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S. Smale showed that suspensions over conjugate diffeomorphisms are topologically equiv-

alent. Under certain assumptions, the conjugacy of diffeomorphisms is equivalent to the

equivalence of suspensions. We show that this criterion holds for gradient-like diffeomor-

phisms with three periodic orbits on arbitrary orientable surfaces, prove that 3-manifolds

admitting suspensions over such diffeomorphisms are small Seifert manifolds, and cal-

culate the homology groups of these manifolds and the number of equivalence classes of

flows on each admissible Seifert manifold. Bibliography: 12 titles. Illustrations: 1 figure.

1 Introduction. Formulation of the Result

The notion of a suspension is an extremely useful construction in the theory of dynamical

systems which allows us, for a given diffeomorphism f of a manifold, to construct a flow, called

a suspension over f . As was shown in [1], suspensions over conjugate diffeomorphisms are

topologically equivalent. The converse assertion is false in the general case. However, under

certain assumptions, the conjugacy of the corresponding diffeomorphisms is equivalent to the
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equivalence of suspensions. As shown in [2], such a criterion holds if the diffeomorphism is

defined on a manifold whose fundamental group does not admit any epimorphism into the

group Z. Thus, for orientable surfaces, this criterion holds only on the 2-sphere. In this paper,

we show that the criterion is generalized to the class of gradient-like diffeomorphisms with three

periodic orbits on arbitrary orientable surfaces.

Let Sp be a closed orientable surface of genus p > 0, and let G denote the class of orientation–

preserving Morse–Smale diffeomorphisms f : Sp → Sp whose non-wandering set consists of ex-

actly three periodic orbits. A complete topological classification of diffeomorphisms in G was

obtained in [3] (see also [4], where effective algorithms for distinguishing invariants of such

systems are established). In [3], it was also shown that the number of topological conjugacy

classes of diffeomorphisms in the class G on a surface of genus p is calculated by the formula

Np = ϕ(4p) + ϕ(4p+ 2), where ϕ(n) is the Euler function, i.e., the number of integers coprime

with n that do not exceed n.

We recall that a suspension over a diffeomorphism f : Sp → Sp is the flow obtained as

follows. We define the flow ξt on the manifold Sp×R by the formula ξt(s, r) = (s, r+ t) and the

diffeomorphism g : Sp×R → Sp×R by the formula g(s, r) = (f(s), r−1). We set Φ = {gk, k ∈ Z}
and Mf = (Sp × R)/Φ. We denote by ν

f
: Sp × R → Mf the natural projection and by f t the

flow on the manifold Mf given by f t(x) = ν
f
(ξt(ν−1

f
(x))). The flow f t is called the suspension

over the diffeomorphism f .

We denote by Gt the class of suspensions over diffeomorphisms f ∈ G. According to [5,

Theorems 2.1 and 2.2], the non-wandering set of the flow f t consists of attracting A, repelling

R, and saddle S periodic orbits. Let us choose a canonical tubular neighborhood V of the orbit

A and two simple closed curves: on T = ∂V a parallel L ⊂ T (a curve homotopic in V to the

orbit A) and a meridian M ⊂ T (a curve homotopic to zero on V and essential on the torus T ).

The curves L and M can be thought of as loops at a point of L ∩ M . Hence their homotopy

classes are generators of the group π1(T ). If there is no confusion, we use the same notation L

and M .

Let ρ denote the metric on a manifold Mn. Every hyperbolic periodic orbit O of a flow

f t : Mn → Mn possesses stable and unstable manifolds:

W s
O = {y ∈ X : lim

k→+∞
d(O, fk(y)) → 0},

W u
O = {y ∈ X : lim

k→−∞
d(O, fk(y)) → 0}.

The set γ = W u
S ∩ T is a knot on the torus T . We write its homotopy type with respect to

the generators L, M of the fundamental group π1(T ) as 〈γ〉 = 〈l,m〉. We note that the choice

of the longitude L is unique up to an isotopy. However, the number l is independent of the

choice of generators, whereas m depends on the choice of parallels. According to [3, Theorem 2],

l � 3 and m can be any integer coprime with l. In this case, a pair of numbers (l,m) uniquely

determines the number d ∈ {1, . . . , l − 1} by d ·m ≡ 1 (mod l), independently of the choice of

generators. We note, that l and d are coprime.

In this paper, we establish the following classification result.

Theorem 1.1. Flows f t, f ′t ∈ Gt are topologically equivalent if and only if (l, d) = (l′, d′).

