Tpyowt UICIT PAH, mom 36, evin. 2, 2024 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 2, 2024

DOI: 10.15514/ISPRAS-2024-36(2)-10

Designing Data Visualization System Based on
Language-Oriented Approach

YA. D. Dzheiranian, ORCID: 0009-0000-8916-2855 <addzheyranyan@edu.hse.ru>
2[. D. Ermakov, ORCID: 0000-0003-2897-7158 <john.ermakov27@gmail.com>
' K.A. Proskuryakov, ORCID: 0009-0001-1678-5653 <k.proskuryakov22@gmail.com>
'L. N. Lyadova, ORCID: 0000-0001-5643-747X <LNLyadova@gmail.com>

VHSE University,
38, Studencheskaia St., Perm, 614070, Russia.
2 Perm State University,
15, Bukirev St., Perm, 614990, Russia.

Abstract. The data visualization method based on a language-oriented approach is proposed. An analysis of
data visualization tools and their customizability for subject areas based on user needs has been carried out. It
is noted that these tools require highly qualified users to customize the data visualization format (users must
have programming skills). It is proposed to customize visualization tools to the needs of users and the specifics
of the user's tasks being solved by creating domain-specific languages (DSL). A system architecture based on
the use of multifaceted ontology is described. The ontology includes descriptions of languages and domains, as
well as rules for generating new languages and transforming constructed models. Languages are designed to
describe different classes of diagrams. This system includes tools for automatic new DSL generation via
mapping domain ontology onto the base language metamodel according to user-specified rules. Different types
of diagrams have been classified and the main components of each type diagrams have been identified, which
provides the basis for creating an ontology of data visualization languages. A base language is proposed for
creating diagrams. The language customizability for specific domains is demonstrated. An example of the
created data visualization models is shown.

Keywords: data visualization; domain-specific modeling; domain-specific language; metamodeling; formal
grammar; multifaceted ontology; model transformation.

For citation: Dzheiranian A. D., Ermakov 1. D., Proskuryakov K. A., Lyadova L. N. Designing Data
Visualization System Based on Language-Oriented Approach. Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 2,
2024. pp. 127-140. DOI: 10.15514/ISPRAS-2024-36(2)-10.

127

Dzheiranian A. D., Ermakov I. D., Proskuryakov K. A., Lyadova L. N. Designing Data Visualization System Based on Language-Oriented
Approach. Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 2, 2024. pp. 127-140.

MpoekTupoBaHMe CUCTEMbI BU3yanu3awuuu AaHHbIX, OCHOBaHHOW Ha
A3bIKOBO-OPUEHTMPOBaHHOM noaxoae

YA. JI. iorcetipansn, ORCID: 0009-0000-8916-2855 <ADDzheyranyan@edu.hse.ru>
2U. JI. Epmaxos, ORCID: 0000-0003-2897-7158 <John.Ermakov27@gmail.com>
' K. A. Ipockypsaxos, ORCID: 0009-0001-1678-5653 <K.Proskuryakov22@gmail.com>
VI H. JInooea, ORCID: 0000-0001-5643-747X <LNLyadova@gmail.com>

' Hayuonanvhoui uccredosamensvckuil ynueepcumem « Bolcuias wikona skoHOMUKu»,
Poccus, 614070, 2. Ilepmob, yn. Cmydenueckas, 0. 38.
2 [Tepmckuii 20CyO0apcmeenilil HayuoHATbHbLI UCCIe008AMENbCKULL YHUGEpCUmMen,
Poccus, 614990, 2. Ilepmy, ya. Bykupesa, 0. 15.

