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ABSTRACT

In this paper, I apply linguistic methods of analysis to non-linguistic data, chess plays, metaphorically
equating one with the other and seeking analogies. Chess game notations are also a kind of text, and
one can consider the records of moves or positions of pieces as words and statements in a certain
language. In this article I show how word embeddings (word2vec) can work on chess game texts
instead of natural language texts. I don’t see how this representation of chess data can be used
productively. It’s unlikely that these vector models will help engines or people choose the best move.
But in a purely academic sense, it’s clear that such methods of information representation capture
something important about the very nature of the game, which doesn’t necessarily lead to a win.

Keywords chess · word2vec · superlinguistics · vector space models

1 Introduction

In this paper, I apply linguistic methods of analysis to non-linguistic data, metaphorically equating one with the other
and seeking analogies. The productivity of this approach has been proven within the field of Super Linguistics.

I argue that developed by computational linguists word embeddings (made with the algorithm word2vec) can shed light
on the features of chess moves.

Recently, computational linguistics has made a great progress in natural language processing (NLP). Within this field,
tools have been developed for machine analysis of morphology, syntax and semantics. Computational linguistics
became a stand-alone research area with its conferences (weblink) and actual fields. The experts have developed
general principles of text analysis, optimal methods of word counting. e.g. term frequency, inverse document frequency
(tf-idf) is used instead of simple word frequency, for finding collocations Pointwise Mutual Information is used,
etc. Computational linguistics technologies are successfully implemented in the commercial products in the field of
information retrieval [Roy et al., 2018], electronic marketing [Woltmann et al., 2018], modern user interfaces (voice
assistants, chat bots), and so on.

At the same time, there are works that show the possibility of applying NLP tools to non-NL data. The idea of word
embeddings proved to be particularly productive outside the text data. Word embedding is a representation of the
semantics of a word as a vector in a multidimensional space, the measurements of which are determined by the contexts
in which the word appears in the texts. [Baroni et al., 2014, Levy et al., 2015]. The main technological breakthrough
of word embeddings was that the number of measurements for each word can be relatively small, much less than the
number of words in the dictionary.

Word embeddings are a technical implementation of the linguistic idea of distributional semantics. Distributional
semantics is the concept that the meaning of a word is revealed through its context, and by examining the surrounding
words, we can infer its semantics. For example, we can assume that in the sentence "he returned home after three
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weeks" and in the sentence "he returned home after three years," the words "week" and "year" are similar in meaning
because their verbal surroundings are the same. This is indeed the case; both words denote a length of time, though not
of equal duration.

In computational linguistics, vectorization algorithms (the most popular being word2vec) have been developed, which
allow us to represent each word (in our case, "week" and "year") as a vector in n-dimensional space. These dimensions
are precisely the neighboring words in whose context the word of interest appears in real texts. The vector coordinates
are the frequency with which these words appear in the same sentence as our word (i.e., how often the words "he,"
"return," "home," "three" occur in the same context with "year" and "week").

As a result, we obtain a vector model for the words in the corpus we are interested in, and this model can be used
for various interesting manipulations that can be performed with vectors in mathematics. For instance, we can find
the vectors closest to a given one. If we are interested in the word "year," we calculate the vectors closest to it and
find that these vectors correspond to the words "week," "month," "half-year," etc. "Closest" means that the cosine
distance between these vectors is minimal. These models are useful for solving research problems [Orekhov, 2023].
For NLP word embeddings were extremely productive, they allowed to describe the semantics of a word using machine
methods, based only on a rather large amount of text. But it is important that the ideas formulated in this area were
extended to the structures of graphs [Narayanan et al., 2017], practical medicine data [Stella, 2015], image processing
and pattern recognition Li et al. [2017] and finally for categorical data in statistics in general [Wen et al., 2016]. One of
the most impressive achievements of embeddings outside the word area was the automatic reconstruction of the periodic
table of elements. [Than, 2018] Another curious spread of achievements of computational linguistics and artificial
intelligence beyond the language area was the experiment with GPT-2 neural network. This neural network architecture
was represented by OpenAI. GPT-2 became known due to the fact that having trained on a large collection of texts, it is
able to generate seemingly meaningful new texts that are almost indistinguishable from human ones. In the experiment
I talk about, [Alexander, 2020] GPT-2 was trained not on texts in natural language, but on texts of chess games. As a
result, such a training sample was enough for GPT-2 to make reasonable moves and have a game with a human chess
player. In this article I will show how word embeddings can work on chess game texts instead of natural language texts.
I found no publications on these topics (I only saw one semi-study programming exercise on a similar topic: weblink).