Thus, the pair of numbers (l, d) is a complete topological invariant of the flow f t ∈ Gt.

According to [3, Theorem 1], the pair of numbers (l, d) is also a complete topological invariant

of the corresponding diffeomorphism f ∈ G, which directly implies the following fact.
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Corollary 1.1. Flows f t, f ′t ∈ Gt are topologically equivalent if and only if the corresponding

diffeomorphisms f, f ′ ∈ G are topologically conjugate.

The connection between gradient-like diffeomorphisms f ∈ G and periodic homeomorphisms,

established in [3], allows us to describe the topology of manifolds Mf admitting flows f t ∈ Gt

as follows (see also [6] where a larger class of flows was considered).

Theorem 1.2. Let a flow f t ∈ Gt have parameters (l, d). Then Mf is a small Seifert

manifold of one of the following types:

(1) Mf
∼= M(S2, (2, 1), (l, d), (l, l/2 − d)) if l is even and l/2 is even,

(2) Mf
∼= M(S2, (2, 1), (l, d), (l/2, (l/2 − d)/2)) if l is even and l/2 is odd,

(3) Mf
∼= M(S2, (2, 1), (l, d), (2l, l − 2d)) if l is odd.

In this paper, we calculate the number of equivalence classes of the flows under consideration

on all admissible manifolds.

Theorem 1.3. The supporting manifold of any flow f t from the class Gt, which is the

suspension over the diffeomorphism f : Sp → Sp ∈ G, is homeomorphic to exactly one of the

following manifolds:

(1) Ap,d = M(S2, (2, 1), (4p, d), (4p, 2p − d)), p ∈ N, d ∈ {1, . . . , p− 1}, (d, 4p) = 1,

(2) Bp,d=M(S2, (2, 1), (4p+2, d), (2p+1, p−(d− 1)/2), p ∈ N, d ∈ {1, . . . , 2p−1}, (d, 4p+2) = 1.

Moreover,

(1) each manifold Ap,d admits exactly two classes of topological equivalence of flows in set Gt

represented by flows with parameters (4p, d) and (4p, 2p− d),

(2) each manifold Bp,d admits exactly two classes of topological equivalence of flows in the set

Gt, represented by flows with parameters (4p+ 2, d) and (2p+ 1, p− (d− 1)/2).

We also calculate all homology groups with integer coefficients of the manifolds Ap,d and Bp,d.

Theorem 1.4. Homology groups with integer coefficients of the manifolds Ap,d and Bp,d are

isomorphic to the following groups:

(1) H3(Ap,d) ∼= H2(Ap,d) ∼= Z and H1(Ap,d) ∼= Z× Z2,

(2) H3(Bp,d) ∼= H2(Bp,d) ∼= H1(Bp,d) ∼= Z.

2 Preliminaries

2.1. Gradient-like diffeomorphisms. Let Sp be a closed orientable surface of genus

p � 0 with metric ρ. Homeomorphisms f, f ′ : Sp → Sp are topologically conjugate if there is a

homeomorphism h : Sp → Sp such that f ′h = hf . A point x ∈ Sp is called wandering for a

homeomorphism f if there is an open neighborhood Ux of the point x such that fn(Ux)∩Ux = ∅

for all n ∈ N. Otherwise, the point is called non-wandering. The set of non-wandering points of
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f is called the non-wandering set and is denoted by Ωf . If the set Ωf is finite, then each point

r ∈ Ωf is periodic with some period mr ∈ N.

Let f be a diffeomorphism. A point r ∈ Ωf is called hyperbolic if the absolute values of

all eigenvalues of the Jacobian matrix
(
∂fmr

∂x

) ∣∣∣
r
are not equal to 1. If the absolute values of

all eigenvalues are less (greater) than 1, then the point r is called a sink (a source). Sinks and

sources are referred to as nodes. If a hyperbolic periodic point is not a node, then it is a saddle

point.

For a hyperbolic periodic point r of a diffeomorphism f we denote by qr the number of

eigenvalues of the Jacobian matrix
(
∂fmr

∂x

) ∣∣∣
r
modulo larger than 1. The hyperbolic structure of

a periodic point r implies the existence of stable W s
r = {x ∈ Sp : lim

k→+∞
ρ(fk·mr(x), r) = 0} and

unstable W u
r = {x ∈ Sp : lim

k→+∞
ρ(f−k·mr(x), r) = 0} manifolds that are smooth embeddings of

R
2−qr and R

qr respectively.

