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ABSTRACT
In our previous publications, we have introduced analogs of partial derivatives on the reflection equation algebras, associated with Hecke
symmetries. As a consequence, we get quantum partial derivatives on the enveloping algebras U(gl(N)). In the current paper, we consider
the particular case N = 2 in detail and discuss the problem of a prolongation of these derivatives onto some central extension of the compact
form U(u(2)) of the algebra U(gl(2)). Possible applications of this noncommutative geometry are discussed.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0143310

I. INTRODUCTION
Attempts to construct a noncommutative geometry related to quantum groups have been undertaken since the creation of quantum

group theory. Initiated in Ref. 1, this study was developed in Refs. 2 and 3 and other papers. The authors of those papers aimed at constructing
a differential calculus in which the role of the quantum function algebra is played by the algebra of quantized functions on the group GL(N)
(the so-called RTT algebra), while generators of the corresponding Reflection Equation (RE) algebra were treated as one-sided vector fields.4

In Ref. 5, we have constructed a different version of the calculus via attributing the role of function algebra to another copy of the RE
algebra. By combining the generating matrices6 of these two copies of the RE algebra, we constructed a new matrix D, whose entries ∂ j

i play
the role of partial derivatives in the entries of one of the initial generating matrices.

This construction was realized in terms of the so-called quantum double. By a quantum double, we mean a couple of unital associative
algebras (A, B) (hereafter, the ground field is C) endowed with a permutation mapping σ : A⊗ B→ B⊗ A satisfying a set of axioms (see
Ref. 7 for detail). With the mapping σ, we define an associative algebra structure on the space B⊗ A in such a way that the algebras A and
B are proper subalgebras with respect to this new algebraic structure. In abstract algebra, analogous construction is known under the names
“twisting tensor product of algebras,” “factorization of algebras,” etc. (see, for example, Ref. 8).

We also assume that the algebra A admits an algebra homomorphism ε : A→ C. These ingredients enable us to define an action
⊳: A⊗ B→ B of the algebra A onto B,

a ▹ b = (idB ⊗ ε) ○ σ(a⊗ b), ∀ a ∈ A, ∀ b ∈ B.

Due to this reason, the algebras A and B will be, respectively, referred to as an operator subalgebra and a function subalgebra of the quantum
double.

A well-known example of the quantum double is the Heisenberg double with the RTT algebra as the function subalgebra. This double
enters the construction of the differential calculus developed in Refs. 2 and 3, but it does not give rise to analogs of the partial derivatives on the
RTT algebra. It should be emphasized that there are very few noncommutative algebras that allow introducing analogs of partial derivatives.
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One of the well-known examples is the algebra, generated by elements xi, 1 ≤ i ≤ N, subject to permutation relations: xixj − xjxi = θij, θi j ∈ C.
It turns out that the partial derivatives in generators of this algebra can be defined in a classical way.

The quantum partial derivatives (QPDs) introduced in Ref. 5 are well-defined on the RE algebra (or on its modified version), associated
with a Hecke symmetry R. Recall that by Hecke symmetry, we mean a solution of the braid relation (a braiding) R ∈ End(V⊗2), V being a
finite dimensional linear space dimC V = N, which satisfies a supplementary condition,

R2 = I ⊗ I + (q − q−1)R, q ∈ C/{0,±1}.

Hereafter, I stands for the identity operator in End(V) or its matrix.
A modified RE algebra is an unital associative algebra generated by entries of the matrix L = ∥l j

i ∥1≤i, j≤N subject to the system of relations

RL1RL1 − L1RL1R = h(RL1 − L1R), L1 = L⊗ I, h ∈ C/0. (1.1)

At the limit q→ 1, this algebra tends9 to U(gl(N)h), provided the Hecke symmetry R turns into the usual flip P [see (2.5)]. If h = 0, the algebra
(1.1) is called the (non-modified) RE algebra. At q→ 1, it tends to Sym(gl(N)).

Therefore, the RE algebras (modified or not) play the role of the function subalgebras B in the quantum doubles we are dealing with. The
corresponding operator subalgebra A will be exhibited in Sec. II. Note that our QPD on the modified RE algebras turns into the usual partial
derivatives on Sym(gl(N)), as R→ P and h→ 0.

However, the QPD introduced in such a way is well defined only on polynomials in the generators of a given modified RE algebra,
whereas the usual partial derivatives are defined on any smooth function. The point is that in RE algebra, the formula of differentiation of a
composed function is not valid. In the present paper, we discuss a way of extending the definition domain of the QPD in a particular case:
B = U(gl(2)h).