Chess moves, like words in natural language, receive their interpretation from context. My main hypothesis was the
following: chess moves can be classified by their neighbors in the game into different groups.

2 Data

Chess game notations are also a kind of text, and one can consider the records of moves or positions of pieces as words
and statements in a certain language. According to the rules of the PGN (portable game notation) format, an uppercase
letter denotes a white piece, while a lowercase letter denotes a black piece. The letters themselves are obvious: R - rook
R, N - knight N, B - bishop B, etc. Castling is denoted by the move of the king (the movement of the rook is implied
by default).

An example of a chess game recorded in PGN format looks like this:

Pe2e4 pc7c5 Ng1f3 pd7d6 Pd2d4 pc5d4 Nf3d4 ng8f6 Nb1c3 pa7a6 Bf1e2 pe7e6 Ke1g1 bf8e7 Pf2f4
ke8g8 Bc1e3 nb8c6 Kg1h1 bc8d7 Pa2a4 ra8c8 Nd4b3 nc6a5 Nb3d2 bd7c6 Be2d3 pd6d5 Pe4e5 pd5d4
Be3d4 qd8d4 Pe5f6 be7b4 Pf6g7 qd4g7 Nd2f3 bb4c3 Pb2c3 bc6d5 Qd1e2 rc8c3 Ra1e1 na5c6 Qe2d2
kg8h8 Re1e3 nc6b4 Nf3e5 nb4d3 Pc2d3 rf8c8 Re3g3 rc3c2 Qd2b4 rc2g2 Ne5f7 kh8g8 Nf7h6 kg8h8
Nh6f7 kh8g8 Nf7h6

etc.

Here, the first letter in each "word" denotes the piece and its color, the next two symbols indicate the square from which
the piece moves, and the last two symbols indicate the square to which the piece moves. Thus, Pe2e4 is a move by a
white pawn (uppercase letter, so the piece is white, the letter P indicates a pawn) from square e2 to square e4. For more
details see [Boutell et al., 2003].

One could build vector models based on game texts that reflect the moves, as in the example above, but this is somewhat
controversial because, with this approach, the "context" is lost, meaning the position in which the move is made.
Considering moves separately from the position is a strange idea for chess. Moves and their function in the game do not
exist independently of the position. However, this is similarly strange when it comes to words, when we look at them
out of context.
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Words have no meaning outside of context and acquire it only as part of a certain statement. We do not always realize
this because we are used to seeing words on dictionary pages. Dictionaries try to reflect different meanings but can
never do so completely. When we think of a polysemous word, we only recall one, the most obvious meaning, while we
temporarily forget the others. Similarly, chess moves in vector models will have to be handled.

Another way to linguistically reconceptualize the moves of a chess game can lie within the framework of the concept of
topic and comment. The topic, or theme, of a sentence is what is being talked about, and the comment (rheme or focus)
is what is being said about the topic.

In our "text," the words express only the rheme, while the theme is lost. Or, we can look at the problem differently:
each word simultaneously expresses both the theme (the name and color of the piece, the square it stood on) and the
rheme (the square to which the piece is moved as a result of the move). Thus, differences in the structure of linguistic
and chess material become apparent.

At the same time, building vector models based on the list of moves in a game does not seem entirely absurd, because
with this approach, we get moves translated into vectors that "belong to the same company," meaning they regularly
occur in the same game situations.

Modern methods of natural language processing and information retrieval depend heavily on large collections of text.
I used a collection of records of 5,400,137 chess games (approx 840 mln moves, weblink). These are mainly games
played at a high international level.

Based on this data, I trained two types of models.