Stable and unstable manifolds are called invariant manifolds. The connected component of

the set W u
r \r (W s

r \r) is called the unstable (stable) separatrix. A diffeomorphism f : Sp → Sp is

called a Morse–Smale diffeomorphism if Ωf is finite and hyperbolic and the invariant manifolds

of periodic points intersect transversally.

Periodic data of a periodic orbit Or of a periodic point r is a set of numbers (mr, qr, νr) such

that mr is the period of r, qr = dimW u
r , and νr is the orientation type of r, i.e., νr = +1 (νr =

−1) if fmr |Wu
r
preserves (changes) orientation. For orientation–preserving diffeomorphisms the

orientation type of all nodes is equal to +1, and the orientation type of saddle points can be +1

or −1.

2.2. Seifert manifolds. We recall some facts from the theory of Seifert manifolds (see [7]

for details).

A solid torus V = D
2 × S

1 divided into fibers {x} × S
1 is called a trivially fibered solid

torus. We consider the solid torus V as a cylinder D
2 × [0, 1] with the bases glued together

by rotation by an angle 2πm/l for coprime integers m, l, l > 1. The partition of the cylinder

into segments {x} × [0, 1] determines the fibration of the solid torus into circles, called fibers.

The segment {0} × [0, 1] generates a singular fiber; all other (nonsingular) fibers wraps l times

around the singular fiber and m times around the meridian of the torus. The number l is called

the multiplicity of the singular fiber. A solid torus with such a partition into fibers is called a

nontrivially fibered solid torus with orbital invariants (l,m).

By a Seifert manifold we mean a compact, orientable 3-manifold M divided into disjoint

simple closed curves (fibers) in such a way that each fiber has a neighborhood foliated by fibers,

which is fiberwise homeomorphic to the fibered solid torus. Such a partition is called Seifert

fibration. Fibers mapped under such a homeomorphism to the core of a nontrivially fibered solid

torus are called singular.

The base of a Seifert manifold M is a compact surface Σ = M/∼, where ∼ is an equivalence

relation such that x ∼ y if and only if x and y belong to the same fiber.

The base of any Seifert manifold is a compact surface that is closed if and only if the manifold

M is closed. We say that a Seifert manifold is small if its base is 2-sphere and it has at most

three singular fibers.

The Seifert fibration M with base Σ and orbital invariants (l1,m1), . . . , (ls,ms), s ∈ N is
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usually written as M(Σ, (l1, d1), . . . , (ls, ds)), where mi · di ≡ 1 (mod li), i ∈ {1, . . . , s}. The
orientation on fibers of a Seifert manifold is uniquely determined by the orientation of one of

fibers.

Two Seifert fibrations M,M ′ are isomorphic if there is a homeomorphism h : M → M ′ that
takes fibers of one fibration to fibers of the other with preserving the orientation of fibers. In

this case, the homeomorphism h is called an isomorphism of Seifert fibrations.

Proposition 2.1 ([7, Theorem 10.2]). Seifert fibrations

M(Σ, (l1, d1), . . . , (ls, ds)), M ′(Σ′, (l′1, d
′
1), . . . , (l

′
s′ , d

′
s′))

are isomorphic if and only if

• Σ is homeomorphic to Σ′,

• s = s′, li = l′i, di ≡ ±d′i (mod li) for i ∈ {1, . . . , s},

• if the surface Σ is closed, then
s∑

i=1

di
li
= ±

s∑
i=1

d′i
l′i
.

Proposition 2.2 ([7, Theorem 2.3]). If two small Seifert fibrations M and M ′ with three

singular fibers are not isomorphic, then the Seifert manifolds M and M ′ are not homeomorphic.

2.3. Periodic homeomorphisms. A homeomorphism ϕ : Sp → Sp is said to be periodic

if there exists n ∈ N such that ϕn = id. The smallest n is called a period of ϕ. We say that x0
is a point of smaller period n0 < n of a homeomorphism ϕ if ϕn0(x0) = x0.

According to [8] (see also [9, 10]), for any orientation–preserving periodic homeomorphism

ϕ : Sp → Sp the set Bϕ of points of smaller period is finite and the space of orbits of the action

of the homeomorphism ϕ on Sp is an orientable surface of genus g � p (a modular surface).

In a neighborhood of a point x0 of smaller period n0, the map fn0 is conjugate to a rotation

by a rational angle 2πm0
l0
, where l0 = n/n0, 0 < m0 < l0, (m0, l0) = 1. We introduce the

notation: Xi, i = 1, . . . , s, are orbits in Bϕ, ni are their periods, and li = n/ni. We denote by

mi/li the corresponding rotation number and determine the number di ∈ {1, . . . , ni − 1} from

the condition di · mi ≡ 1 (mod li). The set of parameters (n, p, g, n1, . . . , ns, d1, . . . , ds) of a

periodic homeomorphism ϕ is called the complete characteristic.