To be more precise, we define the QPD as an extension of U(u(2)h), constructed in two steps. First, to the initial algebra B = U(u(2)h),
we add some elements of its central extension A. These elements arise from the Cayley–Hamilton identity, satisfied by the generating matrix
of the algebra U(u(2)h). Second, we extend the action of our QPD to some elements of the skew-field,

B = A[A −1] = {a/b ∣ a, b ∈ A, b ≠ 0}.

The larger the final algebra, the larger the class of the usual differential operators for which we are able to exhibit their noncommutative
analogs. We call the procedure of passing to the latter operators quantization with noncommutative configuration space (see the end of the
paper). Therefore, we can hopefully construct noncommutative analogs of numerous dynamical models.

Remark 1. The problem of a prolongation of the differential calculus with the use of the Cayley–Hamilton identity was considered in
Ref. 10. However, the authors of Ref. 10 considered an extension of the operator subalgebra A in the corresponding quantum double, whereas we
consider an extension of the function subalgebra B.

The paper is organized as follows. In Sec. II, we define analogs of partial derivatives on the RE algebras using the quantum double con-
struction. In a particular case of the enveloping algebra U(gl(N)h), we suggest another way to define the partial derivatives: via a coproduct,
which plays the role of the Leibniz rule. In Sec. III, we consider the case N = 2 in detail. More precisely, we deal with the compact form
U(u(2)h) of the algebra U(gl(2)h), and we exhibit the Leibniz rule in a form useful for a prolongation of the QPD on some central exten-
sion of the algebra U(u(2)h). In Sec. IV, we add to the algebra U(u(2)h) the “eigenvalues” of the generating matrix L of this algebra. Then,
in Sec. V, we extend our QPD onto some elements of the corresponding skew-field, in particular those that could be useful for finding a
noncommutative analog of the Dirac vector potential for the magnetic monopole field.

II. QUANTUM PARTIAL DERIVATIVES BY MEANS OF QUANTUM DOUBLE
First, we describe the quantum double construction, giving rise to QPD on the modified RE algebra, which plays the role of the function

subalgebra B. The corresponding operator subalgebra A is an associative algebra generated by the entries of the N ×N matrix D = ∥∂ j
i ∥,

subject to the system of quadratic relations
R−1D1R−1D1 = D1R−1D1R−1. (2.1)

The permutation mapping σ is introduced as follows:

σ : D1R12L1R12 → R12L1R−1
12 D1 + h1BD1R12 + R121B1A. (2.2)

Below, we shall omit the symbols of unit elements 1A and 1B.
These permutation relations are consistent with the defining relations of the algebras A and B in the following sense:

σ(IA ⊗ B) ⊂ B⊗ IA, σ(A⊗ IB) ⊂ IB ⊗ A,
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where IA (respectively, IB) is an ideal generated by relations in A (respectively, B), that is, by some elements in the free tensor algebra
corresponding to the algebra A (to B). In addition, we assume that σ acts as the usual flip on the elements 1A ⊗ b and a⊗ 1B for any
a ∈ A, b ∈ B.

Now, in order to convert the elements ∂ j
i into operators on the function subalgebra B, we introduce a homomorphism ε : A→ C by

the rules
ε(1A) = 1C, ε(∂ j

i ) = 0 ∀ i, j. (2.3)

Then the action of an element a ∈ A on b ∈ B is defined as follows:

a ▹ b = (idB ⊗ ε) ○ σ(a⊗ b). (2.4)

Here, we identify b⊗ 1C and b; the symbol ○ stands for the composition of mappings.
The relations (2.2), completed by the homomorphism ε, express a generalized Leibniz rule for the quantum derivatives. At h = 0 and

R = P, the relations (2.2) turn into the classical Leibniz rules for the usual partial derivatives, while (2.1) means the mutual commutativity of
all ∂ j

i .

Remark 2. Note that the problem of defining analogs of the partial derivatives on the algebra U(g), where g is an arbitrary Lie algebra, was
considered in Ref. 11. In that paper, partial derivatives were introduced by means of deformation quantization methods. This gave rise to a form
of the Leibniz rule containing an infinite formal series in the corresponding derivatives, whereas the permutation relations (2.2) are polynomials.
We do not know of other algebras U(g) admitting partial derivatives with a similar property. Even the algebra U(sl(N)) does not admit a
closed system of the permutation relations since the restriction of system (2.2) to U(sl(N)) with simultaneous restriction of the QPD contains an
undesired term in the right hand side. However, this term disappears after applying the homomorphism ε.