Type 1 is a model "based on moves." That is, a listing of a game such as Pe2e4 pc7c5 Ng1f3 pd7d6 Bf1b5 bc8d7
Bb5d7 qd8d7 and so on is taken and considered as a "sentence," with each move in it being a separate word.

Type 2 is a model "based on positions." Here, each move is considered as a "sentence," where the words will be both
the move itself (->Bc1h6) and all the squares occupied by pieces (Pa2 Pb2 Pc3 and so on). The position on the board
is the context for the move, just as words form the context for a word in a statement in a natural language. Therefore, I
prepared the source material differently for the models of the second type. Usually, when building a vector model on a
language corpus, this corpus is divided into sentences, and the vectorization captures only the context of one sentence.
For chess statements, I broke down the game notations into individual moves, and I got "sentences" of this kind:

1. ra8 nb8 bc8 qd8 ke8 bf8 ng8 rh8 pa7 pb7 pc7 pd7 pe7 pf7 pg7 ph7 Pa2 Pb2 Pc2 Pd2 Pe2 Pf2 Pg2 Ph2
Ra1 Nb1 Bc1 Qd1 Ke1 Bf1 Ng1 Rh1 ->Pe2e4

2. ra8 nb8 bc8 qd8 ke8 bf8 ng8 rh8 pa7 pb7 pc7 pd7 pe7 pf7 pg7 ph7 Pe4 Pa2 Pb2 Pc2 Pd2 Pf2 Pg2 Ph2
Ra1 Nb1 Bc1 Qd1 Ke1 Bf1 Ng1 Rh1 ->pc7c5

3. ra8 nb8 bc8 qd8 ke8 bf8 ng8 rh8 pa7 pb7 pd7 pe7 pf7 pg7 ph7 pc5 Pe4 Pa2 Pb2 Pc2 Pd2 Pf2 Pg2 Ph2
Ra1 Nb1 Bc1 Qd1 Ke1 Bf1 Ng1 Rh1 ->Ng1f3

etc.

1 e4 c5 2 Nf3

8 rmblkans
7 opZpopop
6 0Z0Z0Z0Z
5 Z0o0Z0Z0
4 0Z0ZPZ0Z
3 Z0Z0ZNZ0
2 POPO0OPO
1 SNAQJBZR

a b c d e f g h
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Here, the position of the pieces on the board is recorded first (ra8, nb8, bc8...), followed by the move made by the
player: ->Pe2e4. To avoid confusing the "words" that denote the position of a piece on the board with the "words"
that denote a move, I added a prefix in the form of the symbol -> to each move.

Thus, both the positions of the pieces on the board and the move are all "words" of one "sentence."

The algorithm can be given a window of observation, meaning how many words to the left and right of the current one
we should consider. To account for the entire board, I set the window to 32, so when calculating the vector of a move,
all positions of the pieces on the board will be taken into account.

List of models for the study:

1. moves_texts.model, Type 1 model, all moves of all games in the collection (move = "word," game =
"sentence").

2. lemmatized_moves_texts.model, Type 1 model, all moves of all games (move = "word," game = "sen-
tence"), but the square from which the piece moves is excluded from the move. This is a variant of "stemming."

3. white_moves.model, Type 2 model, includes only white’s moves along with positions (move and all pieces
on the board = "words," position + move = "sentence").

4. black_moves.model, Type 2 model, same as above but for black.

5. debut_moves.model, Type 1 model, the "sentence" is the truncated segment of the beginning of the game up
to the 12th move. It should reflect only the opening moves of the game.

6. debut_positions.model, Type 2 model, only moves up to the 12th in the game along with their positions.
Only white’s moves are included; black’s moves are excluded.

7. mittel_moves.model, Type 1 model, only moves from the 13th to the 30th. Presumably the middlegame.

8. mittel_positions.model, Type 2 model, moves along with positions from the 13th to the 30th. Only
white.

9. endgame_moves.model, Type 1 model, moves from the 31st to the end of the game.

10. endgame_positions.model, Type 2 model for moves and positions, starting from the 31st in the game.
Only white.