Proposition 2.3 ([8]). Two periodic homeomorphisms are topologically conjugate if and

only if they have the same, up to a renumbering, complete characteristics.

Proposition 2.4 ([3, Lemma 1]). Any diffeomorphism f : Sp → Sp ∈ G has the form f = ζϕ,

where ζ is a one-time shift of a gradient-like flow and ϕ : Sp → Sp is a periodic homeomorphism

such that

• Bϕ = Ωf , ϕ|Bϕ = f |Ωf
and the saddle orbit of the diffeomorphism f has period n/2;

• the homeomorphism ϕ has the complete characteristic of one of the following types:

1) (4p, 0, p, 2p, 1, 1, 1, q, 2p − q) if 0 < q < 2p,

2) (4p, 0, p, 2p, 1, 1, 1, q, 6p − q) if 2p < q < 4p,

3) (4p+ 2, 0, p, 2p+ 1, 2, 1, 1, q, 2p+ 1− 2q) if 0 < q � p,
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4) (4p+ 2, 0, p, 2p+ 1, 2, 1, 1, q, 6p+ 3− 2q) if p < q � 2p;

• the suddle orbit of the diffeomorphism f has period n/2.

Let m/l denote the rotation number corresponding to the sink orbit of the diffeomorphism

f ∈ G. Let us determine d ∈ {1, . . . , l − 1} by the relation d ·m ≡ 1 (mod l).

Proposition 2.5 ([3, Theorem 1]). Diffeomorphisms f, f ′ ∈ G are topologically conjugate

if and only if (l, d) = (l′, d′).

Thus, the pair (l, d) is a complete topological invariant of the diffeomorphism f ∈ G.

3 Classification of Flows in Gt

Proof of Theorem 1.1. Necessity. Let flows f t, f ′t ∈ Gt with parameters (l, d), (l′, d′) be
topologically equivalent via a homeomorphism h : Mf → Mf ′ . Then h maps periodic orbits of

the flow f t into periodic orbits of the flow f ′t with the same type and direction of motion, i.e.,

A′ = h(A), S′ = h(S), R′ = h(R). Without loss of generality we can assume that V ′ = h(V ).

Since γ = ∂V ∩ W u
S and γ′ = ∂V ′ ∩ W u

S′ , we have γ′ = h(γ). Thus, h|V : V → V ′ is a

homeomorphism of solid tori that preserves the orientation of the generators A and A′. Then

(see, for example, [11]) the homeomorphism h|T induces an isomorphism h∗ : Z2 → Z
2 given by

the matrix

(
1 k

0 1

)
in the generators L, M and L′, M ′ of the tori T = ∂V and T ′ = ∂V ′, where

k ∈ Z and

(l′,m′) = (l,m)

(
1 k

0 1

)
; (3.1)

here, 〈l,m〉; 〈l′,m′〉 are homotopy types of knots γ and γ′ respectively. From (3.1) we immedi-

ately get

l′ = l, m′ ≡ m (mod l). (3.2)

By definition, the number d′ ∈ {1, . . . , [(l − 1)/2]} is determined by d′ ·m′ ≡ ±1 (mod l). In view

of (3.2), d′ coincides with the number d ∈ {1, . . . , [(l − 1)/2]} defined by d ·m ≡ ±1 (mod l).

Sufficiency. Let f t, f ′t ∈ Gt be flows with parameters (l, d), (l′, d′) respectively, and let

(l, d) = (l′, d′). By Proposition 2.5, the corresponding diffeomorphisms f, f ′ ∈ G are defined on

the same surface Sp and there is a homeomorphism h0 : Sp → Sp such that

h0f = f ′h0. (3.3)

We introduce the homeomorphism H : Sp × R → Sp × R by the formula H(s, r) = (h0(s), r).

We recall that the flow ξt on the manifold Sp × R is given by ξt(s, r) = (s, r + t) and the

diffeomorphism g : Sp × R → Sp × R is given by g(s, r) = (f(s), r − 1), G = {gk , k ∈ Z},
Mf = (Sp × R)/G, ν

f
: Sp × R → Mf is the natural projection, and the flow f t on the

manifold Mf is given by f t(x) = ν
f
(ξt(ν−1

f
(x))). Similar notation with prime is used for the

flow f ′t. It is immediately verified that Hξt = ξtH and (3.3) implies Hg = g′H. Then the

homeomorphism H is projected into the homeomorphism h : Mf → Mf ′ according to the

formula h(x) = ν
f ′ (H(ν−1

f
(x))); moreover, hf t = f ′th.