Now, let us consider a particular case, R = P, h ≠ 0, in more detail. In this case, the defining system (1.1) on the generators of the function
subalgebra B takes the form

l j
i lsk − lsk l j

i = h(lsi δ j
k − l j

k δs
i) ⇔ L1L2 − L2L1 = h(L1P12 − P12L1), (2.5)

which means that B = U(gl(N)h).
The defining relations for the generators of subalgebra A and the permutation relations with the generators of B are read, respectively,

D1D2 = D2D1, (2.6)

D1L2 = L2D1 + hD1P12 + P12. (2.7)

Remark 3. There exists another system of permutation relations compatible with algebraic structures (2.5) and (2.6),

D1L2 = L2D1 − hP12D1 + P12. (2.8)

However, systems (2.5)–(2.7) are equivalent to systems (2.5), (2.6), and (2.8). To see this, it suffices to apply the operation of transposition to all
matrices entering the first system and to replace h by −h.

On introducing the homomorphism ε (2.3), we get the action of the QPD on elements of the function subalgebra B = U(gl(N)h) in
accordance with the general recipe (2.4). On the generators of U(gl(N)h), this action coincides with the classical one,

∂
j

i ▹ 1B = 0, ∂
j

i ▹ lsk = δs
i δ

j
k ⇔ D1 ▹ L2 = P12.

As another example, we apply the QPD to a second order monomial,

D1 ▹ (L2L3) = P12L3 + L2P13 + hP12P23. (2.9)

A general formula of the QPD action on an arbitrary monomial can be found in Ref. 12.
Therefore, the permutation relations (2.7) together with the homomorphism (2.3) replace the classical Leibniz rule as we pass from

the algebra Sym(gl(N)) to U(gl(N)h). However, it is not clear how to use this analog of the Leibniz rule in defining the QPD action on
some extensions of the algebra U(gl(N)h). Fortunately, in this case, there is a more useful form of the Leibniz rule. Namely, we introduce a
homomorphism of associative algebras Δ : A→ A⊗ A setting by definition

Δ(1A) = 1A ⊗ 1A,

Δ(∂ j
i ) = ∂

j
i (1) ⊗ ∂

j
i (2) = ∂

j
i ⊗ 1A + 1A ⊗ ∂

j
i + h

N

∑
k=1

∂
j

k ⊗ ∂k
i . (2.10)
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Here, in the last equality, we use the standard Sweedler’s notation for the mapping Δ(∂ j
i ). On the whole, in algebra A, the mapping Δ is

extended by the homomorphism property,

Δ(xy) = Δ(x)Δ(y) = x(1)y(1) ⊗ x(2)y(2), ∀ x, y ∈ A.

Proposition 4.

(i) The homomorphism Δ is a coproduct, that is, it satisfies the coassociativity condition,

(Δ⊗ idA) ○ Δ = (idA ⊗ Δ) ○ Δ.

(ii) The action of the QPD according to the rule

∂
j

i ▹ (a b) = (∂ j
i(1) ▹ a) (∂ j

i(2) ▹ b), ∀ a, b ∈ B, (2.11)

coincides with the action of QPD as defined by the permutation relations (2.7) and the homomorphism (2.3).
(iii) The action (2.11) preserves the algebraic structure of B = U(gl(N)h), which is QPD send the elements lsk lqp − lqp lsk − h(δs

plqk − δq
k lsp) to zero.

Proof. The proposition is proved by straightforward calculations.
◼

Remark 5. As follows from Proposition 4, the action of QPD on the algebra U(gl(N)h) can be defined via the coproduct (2.10) by the
relation (2.11). Note that this coproduct endows the algebra A generated by QPD with a bi-algebra structure. In a similar way, it is possible
to introduce QPD on the modified RE algebras corresponding to involutive symmetries R (i.e., such that R2 = I). However, the corresponding
bi-algebra structure of the algebra generated by QPD will be braided. In addition, in this case, a braiding enters the permutation relations of
the generators of the QPD and those of the corresponding modified RE algebra. This property prevents constructing a prolongation of the QPD
onto the extensions of the RE algebras in a way similar to that considered below. If R is a Hecke symmetry, the situation becomes much more
complicated. In this case, we are not able to construct a convenient coproduct. Therefore, in general, the only possible way of introducing the QPD
on a RE algebra (modified or not) is the use of permutation relations completed with the homomorphism ε.