AnHoTanus. Ilpeanaraercss MeToi BHM3yalW3allMd JAHHBIX, OCHOBAHHBIH HAa S3BIKOBO-OPUEHTUPOBAHHOM
noaxozae. IlpoBeneH aHamM3 MHCTPYMEHTOB BHM3yallM3allMM JIAHHBIX M BO3MOXKHOCTHM HMX HACTPOWKH Ha
MpeIMETHbIE 00JIaCTH MCXOJs U3 OTPEeOHOCTEH mosb3oBarelneil. OTMEUeHO, YTO 3TH HHCTPYMEHTHI TPEOYIOT
OT MOJIB30BaTelIel BEICOKON KBaTM(UKAIMK [Vl HACTPOUKM (opMaTa BU3yalM3aluH JaHHbIX (I0JIb30BATENIN
JIOJDKHBI MMETh HaBBIKM HporpammupoBanus). Ilpearaercss HacTpaMBaTh CpPE/ICTBA BU3YalM3alMH MOJ
HYX/Ibl OJIb30BaTeNed M CHeUU(UKY pelIaeMbIX MOJB30BATEIISIMH 3aJay IIyTeM CO3JaHusl MPeIMETHO-
opreHTUPOBaHHbBIX s3bIKOB (DSL). OmuceiBaeTCs apXUTEKTypa CHCTEMbI, OCHOBAaHHOW Ha HCIIOIb30BAaHUHU
MHOT0ACTIEKTHOH OHTONOrMU. OHTOJOTHS BKIIFOYACT ONMCAHMS S3BIKOB M MPEIMETHBIX Oo0lacTei, a Takxke
[paBuJia TEHEPAIME HOBBIX A3BIKOB U TPAHC(HOPMALIMU MOCTPOCHHBIX MOJENEH. SI3bIKM MpeIHa3HAYCHBI TS
OMMCAHUS PA3IMYHBIX KIACCOB JUarpaMM. JTa CUCTEMa BKJIIOYAET B Ce0s1 MHCTPYMEHTBI JUIsl aBTOMATHYECKOTO
coznanus HOBbIX DSL nocpencTBoM 0ToOpa)KeH s OHTOJIOTUH MIPEAMETHOM 06J1acTH Ha METaMoIelb 6a30BOr0
SI3bIKA MO 3aJITAaHHBIM T10JIb30BATEJIEM IIPaBUIaM. BhINOIHEHa KiIacCu(pUKaLUs pa3IudHbIX TUIIOB JHArPaMM U
BBISIBJICHBl OCHOBHBIE KOMIIOHEHTBI JUarpaMM Ka)KAOro THIIA, YTO JAeT OCHOBY JUIsl CO3JAaHUSI OHTOJOTHMH
SI3BIKOB BU3yaJM3aluM JaHHbIX. [Ipejiaraercs 6a30BbIN S3bIK JUIs CO3JaHuUs auarpamm. JleMoHcTpupyercs
BO3MOXXHOCTb HACTPOWKH f3bIKa JJIsI KOHKPETHBIX MPEIMETHBIX obnacteil. IIpuBeneH mpuMep CO3IaHHBIX
MoJenei BU3yaan3alny JaHHBIX.

KirroueBble ci1oBa: Bu3yauM3alusi JaHHBIX; IIPEJMETHO-OPHCHTHPOBAHHOE MOJECIMPOBAHNE; MPEIAMETHO-
OPHEHTHPOBAHHBIM SI3BIK; METAMOJCIHPOBaHKE; (hOpMaibHAsh IpaMMaTHKA; MHOIOACIEKTHAas OHTOJIOTHS,
TpaHchopMaIys MOJEIH.

Jas umrupoBanmsi: [xeiipansu A. J1., Epmakos U. /1., IIpockypsiko K. A., JIsosa JI. H. [IpoekrupoBanue
CHUCTEMBI BU3yaJM3alliH JIAaHHBIX, OCHOBAaHHOW Ha S3BIKOBO-OpHEHTHpoBaHHOM nojxone. Tpyzast MCII PAH,
TOM 36, BbIm. 2, 2024 1., ctp. 127-140 (na anrnuiickoM s3bike). DOI: 10.15514/ISPRAS-2024-36(2)-10.

1. Introduction

Visualization tools have gained widespread use in various industries, business functions, and IT
disciplines, both in the private and public sectors. They are actively used in such areas as energy
industry, cartography, structural health monitoring, discrete mathematics, nutrition, biology,
finance, social networks, and many others. In this context, data visualization serves as a method of
data analysis.

The needs of end users (data analysts) include the ° to create custom types of diagrams for specific
tasks and domains, as basic types of diagrams with basic geometries can limit information
transmission [1] and lead to ineffective visualization, which, in turn, can lead to mistakes in the
decision-making [2]. Often such customization requires the use of a programming language [3]. The
lack of deep programming knowledge among users leads to the need to create low-code platforms.
The available data visualization tools systems can be categorized into following groups:

1) spreadsheets (e.g., Excel, Google Sheets),
2) analytics platforms (e.g., Microsoft Power BI, Tableau),
3) diagram editors (e.g., Miro, ChartBlocks).