11. moves_pos.model, Type 1 model, differs from model moves_texts.model only in that each move is added
with a "part-of-speech tag." There are only two tags: _CAP and _N. Thus, for each move, there can be two
entries: Bc1h6_N and Bc1h6_CAP. Bc1h6_CAP means the bishop moves to square h6 with a capture, while
Bc1h6_N is the same move without a capture. Thus, the linguistic idea of parts of speech is transferred to the
text of chess games: there is a part of speech for a move with a capture and a part of speech for a move without
a capture.

12. positions_pos.model, Type 2 model with part-of-speech tags. So it can be ->Bc1h6_N and ->Bc1h6_CAP.
Only white.

13. queens_moves.model, Type 1 model, moves in the game until there is at least one queen on the board. I did
not exclude cases when a queen reappears on the board in the endgame after a pawn promotion.

14. no_queens_moves.model, Type 1 model, moves in the game from the moment both queens disappear from
the board.

15. queens_positions.model, Type 2 model, moves + their positions when there is at least one queen on the
board. Only white.

16. no_queens_positions.model, Type 2 model, moves + their positions when both queens have disappeared
from the board. Only white.

17. positions_moves_pro.model, A model combining types 1 and 2. This model includes the position of the
move, the move itself, and three moves before and after it. Perhaps such a model will better reflect the player’s
strategy (aggressive or passive play, attacking or positional). Only white.

18. result_moves.model, Type 1 model, includes only decisive games.

19. tied_moves.model, Type 1 model, includes only drawn games.

All the models are published on Huggingface [Boris Orekhov, 2024].
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3 Results

First, we need to ensure that the models truly reflect chess reality and do not contain random sequences of moves from
a chess perspective. Vector models allow us to find similar words (in our case, moves). Let’s try working with the basic
model moves_texts.model. The model contains 7749 words (moves). Here are a few random examples. First, the
move is listed (highlighted in bold) for which we are searching for the closest move vectors, followed by the "synonym"
moves (usually referred to as quasi-synonyms), and the cosine distance between the vectors is indicated (ranging from 0
to 1, the higher the number, the closer the vectors are to each other):

Pe2e4, pe2e4

Pe2e3 0.4319874346256256
Ng1f3 0.3651273250579834
Pd2d4 0.36322540044784546
Pe3e4 0.34142181277275085
ng8f6 0.3036213517189026
pd7d5 0.29061219096183777
pc7c5 0.28487297892570496
Pc2c4 0.2729674279689789
Pc3d4 0.2568834125995636
ke8g8 0.24415579438209534

Bf1b5, Bf1b5

Bf1d3 0.5939557552337646
Bf1g2 0.5874636769294739
Bf1e2 0.5806597471237183
Bf1c4 0.5764033794403076
Bc4b5 0.518180251121521
Bd3b5 0.4963855743408203
Be2b5 0.4832766652107239
Ba4b5 0.36604568362236023
Bf1a6 0.3487110435962677
Bf1h3 0.3368876576423645

Rf8f4, Rf8f4

Rf8b8 0.6256532669067383
Rf8d8 0.6229713559150696
Rf8a8 0.6161673069000244
Rf8h8 0.6064906716346741
Rf8c8 0.6060029864311218
Rf8e8 0.5938045382499695
Rf8g8 0.5920660495758057
Rf8f3 0.5568860173225403
Rf8f6 0.5522985458374023
Rf8f2 0.5472667813301086

From these lists, it is clear that the vectors in the model are not distributed randomly. The moves closest to a given
move are usually those made by the same piece. This is not obvious in chess, as different continuation options can exist
in similar game situations (positions are not considered in this model). However, linguistically, this is expected because
quasi-synonyms are usually words of the same part of speech or even cognates.

Furthermore, to find the moves closest in "semantics" to a given move, we can calculate the cosine distance between
any two arbitrary moves in the model. For example, for Pe2e4 and pe7e5, the distance is 0.1094483. This is a minimal
value, resulting because the context for the opening move Pe2e4 includes all possible continuations, whereas pe7e5 is
relatively local compared to this variety.