Let us go back to the quantum double (A, B), where B = U(gl(N)h) and A is generated by the commutative entries of the matrix
D = ∥∂ j

i ∥. We perform the following change to the generating matrix D,

D̂ = D + h−1I ⇔ ∂̂
j
i = ∂

j
i + h−1δ j

i 1A. (2.12)

In terms of the matrix D̂, the permutation relations (2.7) take the form

D̂1 L2 = L2 D̂1 + hD̂1P12. (2.13)

The action of the coproduct Δ (2.10) on the generators ∂̂ j
i reads

Δ(∂̂ j
i ) = h∑

k
∂̂

j
k ⊗ ∂̂k

i ⇔ Δ(D̂ t) = hD̂ t .
⊗D̂ t , (2.14)

where the superscript t means the matrix transposition, the notation S
.
⊗ T stands for the matrix with entries sk

i ⊗ t j
k for any two equal size

square matrices S = ∥s j
i ∥ and T = ∥t j

i ∥.
The coproduct (2.14) leads to the following form of the Leibniz rule:

D̂(ab)t = hD̂(a)tD̂(b)t , (2.15)

where D̂(a) denotes the matrix with entries ∂̂ j
i ▹ a. Below, we use the matrix D = hD̂ t , which is multiplicative (group-like) with respect to the

coproduct
Δ(D) = D

.
⊗ D. (2.16)

Therefore, in terms of this matrix, the Leibniz rule takes the following form:

D(ab) = D(a)D(b). (2.17)
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III. QUANTUM PARTIAL DERIVATIVES ON U (u(2)h )
Let us consider the case of N = 2 in more detail. Below, we use the following notations a = l1

1, b = l2
1, c = l1

2, and d = l2
2,

L =
⎛
⎝

l1
1 l2

1

l1
2 l2

2

⎞
⎠
=
⎛
⎝

a b
c d

⎞
⎠

, D̂ =
⎛
⎝
∂̂1

1 ∂2
1

∂1
2 ∂̂2

2

⎞
⎠
=
⎛
⎝
∂̂a ∂c

∂b ∂̂d

⎞
⎠

.

Hereafter, we use the “hat” notation only for the diagonal elements of the matrix D̂ since the off-diagonal partial derivatives are actually
not changed under the shift (2.12): ∂̂ j

i ≡ ∂
j

i for any i ≠ j.
The permutation relations (2.13) have the following explicit form:

∂̂a a = a ∂̂a + h ∂̂a, ∂̂a b = b ∂̂a + h ∂c, ∂c a = a ∂c, ∂c b = b ∂c,

∂̂a c = c ∂̂a, ∂̂a d = d ∂̂a, ∂c c = c ∂c + h ∂̂a, ∂c d = d ∂c + h ∂c,

∂b a = a ∂b + h ∂b, ∂b b = b ∂b + h ∂̂d, ∂̂d a = a ∂̂d, ∂̂d b = b ∂̂d,

∂b c = c ∂b, ∂b d = d ∂b, ∂̂d c = c ∂̂d + h ∂b, ∂̂d d = d ∂̂d + h ∂̂d.

Now, we introduce a new set of generators corresponding to the compact form u(2)h of the algebra gl(2)h,

t = 1
2
(a + d), x = i

2
(b + c), y = 1

2
(c − b), z = i

2
(a − d).

Their Lie brackets read
[x, y] = hz, [y, z] = hx, [z, x] = hy, [t, x] = [t, y] = [t, z] = 0.

Since the change of the generators is linear, we apply the classical formula for computing the QPD in new generators: ∂t = ∂a + ∂d, and
so on. In these generators, the “shifted version” is used only for the derivative in t: ∂̂t = ∂t + 2

h id. The permutation relations become as follows:

∂̂t t − t ∂̂t =
h
2
∂̂t , ∂̂t x − x ∂̂t = −

h
2
∂x, ∂̂t y − y ∂̂t = −

h
2
∂y, ∂̂t z − z ∂̂t = −

h
2
∂z ,

∂x t − t ∂x =
h
2
∂x, ∂x x − x ∂x =

h
2
∂̂t , ∂x y − y ∂x =

h
2
∂z , ∂x z − z ∂x = −

h
2
∂y,

∂y t − t ∂y =
h
2
∂y, ∂y x − x ∂y = −

h
2
∂z , ∂y y − y ∂y =

h
2
∂̂t , ∂y z − z ∂y =

h
2
∂x,

∂z t − t ∂z =
h
2
∂z , ∂z x − x ∂z =

h
2
∂y, ∂z y − y ∂z = −

h
2
∂x, ∂z z − z ∂z =

h
2
∂̂t.