9



4 Topology of Manifold Mf

Proof of Theorem 1.2. Let a diffeomorphism f ∈ G have the form f = ζϕ, where ζ is a

one-time shift of a gradient-like flow and ϕ is a periodic homeomorphism. Thus, f and ϕ are

homotopic. This fact implies that the manifolds Mf and Mϕ are homeomorphic. By Proposition

2.4, Mϕ is a Seifert manifold whose base is a sphere and with at most three singular fibers of

one of the following types:

1) Mϕ
∼= M

(
S
2, (2, 1), (4p, d), (4p, 2p− d)

)
, 0 < d < 2p, (d, 2p) = 1,

2) Mϕ
∼= M

(
S
2, (2, 1), (4p, d), (4p, 6p− d)

)
, 2p < d < 4p, (d, 2p) = 1,

3) Mϕ
∼= M

(
S
2, (2, 1), (2p+ 1, d), (4p+ 2, 2p+ 1− 2d)

)
, 0 < d � p, (d, 4p+ 2) = 1,

4) Mϕ
∼= M

(
S
2, (2, 1), (2p+ 1, d), (4p+ 2, 6p+ 3− 2d)

)
, p < d � 2p, (d, 4p+ 2) = 1.

Let us show that any manifold of type 2) is homeomorphic to a manifold of type 1). Indeed,

let us set d = 4p − d̃. Then the manifold of type 2) takes the form M(S2, (2, 1), (4p, 4p −
d̃), (4p, 2p + d̃)), 0 < d̃ < 2p, (d̃, 2p) = 1. Since 1 ≡ −1 (mod 2), 4p − d̃ ≡ −d̃ (mod 4p), and

2p+ d̃ ≡ −(2p− d̃) (mod 4p), from Proposition 2.1 it follows that

M(S2, (2, 1), (4p, d), (4p, 6p − d)) ∼= M(S2, (2, 1), (4p, d̃), (4p, 2p− d̃)).

Thus, any manifold Mf is a Seifert manifold of type 1) or 3). Expressing the parameters of

the Seifert manifold in terms of the flow parameters (l, d), we obtain a list of manifolds of three

types which was announced in the theorem. Moreover, the type 1 (2 or 3) corresponds to the

suspension over the diffeomorphism f with fixed sink and source (fixed sink and source of period

2 or sink of period 2 and fixed source).

5 Counting the Number of Flow Equivalence Classes
on a Given Manifold

Proof of Theorem 1.3. As was shown in the proof of Theorem 1.2], the supporting man-

ifold Mf of the flow f t ∈ Gt can have one of the following forms:

(1) Mf
∼= M(S2, (2, 1), (l, d), (l, l/2 − d)), l = 4p, p ∈ N,

(2) Mf
∼= M(S2, (2, 1), (l, d), (l/2, l/2−d

2 )), l = 4p+ 2, p ∈ N,

(3) Mf
∼= M(S2, (2, 1), (l, d), (2l, l − 2d)), l = 2p+ 1, p ∈ N.

By Proposition 2.1, the set of manifolds of type 2 coincides with the set of manifolds of type

3, and all such manifolds have the form

Bp,d = M(S2, (2, 1), (4p+2, d), (2p+1, p−(d − 1)/2)), p ∈ N, d ∈ {1, . . . , 2p−1}, (d, 4p+2) = 1.

By Propositions 2.1 and 2.2, Bp,d
∼= Bp′,d′ if and only if p = p′, d = d′. All manifolds of type

1 have the form

Ap,d = M(S2, (2, 1), (4p, d), (4p, 2p − d)), p ∈ N, d ∈ {1, . . . , 2p− 1}, (d, 4p) = 1,
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and the same propositions imply that no manifold of the from Ap,d is homeomorphic to a manifold

of the form Bp,d, but Ap,d
∼= Ap′,d′ if and only if p = p′, d = 2p − d′. Thus, pairwise distinct

manifolds of type 1 have the form

Ap,d = M(S2, (2, 1), (4p, d), (4p, 2p − d)), p ∈ N, d ∈ {1, . . . , p− 1}, (d, 4p) = 1.