Another available function is "find the odd one out." In a linguistic vector model, if we propose a series of words like
"apple," "pear," "grape," "banana," "orange," and "cucumber," the model will indicate that "cucumber" is the odd one
out. This is because "cucumber" is typically used in a different context than the other words, so its vector has noticeably
different coordinates.

5



You shall know a piece by the company it keeps. Chess plays as a data for word2vec models A PREPRINT

Let’s try the same with moves. We’ll take some common moves for traditional openings, add a move that is typically
played not in the opening but in the endgame, and see if the model can identify the odd one out. The series is:

Pe2e4, Ng1f3, Pd2d4, Bf1c4, Nb1c3, Pb4b5

Here, all the moves are from openings (the Four Knights and the Bishop’s Opening), except for the pawn moving to the
edge of the board on the b-file. Yes, the model immediately highlights this move and indicates that it is the odd one out
in this series.

Thus, the results are somewhat meaningful. On the other hand, the move Bf1c4 can be made outside the opening.
Among the remaining moves, this one is the least similar to an opening move. If we remove the move Pb4b5, what will
be the odd one out? The model indicates that among the series

pe2e4, Ng1f3, pd2d4, Bf1c4, Nb1c3

the odd one out is Bf1c4. This also suggests the results are meaningful: the model distinguishes moves made in
different game situations.

Another function is solving proportions. The most famous example for linguistic vector models is to take the word
"king," add the vector for "woman," subtract the vector for "man," and you get "queen."

Let’s try to do this with moves. We’ll take typical opening moves for white and add a move from the same opening for
black. King’s Gambit: Pe2e4 − Pf2f4 + pe7e5. The model suggests the move pe7e6. This is also an opening move
that appears, for example, in the French Defense: Pe2e4, pe7e6, Pd2d4, pd7d5. . .

1 e4 e6 2 d4 d5

8 rmblkans
7 opo0Zpop
6 0Z0ZpZ0Z
5 Z0ZpZ0Z0
4 0Z0OPZ0Z
3 Z0Z0Z0Z0
2 POPZ0OPO
1 SNAQJBMR

a b c d e f g h

Now let’s work with the model that includes not only moves but the position on the board (Type 2 model):
positions_moves_pro.model. It includes 4946 words. The closest quasi-synonym neighbors are:

->Pe2e4, pe2e4

->Pe2e3 0.4605116844177246
->Pe3e4 0.3592767119407654
->Bf1g2 0.27666473388671875
->Pe2f3 0.24844536185264587
->Pd2d4 0.2099190503358841
->Pc2c4 0.19693881273269653
->Ng1f3 0.1944185346364975
->Pg2g3 0.1831442415714264
->Ke1g1 0.17580436170101166
be2 0.17578239738941193

->Bf1b5, Bf1b5

->Bf1c4 0.7282129526138306
->Bf1d3 0.6547436714172363

6
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->Bf1e2 0.6298115253448486
->Bf1a6 0.5582098364830017
->Bf1h3 0.3876230716705322
->Be2b5 0.36358100175857544
->Bd3b5 0.30369845032691956
->Bc4b5 0.3022392988204956
->Bf1g2 0.29600590467453003
->Pd2d4 0.232324481010437

The closest move to pe2e4 turned out to be pe2e3, which is logical: this is also a way to start the game, and in both
cases, the pieces are in similar positions.

Since in this model "words" are not only moves but also piece positions, we can do the same with positions as we do
with moves. For example, we can find quasi-synonyms for the position of a white pawn on e2:

Pe3 0.5342991948127747
Pe4 0.47625163197517395
Pe5 0.3307723104953766
->Pe3d4 0.26243242621421814
->Pe4d5 0.2563534677028656
->Re1e5 0.22984528541564941
->Re1e8 0.22572621703147888
->Re1e6 0.20842188596725464
->Bf1c4 0.2069925218820572
->Re1e7 0.20322373509407043

The closest neighbors of the vector for the white pawn in its initial position on e2 are the vectors for the white pawn
after the first or second move—on e3 or e4. Indeed, when the pawn is on these squares, the other pieces on the board
are positioned similarly, representing a very similar "context" for the "statement."