(3.1)

When working with the compact form U(u(2)h) of the algebra U(gl(2)h), it is more convenient to use the larger matrix Θ̂ instead of
the matrix D,

Θ̂ = ih̵

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

∂̂t ∂x ∂y ∂z

−∂x ∂̂t −∂z ∂y

−∂y ∂z ∂̂t −∂x

−∂z −∂y ∂x ∂̂t

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

, (3.2)

where we introduce a rescaled parameter h = h/2i. The normalization multiplier ih ensures a group-like coproduct for Θ̂ similar to (2.16),

Δ(Θ̂) = Θ̂
.
⊗ Θ̂. (3.3)

With the use of the matrix Θ̂, we define a linear mapping (denoted by the same symbol Θ̂),

Θ̂ : U(u(2)h)→Mat2(U(u(2)h)), a↦ Θ̂(a) ∀ a ∈ U(u(2)h), (3.4)

where Mat2(U(u(2)h)) = End(C4)⊗U(u(2)h) and the symbol Θ̂(a) has the same meaning as D̂(a) above does.
As follows from the coproduct (3.3), the mapping Θ̂ is actually a homomorphism of associative algebras,

Θ̂(ab) = Θ̂(a)Θ̂(b), ∀ a, b ∈ U(u(2)h). (3.5)

This property of the map Θ̂ is treated as the Leibniz rule for the QPD action on the algebra U(u(2)h).
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As an example, we give the explicit formulas for the images of the U(u(2)h) generators under the mapping Θ̂,

Θ̂(1U(u(2)h)) = I, Θ̂(t) = (t + ih̵)I,

Θ̂(x) = x I + ih̵A, Θ̂(y) = y I + ih̵B, Θ̂(z) = z I + ih̵ C,
(3.6)

where

A =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

, B =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

, C =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

. (3.7)

The numerical matrices A, B, and C give the real matrix representation of the generators of the quaternion algebra,

A2 = B2 = C2 = −I, AB = −BA = C, BC = −CB = A, CA = −AC = B. (3.8)

Below, we extend the action of the QPD onto some larger algebra while preserving the property (3.5) of the mapping Θ̂.

IV. QUANTUM PARTIAL DERIVATIVES ON CENTRAL EXTENSION OF U (u(2)h )
First, we present the Cayley–Hamilton identity for the generating matrix of the algebra U(gl(2)h),

L =
⎛
⎝

a b
c d

⎞
⎠
=
⎛
⎝

t − iz −ix − y
−ix + y t + iz

⎞
⎠

.

This identity reads p(L) = 0, where the characteristic polynomial p(λ) is of the form

p(λ) = λ2 − 2(t + ih̵) λ + (t2 + x2 + y2 + z2 + 2ih̵ t) I.

Let us denote μ1 and μ2 as the roots of the characteristic polynomial p(μ1) = p(μ2) = 0,

μ1 + μ2 = 2(t + ih̵), μ1μ2 = t2 + Cas + 2ih̵ t, (4.1)

where Cas = x2 + y2 + z2. Since t and Cas are central elements of U(u(2)h), then the roots μi belong to a central extension A of U(u(2)h),

A = U(u(2)h)⊗C[μ1, μ2]/⟨J ⟩,

where ⟨J⟩ is a two-sided ideal generated by equalities (4.1).
Now we extend the QPD action on the algebra A with the requirement that the multiplicative property (3.5) be valid on A.
For this purpose, we need to compute the matrices Θ̂(μi), i = 1, 2. With the use of (3.6), it is not difficult to find their sum,

Θ̂(μ1) + Θ̂(μ2) = Θ̂(μ1 + μ2) = Θ̂(2t + 2ih̵) = (2t + 4ih̵)I. (4.2)

Therefore, to find Θ̂(μ1) and Θ̂(μ2), it suffices to calculate their difference Θ̂(μ1) − Θ̂(μ2).
We first compute the matrix Θ̂(μ2), where μ = μ1 − μ2. Taking into account that

μ2 = (μ1 + μ2)2 − 4μ1 μ2 = −4(Cas + h̵2),

and using (3.6), we get
Θ̂(μ2) = Θ̂(−4(x2 + y2 + z2 + h̵2)) = (μ2 − 12h̵2)I − 8ih̵ M,

where M = xA + yB + zC.
Having calculated Θ̂(μ2), we use the multiplicative property (3.5), which we require to be true on the extended algebraA: Θ̂(μ2) = Θ̂ 2(μ).

Therefore, we need to calculate the square root of Θ̂(μ2),

Θ̂(μ1) − Θ̂(μ2) = Θ̂(μ) =
√

Θ̂(μ2).

This can be performed with the use of the Cayley–Hamilton identities. By a straightforward calculation, one can show that the matrix
M = xA + yB + zC satisfies the following Cayley–Hamilton identity:

M2 − 2ih̵M + Cas I = (M − λ1I)(M − λ2I) = 0,
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where the “quantum eigenvalues” λ1 and λ2 of M are easy to find,

λ1 = ih̵ + μ
2

, λ2 = ih̵ − μ
2

.