128

Jlxeiipansu A. 1., Epmakos U.]I, ITpockypskos K. A., JIanosa JI. H. [IpoexktupoBanne cHCTEMBI BU3yaM3aluy JJAHHBIX, OCHOBAHHOH Ha
SI3IKOBO-OPHEHTHPOBAHHOM moaxoze. Tpyowst UCI1 PAH, 2024, Tom 36, Bbim. 2, 2024. ¢. 127-140.

The standard tools of the first two groups are limited to the basic diagram types and visual effects
customization options. The tools of the third group allow to create custom visualizations, edit the
locations of elements, but they do not provide settings for domains.

In contrast, the use of general-purpose programming languages (e.g., Python libraries for data
visualization: Matplotlib, Seaborn, Plotly, etc.) contributes to the creation of the expressive
visualizations to solve specific tasks, but it requires deep programming knowledge from the diagram
developer. Also, the created solution cannot be reused for other visualizations, and it is a “black
box” where it is not clear how the visualization is configured [3].

Thus, the end users face two challenges:

1) How to automate visualizations development to reduce level of requirements for user
programming knowledge?

2) How to ensure the customization of visualizations for specific domains?

To enhance visualization tools, a language-oriented approach is proposed. Initially, the authors
proposed the concept of automating domain-specific languages (DSL) creation based on using
multifaceted ontology [4]-[5]. To implement the approach, the following tasks must be solved:

1) To determine specific user requirements for customizing data visualizations for user’s
domains and tasks being solved. To identify the problems that users face in order to remove
these limitations through the development of DSL.

2) To analyze and classify data visualization diagrams to identify the foundation for
developing the data visualization languages and formalize the results for ontology
development.

3) To determine the general structure of the data visualization system.

4) To develop the ontology of data visualization languages based on the completed
classification of charts.

5) To describe the base language meta-model for the development of new data visualization
languages.

6) To give an example of data visualization model customization.

7) To describe a code generation approach for data visualization based on created models.

2. General Requirements and Design Challenges

The specificity of user requirements lies in the need to identify new types of diagrams. This result
can be achieved by interactivity, combining different types of diagrams (e.g., a combination of a
histogram and a line graph) or different elements/shapes within a single diagram, etc.
Users require the creation of visualizations adapted to specialized tasks and domains too. There is
also a need for modeling previously created diagrams and implementing visualization specifications
into the system.
These specifications define how users can specify their requirements for creating visualizations [6].
Statistical visualizations may not be effective for comparing concepts within large data sets.
Therefore, there is a demand for the rapid and straightforward creation of interactive
visualizations [3]. These methods should be capable of working with various types of data and data
sources [6].
Modern researchers [2], [7] highlight the limited degree of flexibility in manipulating diagram
elements and the lack of focus on the real needs of the user in existing data visualization tools.
Another challenge in information visualization is the loss of data transmission efficiency when an
inappropriate visualization method is chosen.

129

Dzheiranian A. D., Ermakov I. D., Proskuryakov K. A., Lyadova L. N. Designing Data Visualization System Based on Language-Oriented
Approach. Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 2, 2024. pp. 127-140.

3. Related Works

3.1 Classification of Visualization Methods

The diversity of visualization methods is quite large and continues to expand, which is confirmed
by the constant emergence of new specialized types of diagrams (tree-like, chord, network, etc.).
Determining the most appropriate type of visualization is not an exact science and involves a
multitude of approaches, but it is based on the key question: what idea you want to convey with the
diagram [8], [9]. To determine which specific visualization methods are sufficient to implement
most visualization ideas, it is necessary to settle on a specific taxonomy for classifying data
visualization methods from the existing range.

It was decided to focus on the five-category structure proposed by Andy Kirk [9]:

1) comparing categories,

2) assessing hierarchies and part-to-whole relationships,
3) showing changes over time,

4) plotting connections and relationships,

5) mapping geospatial data.