So far, we have looked at individual moves in the models and tried to understand something from their nearest neighbors.
Now, I propose we look at the models as a whole to see how all the moves are positioned relative to each other.

I created a visualization of all the moves in all the models. For visualization, I used the tSNE algorithm, a dimensionality
reduction algorithm. The idea is that when we have a model with all the moves, these moves represent vectors in a
multi-dimensional space. Our models have between 300 and 500 dimensions, making it impossible to visualize. tSNE
takes all the dimensions present in the model and compresses them into two, projecting the entire multi-dimensional
space onto a plane, representing it as if all our moves existed in a two-dimensional space.

In this process, move-vectors turn into points on the plane. Those with similar dimensions are placed close to each other
in the visualization. If they have similar dimensions, it means they are very likely to be neighbors (quasi-synonyms).
Thus, in the visualization, synonym moves cluster into "bundles," areas where points are densely packed together.
Consequently, vectors with different dimensions end up in different clusters. The relationships between these clusters
are then determined by the settings of the algorithm.

I created diagrams for all our models with different perplexity values (5, 30, 50), which is the main setting for the tSNE
algorithm. Higher perplexity causes clusters to become more distinct from each other. More details can be found here.

Not all points on the graphs are labeled (there are several thousand, labeling each one would be too cluttered), but
every third point is labeled. Additionally, I made color versions of the graphs where each piece’s move is marked with
its own color. This shows that moves with the same piece tend to cluster together. The labels show that within one
cluster, moves with the same piece from the same square are grouped. This is similar to what we see when looking at
quasi-synonyms of moves. This is already a surprising result because while in type 2 models (built on positions), it is
clear from which square a piece moves (other moves are impossible), in type 1 models (built only on moves), this is not
so obvious. How does the model know that moves with the same piece in similar game contexts will be similar?

The analysis of the visual representation yields the following result: opening moves do not cluster well (do not form
distinct clusters): fig. 1 This seems as it should be: all openings are similar, the same moves are made, so there are no
pronounced trends. However, endgame moves cluster very clearly, as in a textbook—distinctly by each piece: fig. 2
Chess players might be interested in exceptions to this principle.

Midgame moves fall somewhere in between—there are clear clusters, but they are closer together than the clusters of
endgame moves. The king and queen "live" separately, while the center of the graph is occupied by the rook. Moves
with the rook are equidistant from moves with all other pieces: fig. 3.

7
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Figure 1: tSNE visualisation of the moves from the debut_moves_white.model with perplexity 5

Figure 2: tSNE visualisation of the moves from the endgame_white.model with perplexity 30

8
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Figure 3: tSNE visualisation of the moves from the mittel_white.model with perplexity 50

Figure 4: tSNE visualisation of the moves from the moves_pos_white.model with perplexity 30

An interesting result emerged from the model that differentiates between moves with captures (postfix _CAP) and
without captures (postfix _N): fig. 4. In this model, clusters form based on moves to the same square rather than from
the same square. So, whereas in other models moves like Ra1a3 and Ra1a5 would cluster together, here moves like
kf2e2_CAP and kf3e2_CAP cluster together. Additionally, it is interesting that in this model, there are clusters for
white pieces that include different pieces, which is rare for other models.

A very intriguing fig. 5 came from the model reflecting games without queens on the board. This model includes both
black and white moves, and they are displayed absolutely symmetrically on the graph, as if in a mirror image.

9
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Figure 5: tSNE visualisation of the moves from the no_queens_moves.model with perplexity 50

Figure 6: tSNE visualisation of the moves from the endgame_moves_black.model with perplexity 30

In fig. 6, the white-squared bishop is in a different cluster from the black-squared bishop, which makes sense from a
game-play perspective.

In fig. 7, there are two clusters for king moves: one cluster for king moves from the late endgame (like Kb3c3) and
another cluster for king moves from the middle game or early endgame (like Kd8e7).