Consequently, the quantum eigenvalues of the matrix Θ̂(μ2) are as follows:

ν1 = μ2 − 4h̵2 − 4ih̵ μ = (μ − 2ih̵)2, ν2 = μ2 − 4h̵2 + 4ih̵ μ = (μ + 2ih̵)2.

As for the matrix Θ̂(μ) =
√

Θ̂(μ2), it can be found via the spectral decomposition of the matrix Θ̂(μ2),

Θ̂(μ) = Θ̂(μ2) − ν2 I
ν1 − ν2

√
ν1 +

Θ̂(μ2) − ν1 I
ν2 − ν1

√
ν2.

Therefore, we have four candidates for the role of the matrix Θ̂(μ) in accordance with the possible sign choice of the roots,
√

ν1 = ϵ1(μ − 2ih̵), √
ν2 = ϵ2(μ + 2ih̵), ϵ1, ϵ2 ∈ {±1}.

Immediate verification shows that only the choice ϵ1 = ϵ2 = 1 is compatible with the classical limit (that is, corresponding to h = 0) for the
action of the partial derivatives,

∂t ▹ μ = 0, ∂x ▹ μ = −4
x
μ

. (4.3)

Note that the second relation in (4.3) follows from the equality μ2 = −4 Cas valid in the classical limit.
Therefore, we come to the final formula

Θ̂(μ1) − Θ̂(μ2) = Θ̂(μ) = μ2 − 4h̵2

μ
I − 4ih̵

μ
M. (4.4)

In a similar way, we can get the action of the QPD on an arbitrary power of μ,

Θ̂(μp) = (μ + 2ih̵)p+1 + (μ − 2ih̵)p+1

2μ
I + (μ − 2ih̵)p − (μ + 2ih̵)p

μ
M. (4.5)

At last, with the use of (4.2) and (4.4), we get

Θ̂(μ1) = (t + 2ih̵ + μ2 − 4h̵2

2μ
)I − 2ih̵

μ
M, Θ̂(μ2) = (t + 2ih̵ − μ2 − 4h̵2

2μ
)I + 2ih̵

μ
M.

Taking into account the structure of the matrix Θ̂ (3.2), we get the action of QPD on the quantum eigenvalues μi,

∂̂t ▹ μ1 = −
i
h̵
(t + (μ + 2ih̵)2

2μ
), ∂x ▹ μ1 = −

2
μ

x,

∂̂t ▹ μ2 = −
i
h̵
(t − (μ − 2ih̵)2

2μ
), ∂x ▹ μ2 =

2
μ

x,

and so on.
At the end of this section, we recall the notion of the quantum radius rh and exhibit the result of the QPD action on it. In Ref. 12, we

introduced the so-called quantum radius r2
h̵ = Cas + h̵2. In terms of μ = μ1 − μ2, it is written as rh = ±μ/2i. The sign here is not fixed because

our ordering of μ1 and μ2 is arbitrary.
Using the relation between rh and μ we get from (4.4),

Θ̂(rh̵) =
r2

h̵ + h̵2

rh̵
I + ih̵

rh̵
M. (4.6)

This formula enables us to find the action of all QPDs on the quantum radius,

∂t ▹ rh̵ = −
ih̵
rh̵

, ∂x ▹ rh̵ =
x
rh̵

, ∂y ▹ rh̵ =
y
rh̵

, ∂z ▹ rh̵ =
z
rh̵

. (4.7)

Note that at the limit h = 0, the derivative ∂t ⊳ r vanishes, and other formulas turn into the classical ones (with rh replaced by r).
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Remark 6. Recall that in our treatment of the algebra U(u(2)h) as a noncommutative analog of the polynomial algebra on the Minkowski
space (see Ref. 13), the generators x, y, and z play the roles of spacial variables, and t plays the role of time.

Finally, we would like to shortly discuss a possible generalization of the above-mentioned results to higher dimensions. In dealing with
the algebra U(gl(N)h), we use the matrix D, introduced at the end of Sec. II, instead of Θ̂. The generating matrix L of the algebra U(gl(N)h)
also satisfies a Cayley–Hamilton identity,

LN − a1LN−1 + a2LN−2 − ⋅ ⋅ ⋅ + (−1)N aN I = 0,

where ak, 1 ≤ k ≤ N, are some central elements of the algebra U(gl(N)h). Let μi, 1 ≤ i ≤ N, be the “roots” of the corresponding characteristic
polynomial, that is,

N

∑
k=1

μk = a1, ∑
1≤i1<i2≤N

μi1 μi2 = a2, . . .
N

∏
k=1

μk = aN.

