common
interior points. Then

S(A1UAyU---UAp) = S(A1) + S(A2) + - - + S(Ap).

Since Ai,..., Ay € A and the complement A — (A3 U Ay U---U A,,) are
measurable, we have

S(A; UAgU---U Am) < S(A),

a contradiction.




2re

‘ea,
>ts

its

le
le

w

5. THE PIGEONHOLE PRINCIPLE AND GEOMETRY 163

7.5.4. Let A be a measurable set, and let Ay,..., A, be measurable subsets
of A. Suppose that

nS(A) < S(Ar) + 5(As) + - + S(Ay,)

for some positive integer n < m. Then at least n + 1 of Ai,..., Ay, have a
common interior point.

Suggestion. If no n + 1 sets share an interior point, then each interior
point of the set 4; U---UA,, is “counted” no more than n times in the sum

S(A1) +S(A2) +--- + S(Am),
and therefore

S(A1) +S(A2) + - + S(Ap) < nS(A).

7.5.5. A unit square contains a set whose area is more than % Prove that
this set contains two points, symmetric about the center of the square.

7.5.6. The area of a set on the sphere is greater than half of the area of the
sphere. Prove that this set covers a pair of diametrically opposite points on
the sphere.

The theorems of Blichfeldt and Minkowski

Fix a rectangular Cartesian coordinate system on the plane and through
each point with integer coordinates draw two lines, parallel to the coordinate
axes. The resulting system of lines is called an integer lattice, and points
with integer coordinates are called lattice points. The integer lattice cuts
the plane into unit squares.

Consider an integer lattice and a measurable plane set. The number of
lattice points covered by the set depends not only on the shape of the set,
but also its location. For example, there are sets with arbitrarily large area
that do not cover a single lattice point (give an example!).

7.5.7. Blichfeldt’s theorem. Let A be a measurable set on the coordinate
plane with area greater than n. Then A can be translated so that it covers
at least n + 1 lattice points.

Suggestion. The integer lattice cuts A into a finite number of pieces (the
figure A is bounded!). The condition S (A) > n shows that the number of
pieces is not less than n + 1. Place all the squares that our figure intersects
“in a single deck” (see Fig. 10). We will get at least n + 1 shapes inside a
unit square with the total area greater than n.

Applying problem 7.5.4 to the unit square we see that there is a point
P that belongs to at least n + 1 pieces of our set. It suffices to translate A
by the vector that connects P with the lattice point.
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FIGURE 10

For n = 1, Blichfeldt’s theorem can be reformulated as follows:

7.5.8. Let A be a measurable figure on the coordinate plane whose area is
more than 1. Then A contains two distinct points (x1,y1) and (z2,y2) such
that xo — 1 and yy — 1, are integers.

Recall that a plane figure A is called convez if the segment joining any
two of its points lies entirely in A.

The following theorem, due to the German mathematician Hermann
Minkowski, appears in geometric number theory.

7.5.9. Minkowski’s theorem. Let A be a convex measurable set with
area greater than 4 that is symmetric with respect to the origin. Then A
contains a point with integer coordinates different from the origin.
Suggestion. Apply a homothety with the center at the origin and co-
efficient % to A, obtaining the set B, whose area is greater than 1. By
Blichfeldt’s theorem, B contains distinct points (1,y1) and (z2,ys), for
which 29 — x1 and y, — y; are integers. By symmetry, (—z, —y;) also lies
in B, and because B is convex, the midpoint O of the segment connecting
(—x1,—y1) and (29,3s) also lies in B. The point O has the coordinates

oo B2 ) Therefore, the point with coordinates (T2 — 1,92 — y1) lies
in A.

7.5.10. Show by an example that the condition S (A) > 4 in Minkowski’s
theorem cannot be replaced by S(A) > 4.

7.5.11. Let A be a measurable set on the coordinate plane whose area is
less than n. Prove that A can be translated so that it covers at most n — 1
lattice points.
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7.5.12. Let A be a convex measurable set that is symmetric with respect
to the origin and has area greater than 4n. Prove that A contains at least
2n + 1 lattice points.

Dirichlet’s theorem on approximation of irrational numbers

7.5.13. Dirichlet’s theorem. For an arbitrary irrational number o and an
arbitrary natural number s there exist integers x and y such that 0 < z <s
and

1
lax —y| < -.
s

Suggestion. We give a sketch of a proof using Minkowski’s theorem. A
direct proof can be obtained by following the suggestion to problem 7.5.14.
Consider

1 1
A={@y:laz—yl <3, ll<s+5}.

This set is a parallelogram whose area is

2 1 1
Zoa(s+z)=4(1+5) >4
s \°T3 T2

This figure is convex and symmetrical with respect to the origin (see Fig.
11). Minkowski’s theorem states that in A there is a point with integer
coordinates other than (0,0). We can assume that the first coordinate of
this point is positive (explain this!). Thus, the theorem is proved.

7.5.14. Prove that for arbitrary irrational number « and natural number s

there is a rational number 7 such that 0 <n < s and 'a — %‘ < %

FIGURE 11
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7.5.15. Prove that for an arbitrary irrational number o there are infinitely
many rational numbers - such that

m 1
P N
n n

Suggestions, solutions, and answers

7.5.1. Given a disk, one can circumscribe a regular n-gon around it and
also inscribe a regular n-gon in it. The difference in the areas of these two
polygons can be made arbitrarily small by choosing a sufficiently large n.
Consequently, disks and segments of disks are measurable.

7.5.2. Any simple set is obviously bounded. Since a measurable set is
contained in a simple set, it is also bounded.

7.5.5. Let F be the given figure, and let F” be the figure symmetric to
it with respect to the center of the square. Then S(F)+ S(F') > 1 and
by the pigeonhole principle for areas (problem 7.5.3) there exists a point
X € FNF'. Obviously, X and the point X’ symmetric to X form the
required pair.

7.5.6. Consider a figure that is symmetrical to a given one relative to
the center of the sphere, and repeat the arguments of the previous problem.

7.5.10. Consider the open square {(z,y): lz] <1,y < 1}.

7.5.11. Note that the half-open square —k < z,y < k covers exactly 4k2
lattice points when translated by any vector. Choose k large enough so that
A is contained in some such half-open square K. By Blichfeldt’s theorem,
one can translate the set K — A to cover at least 4k2 — n, + 1 lattice points.
Since all these lattice points lie in the translated image of the square K, the
image of A will cover at most n — 1 nodes.

7.5.12. Apply a homothety with center at the origin and coefficient %
to A, getting the figure B whose area is greater than n. It follows from
Blichfeldt’s theorem that B contains distinct points (zo,%0), - - ., (Tn, Yn),
for which all the differences z; — xj and y; —y; are integers. We can assume
that 290 > 1 > ... > 2, and that among the points (x;,;) for which
T; = %0, the maximum value of the second coordinate is Yo. As in the proof
of Minkowski’s theorem, it can be shown that A contains distinct points
(0,0), (w0 = @i, 90 — wi), (5 — 0, ys — yo).

7.5.14. Tt suffices to divide both sides of the inequality in Dirichlet’s
theorem by z.

Alternatively, you can solve this problem without using geometric con-
siderations: consider the fractional parts of the numbers a, 20, ..., sa and
divide the segment [0, 1] into s equal parts. There are two cases possible.

1. Each of the s segments contains exactly one of the numbers a,
2a,...,50. Then for some n < s the inequality {na} < 1/s holds, and
the desired number has the form m/n, where m —= [na].

2. The fractional parts of the numbers nia and naa lie in one segment.
Then the desired number is m/n, where m = [[n1a] — [noa]|, n = |ny — na|.