We can analyze distant king moves for white in the positions_moves_pro.model, which are possible only in the
final part of the game:

->Kc6b7, Kc6b7

10
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Figure 7: tSNE visualisation of the moves from the positions_white.model with perplexity 50

->Kc6c7 0.7059599161148071
->Kc6b6 0.6991754770278931
->Kc6b5 0.6284736394882202
->Kc6d5 0.6259784698486328
->Kc6d7 0.6244097352027893
->Ka6b7 0.6211146116256714
->Kc7b7 0.5939313769340515
->Ka7b7 0.5806235671043396
->Kc6d6 0.5764902830123901
->Kb6b7 0.5578444600105286

->Kh6g7, Kh6g7

->Kh6h7 0.744156002998352
->Kh7g7 0.6991307735443115
->Kg6g7 0.6785054206848145
->Kh6h5 0.6372232437133789
->Kf6g7 0.5794045925140381
->Kh6g5 0.5779032707214355
->Kh7g8 0.566023588180542
->Kg7f7 0.5618337392807007
->Kg6h7 0.5583189129829407
Kh6 0.5513161420822144

Among the quasi-synonyms, there are only similar endgame moves by the white king. This indicates that the model, at
the very least, distinguishes between different stages of the game.

Usually, the quasi-synonyms of a move will be moves made by the same piece. But what about the quasi-synonyms of
castling? After all, castling can only have two variants. Here is what we found (positions_moves_pro.model):

Short castling for white:

->Ke1g1

->Ke1f1 0.2816329002380371
->Ke1e2 0.268799751996994
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->Ke1d1 0.26333796977996826
->Qd1c2 0.2582662105560303
->Ke1f2 0.24763570725917816
->Rh1f1 0.23578758537769318
->Nb1c3 0.2351459413766861
->Qd1b3 0.23325291275978088
->Ke1c1 0.2307348996400833
->Ke1d2 0.2285858690738678

The closest move turns out to be moving the king from the same (initial) square in the same direction: Ke1f1. The
other two are moves by the king from the same square to the available squares around it. Among the quasi-synonyms,
there is also a rook move that mirrors its movement during castling: Rh1f1.

Long castling for white:

->Ke1c1

->Ke1d2 0.4431324601173401
->Ke1e2 0.40111061930656433
->Rh1g1 0.3611656725406647
->Ke1f2 0.35532787442207336
->Ke1d1 0.3478289246559143
->Ke1f1 0.34341734647750854
->Kc1b1 0.3397798240184784
->Ra1d1 0.32468652725219727
->Rh1d1 0.2370266616344452
->Bf1d3 0.23276549577713013

The situation completely repeats itself: the closest moves are the king and rook moves. Thus, the model, based on the
available data, has managed to learn that castling involves the movement of both the king and the rook. It is worth
noting that for short castling for white, one of the closest quasi-synonyms is long castling, but for long castling, there
are no quasi-synonyms corresponding to short castling.

Quasi-synonyms often turn out to be moves where the piece aims to reach the same square as the square of the initial
move. For example, if we ask the model for quasi-synonyms for the move Ng3f5, the model will provide us with moves
Ne3f5, Nh4f5, Nh6f5, Nd6f5, Nd4f5, meaning all these moves lead to the square f5.

I checked all the moves in the model moves_texts.model and counted how many of them have at least 3 out of the
10 closest quasi-synonyms as moves of the same piece to the same square.

It turned out that out of 7749 moves in the model, 5327 (68.74%) meet this condition with at least 3, 4314 (55.67%)
with at least 4, 3499 (45.15%) with at least 5, 2684 (34.6%) with at least 6, and 1940 (25%) with at least 7.

This is quite a lot. Apparently, one of the key components of "semantics" in the models constructed based on my chosen
principles is the tendency of a piece to occupy a specific square.