The aforesaid and classification of flows of class Gt (see Theorem 1.1) lead to the following:

(1) each manifold Ap,d admits exactly two classes of topological equivalence of flows of the class

Gt, represented by flows with parameters (4p, d) and (4p, 2p− d),

(2) each manifold Bp,d admits exactly two classes of topological equivalence of flows of the class

Gt, represented by flows with parameters (4p+ 2, d) and (2p+ 1, p− (d− 1)/2).

The theorem is proved.

6 Homology Groups of Mapping Tori

In this section, we prove Theorem 1.4. The proof follows from a more general result on

homology groups with integer coefficients for manifolds Mϕ, where ϕ = ϕq,m is a periodic

homeomorphism defined as follows.

Let q ∈ N and Πq be a regular 2q-gon with the scheme a1a2 . . . aqa
−1
1 a−1

2 . . . a−1
q . We choose

m ∈ {1, . . . , q − 1} and denote by ϕ : Πq → Πq the rotation of the polygon around the center

by the angle θm = πm/q in the positive direction. Gluing together like sides of the polygon Πq,

we obtain a closed orientable surface Sp of genus p = [q/2], where the rotation ϕ induces the

homeomorphism ϕ : Sp → Sp (see Figure).

Figure.

Let μ : Πq → Sp be the natural projection, and let {i} = i + qZ ∈ Zq, i ∈ Z. We set

� = (q,m), κm = m/�, κq = q/� and calculate the homology groups of Mϕ separately in the

cases of even and odd q.

Case q = 2p.

Lemma 6.1. Assume that q = 2p and p ∈ N. Then the homology groups of the manifold

M = Mϕ are isomorphic to the following groups:

• H3(M) ∼= Z and H2(M) ∼= H1(M) ∼= Z
�+1 if κm is even,

• H3(M) ∼= H2(M) ∼= Z and H1(M) ∼= Z× Z
�
2 if κm is odd.
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Proof. For i = 1, . . . , q we set z{i} = μ(ai). Then H1(Sp) = 〈[z{1}], . . . , [z{q}]〉 ∼= Z
q and the

automorphism ϕ∗ : H1(Sp) → H1(Sp) induced by ϕ is described by

ϕ∗([z{i}]) = (−1)

[
i−1+m

q

]
[z{i+m}], i = 1, . . . , q. (6.1)

We set N = ν(Sp × 0), where ν = νϕ : Sp × [0, 1] → Mϕ is the natural projection. To

calculate the homology groups of M , we use the topological pair (M,N) and the corresponding

homological sequence [12, Theorem 4.4.3]

. . . −→ Hn(N)
ın∗−→ Hn(M)

jn∗−→ Hn(M,N)
∂n∗−→ Hn−1(N) −→ . . . . (6.2)

Let z0{i} = ν(z{i} × 0) for i = 1, . . . , q. Then Hn(N) = 0 for n > 2 and

H2(N) ∼= Z, H1(N) = 〈[z0{1}], . . . , [z0{q}]〉 ∼= Z
q. (6.3)

We calculate the groups Hn(M,N). For this purpose we consider the suspension ΣSp ob-

tained by contracting the bases Sp × 0 and Sp × 1 of the cylinder Sp × [0, 1] into points v0 and

v1. Let V = {v0, v1}. Then M/N = ΣSp/V . The subsets N ⊂ M and V ⊂ ΣSp are closed.

They are deformation retracts of some neighborhoods of UN ⊂ M and UV ⊂ ΣSp. Hence from

the relations between groups of absolute and relative homology [7, Proposition 2.22] for n > 0

it follows that

Hn(M,N) ∼= Hn(M/N) = Hn(ΣSp/V ) ∼= Hn(ΣSp, V ). (6.4)

According to the isomorphism of the suspension [12, Theorem 4.4.10], we have

H3(ΣSp) ∼= H2(Sp) ∼= Z, H2(ΣSp) ∼= H1(Sp) ∼= Z
q, H1(ΣSp) = 0.

Substituting the last formulas into the homological sequence of the pair (ΣSp, V ), we get

0 −→ Z
j3∗−→ H3(ΣSp, V )

∂3∗−→ 0
ı2∗−→ Z

q j2∗−→ H2(ΣSp, V )

∂2∗−→ 0
ı1∗−→ 0

j1∗−→ H1(ΣSp, V )
∂1∗−→ Z

2 ı0∗−→ Z−→0.