It is followed by a review of each of these categories, highlighting specific diagrams, their unique
characteristics, and elements.
The main classification criteria have been identified. These criteria are listed below:

1) The greatest popularity of visualization methods.

2) The inclusion of methods for visualizing abstract data that is characterized by multiple
dimensions and the absence of explicit spatial references in addition to standard
visualization methods (line graphs, histograms, pie charts, bar charts, and scatter plots).

3) The ability to present any type of visualization in an interactive form, enhancing their utility
for large-scale datasets.

As aresult, a classification consisting of sixteen visualization methods depending on the purpose of
creating the visualization was developed (Fig. 1). This classification is the basis for the development
of the data visualization languages ontology and languages metamodels.

3.2 Data Visualization Tools and Customization Options

There are few publications on creating DSLs for data visualization. Based on the review, most DSLs
focus on a small set of standard charts (pie charts, histograms, etc.) or visualizations of specific data
types (e.g., geospatial). They differ in levels of abstraction, contexts of use, and implementation
capabilities.

The article [10] describes the process of developing a DSL for constructing and transforming data
visualization techniques. The DSL is built into the Haskell programming language. The authors
provide several levels of abstraction: at the lowest level, the user can create an element consisting
of a specific primitive shape and a set of visual parameters. It is important to note that the basic
language constructs are limited to the histogram and pie chart. However, it is allowed to arrange
their elements in different ways to create more complex examples.

Article [11] presents a variational visualization model implemented through a DSL built into the
PureScript programming language. This DSL allows to create variation visualizations and their
combinations, such as overlaying alternative histograms. Methods for representing variation and
adding variation to visualizations via DSL are discussed in the article also. This includes creating,
manipulating, navigating, and rendering variational visualizations.

130

Jlxeiipansu A. 1., Epmakos U.]I, ITpockypskos K. A., JIanosa JI. H. [IpoexktupoBanne cHCTEMBI BU3yaM3aluy JJAHHBIX, OCHOBAHHOH Ha

SI3IKOBO-OPHEHTHPOBAHHOM moaxoze. Tpyowst UCI1 PAH, 2024, Tom 36, Bbim. 2, 2024. ¢. 127-140.

Pie

catier plot

S

[
[

-
(]

To compare categories

chart

Ho

nges overtme

To show cha

What is the purpose
of visualization?

e relationships

Tc assess hierarchies a

[parttowh

data

o map gecs:)at ai

Dot map

ram

rst diag

ree map

Fig. 1. Classification of visualization methods by purpose

131

Dzheiranian A. D., Ermakov I. D., Proskuryakov K. A., Lyadova L. N. Designing Data Visualization System Based on Language-Oriented
Approach. Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 2, 2024. pp. 127-140.

The researchers in study [12] introduce a DSL that is focused on data geovisualizations. They utilize
a compiler to facilitate the automatic generation of visualizations and the pre-processing of data.
Their system leverages the power of multi-core parallelism to expedite the data pre-processing.
The considered tools provide the ability to develop new types of diagrams. But customization for
specific domains was not found in them. Thus, a language-oriented approach for implementing a
data visualization tool can become the main one for developing a data visualization system.

3.3 Ontology-Driven Approach to Implementing DSL Toolkits

In papers [13], [14] has been suggested to use ontologies as part of the architecture for the analytical
platform. In this case, a multifaceted ontology is used, which allows to avoid data duplication, ensure
changes traceability of ontologies, and automatically interpret data and the results of data analysis
to provide them to different groups of users according to terminology that they are familiar with.
Use of ontologies is also considered by researchers within the domain-specific modeling (DSM)
approach [15]. Domain-specific modeling is the part of model-driven engineering approach. It
allows for the reduction of complexity in software system development by using DSL's. Language
toolkits (DSM platforms) are used to implement this approach. They enable the generation of all
essential components for working with the language (graphic editor, interpreter, etc.) according to
the described metamodel.

One of the ideas for implementing the DSM approach is the usage of knowledge, specifically — the
ontologies [4-5, 13]. Due to this, it is possible to automate the process of creating domain-specific
languages. This approach is taken as the basis for the development of a data visualization system.