Here is data on the most similar and least similar moves in the moves_texts.model (which is built solely on moves,
without considering positions):

Closest:

[’Pe3f4’, ’Pg3f4’] 0.80376875
[’ph7h5’, ’ph6h5’] 0.80034935
[’Ph2h4’, ’Ph3h4’] 0.7996822
[’Bg3f4’, ’Bh2f4’] 0.7967998
[’ka8b7’, ’kb8b7’] 0.79391354
[’Kb1b2’, ’Ka1b2’] 0.7900427
[’Kh8g8’, ’Kg8h8’] 0.7898132
[’Kc1c2’, ’Kb1c2’] 0.78719866
[’Bh2e5’, ’Bg3e5’] 0.7856372
[’Kh1g2’, ’Kg1g2’] 0.78496265
[’kg1h1’, ’kh1g1’] 0.7847194
[’Ba2d5’, ’Bb3d5’] 0.78321075
[’Ka8b8’, ’Kb8a8’] 0.7824604
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[’kg8g7’, ’kh8g7’] 0.78082377
[’Be5g3’, ’Be5h2’] 0.78032154
[’Ph3g4’, ’Pf3g4’] 0.779487
[’ka1b1’, ’ka2b1’] 0.776601
[’Pb3c4’, ’Pd3c4’] 0.7763526
[’Kb1a2’, ’Ka1a2’] 0.77603894
[’ka1b1’, ’kb1a1’] 0.7748481

Dissimilar:

[’rf4h4’, ’Rf4h4’] -0.6773491
[’Rg2h2’, ’rg2h2’] -0.6777805
[’qe5g7’, ’Qe5g7’] -0.6786175
[’qb4b2’, ’Qb4b2’] -0.68006134
[’Qb5c5’, ’qb5c5’] -0.6817629
[’Qb5c4’, ’qb5c4’] -0.6822547
[’Rg4g5’, ’rg4g5’] -0.68284607
[’rh4f4’, ’Rh4f4’] -0.6843391
[’qc8e8’, ’Qc8e8’] -0.6846573
[’qb4d4’, ’Qb4d4’] -0.6861543
[’Rg5h5’, ’rg5h5’] -0.6867346
[’qc1e1’, ’Qc1e1’] -0.6908391
[’Rh5g5’, ’rh5g5’] -0.6913012
[’Qc5d5’, ’qc5d5’] -0.6930292
[’qg7f7’, ’Qg7f7’] -0.6932398
[’rh4g4’, ’Rh4g4’] -0.69328135
[’rh5h4’, ’Rh5h4’] -0.69604784
[’Qf8f7’, ’qf8f7’] -0.699224
[’qf7f8’, ’Qf7f8’] -0.7042312
[’Rg4h4’, ’rg4h4’] -0.71785456

What we see in the first list are moves made in the most similar games, meaning in those where the moves differ little
from each other. These are likely to be "template" games, probably with a guaranteed draw or, at the very least, with
known and consistently reproducible continuations.

In the most similar moves, the squares to which the piece moves after the move match. Trivial quasi-synonyms are not
a bad thing; predictability of the result is a good confirmation that there is some comprehensible logic or natural system
behind the result. This means that analyzing these results is indeed worthwhile.

It is also logical that dissimilar moves are those made by pieces of different colors.

I built a vector model on "lemmatized" moves, meaning those where the information about the square from which the
piece moves is excluded. The source text consisted of move listings, so positions were not considered. The complete
size of the model is only 720 moves.

4 Conclusion

I don’t see how this representation of chess data can be used productively. It’s unlikely that these vector models will
help engines or people choose the best move. But in a purely academic sense, it’s clear that such methods of information
representation capture something important about the very nature of the game, which doesn’t necessarily lead to a win.

Observations have shown that linguistic data are richer and more diverse than chess data. Fewer than 10, 000 words
in the model is far fewer than the tens of thousands of words in models built from linguistic data. The limitations
of the board and the number of pieces restrict the possible configurations of the vector space, despite the seemingly
overwhelming number of possible moves.

The semantics reflected in the vector model include the stage of the game (moves from the opening and from the
endgame are different), differentiate piece colors, the squares from which and to which moves are made, and connect
together moves made by the same piece (including capturing the fact that castling involves two pieces).

The model doesn’t account for differences between various openings (the difference between pe2e4 and pe2e3 is
minimal). All of this highlights not so much the productivity of the word2vec algorithm as the significance of the
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context that the algorithm relies on. Even in chess, with its importance of position, it turns out that just from the
sequence of moves without considering the position, a considerable amount of information about the course of the game
and the semantics of individual moves can be reconstructed.
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