Consequently,

H3(ΣSp, V ) ∼= Z, H2(ΣSp, V ) ∼= Z
q, H1(ΣSp, V ) ∼= Z. (6.5)

By (6.2)–(6.5), the following sequence is exact:

0 −→ H3(M)
j3∗−→ Z

∂3∗−→ Z
ı2∗−→ H2(M)

j2∗−→ Z
q ∂2∗−→ 〈[z0{1}], . . . , [z0{q}]〉

∼= Z
q ı1∗−→ H1(M)

j1∗−→ Z
∂1∗−→ Z

ı0∗−→ Z−→0. (6.6)

Since Sp is an orientable 2-manifold and the homeomorphism ϕ preserves the orientation, M

is an orientable closed 3-manifold. Hence H3(M) ∼= Z [7, Theorem 3.26] and j3∗ in (6.6) is an

isomorphism. However, in this case, ∂3∗ = 0. On the other hand, ı0∗ is an isomorphism and,

consequently, ∂1∗ = 0.

Since ν : Sp × 0 → N is a homeomorphism, the formula ϕ0(ν(x, 0)) = ν(ϕ(x), 0) defines the

homeomorphism ϕ0 : N → N . Let ϕ0∗ : H1(N) → H1(N) be the automorphism induced by the

homeomorphism ϕ0.
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In the cylinder Sp × [0, 1], the cycles z{i} × 0 and z{i} × 1 are homologous. In the process of

constructing the manifold M , the cycle z{i}×1 is glued to the cycle ϕ(z{i})×0. This means that

ϕ0∗([z0{i}]) = [z0{i}] in H1(M). Then (6.1) implies that the following relations hold in H1(M):

[z0{i+jm}] = (−1)[
i−1+jm

q
][z0{i}], i = 1, . . . , �, j = 1, . . . ,κq. (6.7)

Thus, the subgroup im ı1∗ ⊂ H1(M) is generated by the homology classes [z0{1}], . . . , [z
0
{�}]. For

j = q we have [ i− 1 + qm

q

]
=

[ i− 1

q
+

qm

q�

]
=

[ i− 1

q
+ κm

]
= κm.

Therefore, for j = q from (6.7) for even κm the trivial relations follow: [z0{i}] = [z0{i}], and for

odd κm - the relations [z0{i}] = −[z0{i}]. In the first case, [z0{i}] are free generators of the group

im ı1∗ and therefore

im ı1∗ = 〈[z0{1}], . . . , [z0{�}]〉 ∼= Z
�. (6.8)

In the second case, 2[z0{i}] = 0 in H1(M) for all i = 1, . . . , �, and therefore,

im ı1∗ = 〈[z0{1}], . . . , [z0{�}] ‖ 2[z0{1}], . . . , 2[z
0
{�}]〉 ∼= Z

�
2. (6.9)

By (6.8), (6.6), and the above obtained qualities ∂3∗ = 0 and ∂1∗ = 0, we obtain the exact

sequences

0 −→ Z−→H2(M)
j2∗−→ Z

q ∂2∗−→ Z
q ı1∗−→ Z

�−→0, (6.10)

0−→Z
�−→H1(M)−→Z−→0. (6.11)

By (6.11), we have H1(M) ∼= Z
�+1. In the sequence (6.10), im ∂2∗ = ker ı1∗ ∼= Z

q−�. But, in this

case, im j2∗ = ker ∂2∗ ∼= Z
q−(q−�) = Z

�. Therefore, H2(M) ∼= Z
�+1.

From (6.9) and (6.6) we obtain the exact sequences

0 −→ Z−→H2(M)
j2∗−→ Z

q ∂2∗−→ Z
q ı1∗−→ Z

�
2−→0, (6.12)

0−→Z
�
2−→H1(M)−→Z−→0. (6.13)

By (6.13), H1(P ) ∼= Z× Z
�
2. In (6.12), we have im ∂2∗ = ker ı1∗ = Z

q−� × (2Z)� ∼= Z
q. Thus, ∂2∗ is

a monomorphism and, consequently, im j2∗ = ker ∂2∗ = 0. But, in this case, H2(P ) ∼= Z.

Case q = 2p+ 1.

Lemma 6.2. Assume that q = 2p+1 and p ∈ N. Then the homology groups of the manifold

M = Mϕ are isomorphic to the following groups:

• H3(M) ∼= Z, H2(M) ∼= Z
�−1, and H1(M) ∼= Z

� × Zκq if m is even,

• H3(M) ∼= H2(M) ∼= Z and H1(M) ∼= Z× Z
�−1
2 if m is odd.