4. Generalized Structure of the Data Visualization Tools Based on the DSM
Approach

The Fig. 2 shows the structure of the data visualization platform based on the DSM approach. The
core of the system is a multifaceted ontology. This is an ontology that includes many other
ontologies. They can be divided into three groups:

1) Ontology of languages. This is an ontology, in which metamodels of visual and textual
languages are stored in accordance with a certain classification (by task or methodology).
To describe metamodels, the HPGPR [15] metalanguage is used — an extended version of
MetaCase’s GOPPRR language. Models are also presented in the ontology of languages as
instances of a model class.

2) Information ontology. This group may include several types of ontologies. First, the
ontologies of data sources — they include information about data types, data storage formats,
relationships, attributes, etc. Secondly, the domain ontologies. These ontologies contain a
description of a specific subject area — the basic concepts (objects) and the relationships
between them.

3) Applied ontologies. These are ontologies, that are used during metamodel generation
(projection rules ontology) and model transformation (transformation rules ontology).

The platform is also partitioned into logical blocks. Let’s take a closer look.
First of all, this is a block of Functional Modules. These are modules responsible for the basic
functionality of the platform — model creation and editing, model transformations, code generation
and others.
The Language Generation Module is used to automate the creation of meta-models using ontologies.
Development of this module is based on the idea of reusing previously created languages with their
reconfiguration to new subject areas through domain ontologies.
The Models Management Module is used to manage models in the platform structure: import and
export models from ontologies and convert into a view applicable within the platform. Both other
modules use this module to access models and languages (meta-models).
132

JUkeiipansia A. 1., Epmakos U. [T, TIpockypsikos K. A, JIsnosa JI. H. TIpoekTHpoBaHie CHCTEMBI BU3yalH3aliiy JaHHbIX, OCHOBAHHOM Ha Dzheiranian A. D., Ermakov I. D., Proskuryakov K. A., Lyadova L. N. Designing Data Visualization System Based on Language-Oriented
SI3IKOBO-OPHEHTHPOBAHHOM moaxoze. Tpyowst UCI1 PAH, 2024, Tom 36, Bbim. 2, 2024. ¢. 127-140. Approach. Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 2, 2024. pp. 127-140.

5. Developing Languages for Creating Data Visualization Models

To create a new language the user needs to complete several preliminary steps.

First, an ontology of data visualization should be developed. At the same time, metamodels of basic

languages for creating diagrams should be developed. The basis of the ontology should consist of

diagram classification and a special language that enables the creation of these languages based on it.
D i i o i e e e e e e e e e e e e To customize created languages to the user's domain and tasks, it is proposed to use the mentioned
approach for automizing language creation via mapping the concepts of the domain onto the
metamodel of the base language [13].

Function

5.1 Data Visualization Ontology

The process of building an ontology of data visualization languages includes the following steps:

“,
axtends

o ﬁm‘”{

) |/ Bar Cnart
\

1) Formalization of an abstract diagram, which will include properties common to all types of
diagrams (title, legend, width, height, etc.).

ajection rules
subontology

matplot |b) | 2gplot2)

o purr-o,'I

_ Function

2) Distinguishing types of diagrams into separate classes based on the developed classification
of diagrams (Fig. 1).

|
extends

=
is-a

f

/

\

/ Fie Chart

)
)l

3) Adding unique elements of charts to classes.

Multifaced Ontolegy

Languagues

nguage

4) Defining relationships between the classes.

As a result, each type of diagram will have its own formalized model, for which its own DSL will
be generated later.

Fig. 3 shows an abstract diagram class and its descendants in the ontology. But it is not enough to
create only subclasses of diagrams. Each of the charts consists of separate elements that have their
own properties. Such elements are separated into subclasses of the “Diagram Element” class
(Fig. 4). After defining the main classes and their unique elements, it is necessary to define the
hierarchical and part-to-whole relationships between the classes. Relationships ‘“as-is” are
automatically created between the parent class and the child class. Then, to display the “part-of”
relationships between a specific diagram and its elements, special connections were created. The list
of relationships is shown in Fig. 5.