Therefore, these roots are elements of a central extension of the algebra U(gl(N)h). We want to preserve the group-like property of map
D by defining the QPD action on this central extension. Therefore, the problem of constructing such an action reduces to finding the matrices
D(μk) satisfying the system of equations

N

∑
k=1

D(μk) = D(a1), ∑
1≤i1<i2≤N

D(μi1)D(μi2) = D(a2), . . .
N

∏
k=1

D(μk) = D(aN),

and having a good classical limit. This means that the QPD found from this system tends to the usual partial derivatives in the generators of
the algebra Sym(gl(N)) when h→ 0.

V. EXTENSION OF QPD ON THE SKEW-FIELD B =A[A −1
]

In this section, we extend the QPD onto some elements of the skew-field B = A[A −1] while preserving the Leibniz rule in its
multiplicative form (3.5). Note that this Leibniz rule can be expressed via the matrices D introduced at the end of Sec. II.

Let b be an arbitrary nontrivial element of the algebra A. If we can extend the map D onto the element b−1 ∈ B while preserving the
Leibniz rule, we should have

D(b−1) = D(b)−1.

Therefore, in order to compute D(b−1), we have to invert the matrix D(b) with non-commutative entries. In principle, this procedure can
be performed by means of the Gelfand–Retakh method using the so-called quasideterminants. In order to present the entries of the matrix
D(b−1) as elements of B, we need the Ore property of the algebra A. Hopefully, the algebra A possesses this property since it is so for the
algebra U(u(2)h). Nevertheless, in practice, the reduction of any “left” fraction to a “right” one and vice versa in this algebra is indeed difficult.

Below, we only deal with some particular elements b ∈ A for which the computation of the matrix D(b)−1 can be performed by means
of the Cayley–Hamilton identity for the matrix D(b). For such elements b, we succeeded in presenting the entries of the matrices D(b)−1 as
elements of the skew-field B.

First, we calculate the matrices D(b) for some basic b ∈ A. Taking into account the explicit form of D

D = i h̵
⎛
⎝
∂̂t + i∂z i∂x − ∂y

i∂x + ∂y ∂̂t − i∂z

⎞
⎠

, (5.1)

we find

D(x) =
⎛
⎝

x −h̵
−h̵ x

⎞
⎠

, D(y) =
⎛
⎝

y −ih̵
ih̵ y

⎞
⎠

, D(z) =
⎛
⎝

z − h̵ 0

0 z + h̵

⎞
⎠

,

D(t) = (t + ih̵)I, D(rh̵) =
1
rh̵

⎛
⎝

r2
h̵ + h̵2 − h̵ z −h̵ (x + iy)
−h̵ (x − iy) r2

h̵ + h̵2 + h̵ z

⎞
⎠

.

The matrix D(rh) obeys the Cayley–Hamilton identity,

D(rh̵)2 − 2rh̵ D(rh̵) + (r2
h̵ − h̵2)I ≡ (D(rh̵) − (rh̵ + h̵)I)(D(rh̵) − (rh̵ − h̵)I) = 0. (5.2)

Now, let b be a linear combination of generators of U(u(2)h) with numeric coefficients αi ∈ C,

b = α0 t + α1 x + α2 y + α3 z, α2
1 + α2

2 + α2
3 ≠ 0. (5.3)
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Since

D(b) = (b + iα0) I − h̵ N, N =
⎛
⎝

α3 α1 + iα2

α1 − iα2 −α3

⎞
⎠

,

then on taking into account that N2 = (α2
1 + α2

2 + α2
3)I, we find the matrix D−1(b)

D(b)−1 = (b + iα0)I + h̵N
(b + iα0)2 − (α2

1 + α2
2 + α2

3)h̵2 .

Note that the above-mentioned fraction is not ambiguous since its numerator and denominator commute with each other.
Introduce the element c = rh − b and impose the following restriction on the numeric coefficients:

α0 = 0, α2
1 + α2

2 + α2
3 = 1.

Then the Cayley–Hamilton identity for D(b) reads

(D(b) − b I)2 = (α2
1 + α2

2 + α2
3) h̵2 I, (5.4)

while for D(rh), it is given in (5.2). Since rh is a central element, the matrices D(b) and D(rh) commute with each other due to the Leibniz
rule (2.17). Therefore, it is reasonable to look for the inverse matrix D(c)−1 in the form

D(c)−1 = I a0 +D(rh̵) a1 +D(b) a2 +D(rh̵)D(b) a3. (5.5)

The requirement D(c)D(c)−1 = I leads to a system of linear equations for the coefficients ai,

−(r2
h̵ − h̵2) a1 + (b2 − h̵2) a2 = 1,

a0 + 2rh̵ a1 + (b2 − h̵2) a3 = 0,

a0 + 2b a2 + (r2
h̵ − h̵2) a3 = 0,

a1 − a2 − 2(rh̵ − b) a3 = 0.