Proof. Assume that z{i} = μ(ai+ai+1) for i = 1, . . . , 2p and z{0} = z{q} = μ(aq−a1). Then

H1(Sp) = 〈[z{1}], . . . , [z{2p}]〉 ∼= Z
2p the automorphism ϕ∗ : H1(Sp) → H1(Sp) s induced by ϕ

satisfies (6.1). We also assume that ν : Sp× [0, 1] → M is the natural projection, N = ν(Sp× 0),
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and z0{i} = ν(z{i} × 0) for i = 1, . . . , q. As in the case q = 2p, the sequence (6.6) is exact.

Arguing as in Lemma 6.1, we obtain the equality (6.7). Thus, the subgroup im ı1∗ ⊂ H1(M)

is also generated by the homology classes [z0{1}], . . . , [z
0
{�}]. Since � is odd, the numbers m and

κm are simultaneously even or not. As in Lemma 6.1, for j = q from (6.7) we obtain the

trivial relations [z0{i}] = [z0{i}] for even κm and 2[z0{i}] = 0 for odd κm. By the construction of

z{0} = z{q}, we also have

[D] =

q∑
λ=1

(−1)λ[z0{λ}] = 0.

We set [ẑ{1+l�}] =
�∑

λ=1

(−1)λ[z0{λ+l�}] for l = 0, . . . ,κq − 1 and [ẑ{i}] = [z0{i}] for i = 2, . . . , �. Since

the matrix of transition from [z0{1}], [z
0
{2}], . . . , [z

0
{�}] to [ẑ{1}], [ẑ{2}], . . . , [ẑ{�}] is unimodular, the

homology classes [ẑ{1}], [ẑ{2}], . . . , [ẑ{�}] generate the subgroup im ı1∗ ⊂ H1(M). Since � is odd,

we have

[D] =

κq−1∑
l=0

(−1)l[ẑ{1+l�}] =
κq−1∑
l=0

(−1)l�[ẑ{1+l�}]. (6.14)

By the construction of the group Zq,

[ẑ{1+jm}] = [ẑ{1+l�}], l� = jm−
[jm

q

]
= jm−

[jκm

κq

]
, j = 1, . . . , q. (6.15)

On the other hand, in view of (6.7), we have

[ẑ{1+jm}] = (−1)
[ jm

q
]
[ẑ{1}] = (−1)

[ jκm
κq

]
[ẑ{1}]. (6.16)

From (6.14) and (6.15) it follows that

[D] =

κq∑
j=1

(−1)
jm−[ jκm

κq
]
[ẑ{1+jm}] =

κq∑
j=1

(−1)
jm−[ jκm

κq
]+[ jκm

κq
]
[ẑ{1}] = [ẑ{1}]

κq∑
j=1

(−1)jm.

By the last formula, [D] = κq[ẑ{1}] = 0 for even m and [D] = −[ẑ{1}] = 0 for odd m. Thus,

im ı1∗ = 〈[ẑ{1}], . . . , [ẑ{�}] ‖ κq[ẑ{1}]〉 ∼= Z
�−1 × Zκq (6.17)

for even m and

im ı1∗ = 〈[ẑ{2}], . . . , [ẑ{�}] ‖ 2[z0{2}], . . . , 2[z
0
{�}]〉 ∼= Z

�−1
2 (6.18)

for odd m. From (6.17), (6.6), and the equalities ∂3∗ = 0 and ∂1∗ = 0 we obtain the exact

sequences

0 −→ Z−→H2(M)
j2∗−→ Z

2p ∂2∗−→ Z
2p ı1∗−→ Z

�−1 × Zκq−→0, (6.19)

0−→Z
�−1 × Zκq−→H1(M)−→Z−→0. (6.20)

By (6.20), H1(P ) ∼= Z
�×Zκq . In (6.19), im ∂2∗ = ker ı1∗ = Z

2p−�+1×κqZ
∼= Z

2p−�+2. But, in this

case, im j2∗ = ker ∂2∗ ∼= Z
2p−(2p−�+2) = Z

�−2 . Therefore, H2(P ) ∼= Z
�−1. By (6.18) and (6.6), we

have the exact sequences

0 −→ Z−→H2(M)
j2∗−→ Z

2p ∂2∗−→ Z
2p ı1∗−→ Z

�−1
2 −→0, (6.21)

0−→Z
�−1
2 −→H1(M)−→Z−→0. (6.22)
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By (6.22), H1(P ) ∼= Z× Z
�−1
2 . In (6.21), im ∂2∗ = ker ı1∗ = Z

2p−�+1 × (2Z)�−1 ∼= Z
2p. Thus, ∂2∗ is

a monomorphism and, consequently, im j2∗ = ker ∂2∗ = 0. But, in this case, H2(P ) ∼= Z.
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