Here, we used the relations (5.2) and (5.4).
The coefficients of the system above commute with each other, so the solution can be found by the standard Cramer’s rules of classical

linear algebra

a0 =
2(r2

h̵ + b2 − 3brh̵ − h̵2)
(rh̵ − b)((rh̵ − b)2 − 4h̵2)

, a1 =
3b − rh̵

(rh̵ − b)((rh̵ − b)2 − 4h̵2)
,

a2 =
3rh̵ − b

(r − b)((rh̵ − b)2 − 4h̵2)
, a3 =

−2
(rh̵ − b)((rh̵ − b)2 − 4h̵2)

.

Now, we are able to extend the action of the QPD on the element c−1 = (rh̵ − b)−1. Namely, from (5.1), we get

(D1
1 +D2

2)(c−1) = 2ih̵ ∂̂tc−1, (D2
1 +D1

2)(c−1) = −2h̵ ∂xc−1, etc.

To write down the general answer, it is convenient to introduce the vectors

α⃗ = (α1, α2, α3), r⃗h̵ = (x, y, z), ∇⃗ = (∂x,∂y,∂z).

Then, by using the relation D(c−1) = D(c)−1, we present the final result,

∂t(
1

rh̵ − b
) = −ih̵

rh̵((rh̵ − b)2 − 4h̵2)
,

∇⃗( 1
rh̵ − b

) = rh̵α⃗ − r⃗h̵

rh̵

1
((rh̵ − b)2 − 4h̵2)

− (h̵ α⃗ + i[r⃗h̵ × α⃗]) 2h̵
rh̵(rh̵ − b)((rh̵ − b)2 − 4h̵2)

,

where [⋅ × ⋅] stands for the vector product of two vectors. We point out that the components of the vector r⃗h̵ do not commute with the element
rh − b entering the denominator. Therefore, we have to explicitly fix the order of factors in the formula for ∇⃗(rh̵ − b)−1.

In addition, note that in the limit h → 0, we recover the classical result
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∇⃗( 1
r − b

) = rα⃗ − r⃗
r(r − b)2 ,

where r = ∣r⃗∣ and b = α⃗ ⋅ r⃗ is the Euclidean scalar product.
Therefore, by applying the QPD to elements of the form ack, a ∈ A, k ∈ Z, we can represent the results as elements of B.
The interest in calculating the QPD action on the element (rh̵ − b)−1 is motivated by our wish to construct a noncommutative analog

of the Dirac potential A. Let us recall that in the classical setting, this potential is a solution of the differential equation rot A = H, where the
magnetic field H is a stationary solution of Maxwell’s equations with zero electric field,

div H = 0, rot H = 4gπδ(r). (5.6)

Here, g is a nontrivial constant, and the notations div and rot stand for the divergence and the rotor of a given vector field, respectively. The
symbol δ(r) denotes the delta-function.

Dirac found a solution to system (5.6) in the form H = g r⃗/r3. Besides, he constructed the following family of vector potentials for this
model:

A = g
r
[r⃗ × α⃗]
(r − r⃗ ⋅ α⃗) , (5.7)

where α⃗ is a unit vector and r⃗ ⋅ α⃗ is the Euclidean scalar product. Each of these vector potentials is singular on a half-line.
In Ref. 13, we have found a noncommutative counterpart of the Dirac monopole [a solution of (5.6)],

H = g r⃗h̵

rh̵(r2
h̵ − h̵2)

. (5.8)

Unfortunately, we have not succeeded in finding the corresponding noncommutative potential A, which would solve the equation
rot A = H for H defined by (5.8). We would like to emphasize that the problem of finding such a potential in the framework of our non-
commutative setting is much more complicated than in the classical case. It suffices to note that in looking for a solution to the equation
rot A = H in a form similar to (5.7), we have to take into account that the element (rh̵ − b)−1 does not commute with the components of the
vector r⃗h̵.

In general, in the framework of quantization with a noncommutative configuration space, we have to replace the usual partial derivatives
in the generators of the algebra Sym(gl(N)) by the QPD acting on U(gl(N)h) and to replace the coefficients at the partial derivatives by their
noncommutative analogs. However, in general, we can construct such noncommutative analogs for the coefficients, which are polynomials in
the generators of Sym(gl(N)). If it is not so, we have additional difficulties in constructing the noncommutative analogs of non-polynomial
functions.
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