L3
5

Base Clagram
| Barchant os

Y

-

N
I
Ontology of Languages
(
AT
1~

)
)

1
i

~

[Data Sources
Pie Chart DS

Visual Lang.ages

|/_ Language
_ Matamodel
/—

\

\ Subontalogy

.Dl

Fig. 2. Generalized structure of the data visualization tools

5.2 Base Language Metamodel and Example

The classification of diagrams and the identification of its main components allowed the
development of a new DSL for creating diagrams. The meta-model of this language is shown in

v o i Fig. 6. Created language allows building data flows from sources to a diagram with the ability to
5 E] ' .)
" g cig H U 4 | ﬁl.ter data. User can attach various events to the diagram components, such as mouse hover or mouse
g = i [: click.
2 g 2 :']-»D : Created metamodel describes an abstract language. This language is the basis for the development
: i S = g . of new languages for visualizing data in a specific domain area. It needs to be modified for a specific
5 — E é lo) : type of diagrams in order to use. Designed new language meta-model can be extended and
g = %‘ . e '_) (;_j : customiz;:dlby user with mapping domain model onto components of diagrams in basic language
[] - e T 4 meta-model.
|— ©_] g ¥ o0 |
- N _ - 5.3 Language Customization Example

For example, let’s take the customer evaluation of service. As a basic language, we take a bar chart.
Now we need to create an ontology in which we describe emoji’s — add vertices for each emotion
and set an image for them. During the language generation, we will need to specify the
correspondence between the concepts of the domain ontology and the concepts of the diagram
language. As a result, we get a language that allows to create diagrams, as in Fig. 7.

Such language uses domain terms, and it is easy to use for end users.

133 134

Jlxeiipansu A. 1., Epmakos U. J1., TTpockypskos K. A., JIanosa JI. H. IIpoextupoBanne cHCTEMBI BU3yan3aluy JJAHHBIX, OCHOBAHHOH Ha
SI3BIKOBO-OPHEHTHPOBAHHOM moaxone. Tpyost UCI1 PAH, 2024, Tom 36, Bbim. 2, 2024. ¢. 127-140.

I —
BT g AR
__Mapping_geospatial_data_J,
= = e —pa

T Dot_plot_map)
(" Bar_chart)
e =
_ =
._'F'ne_tnan
— | Histogram)
“Comparing_categorias 1. gty
i S
e SRS 1 Slope_graph)
~sa o
T——
(Word_tag)
= — — ——— g '_.Hnu:on_:nan '_)]
" owlThing \:k;]—"'—"—:'_'\ﬂsual_languages-‘b,-c}-lﬁ-‘—-" Diagram { _Snomng_manqes_mr_ume{;‘-l_
Line_graph)
{ _Assessmg_nlelauh:e: D15 Sunburst_dlagram)
— = i < =
T Tresmap)

__(Paraliel_coordinates

(P‘](‘J‘illn :onneclu-ll-'ls 7
— —dsd | ————
= - _Chord_diagram)
H‘““‘x,_ — —
——

(_ Scafter_plot b

Fig. 3. Fragments of the multifaceted ontology: hierarchy of diagram classes in the ontology

Ei’GsuwN:ﬂ_mq;:)

— — — *’--‘:"__‘r__,is.l-—"""';'_lfg_mi‘_j_/l
:: owd:Thing E-CJ—'“—‘ Visual_languages B<}—S2— Diagram_element =1 f
Sz el aplo e i el

Fig. 4. Fragments of the multifaceted ontology: class hierarchy of diagram elements in the ontology

135

Dzheiranian A. D., Ermakov I. D., Proskuryakov K. A., Lyadova L. N. Designing Data Visualization System Based on Language-Oriented
Approach. Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 2, 2024. pp. 127-140.

= N O
v =
¥ = element-diagram-bindings

' arc-chordDiagram-bindings
BN axis-diagram-bindings
BN bubble-bubbleChart-bindings
B chord-chordDiagram-bindings
B circle-sunburst-bindings
. color ialData
= grid-diagram-bindings
== jegend-diagram-bindings
B line-lineChart-bindings
B |ine. i
B line-slopeGraph-bindings
. map- ialData
B point-dotPlotMap-bindings
B point-scatterPlot-bindings
-

hart-bi

B rectangle-treemap-bindings
B sector-pieChart-bindings
B sector-sunburst-bindings
= stripe-horizonChart-bindings

Fig. 5. Fragments of the multifaceted ontology: relation types

1 Transmits =

Area

[& * Implements * | e + + t

vent
Contains = E @

| |
‘ Figura

Huds Legend

Fig. 6. Metamodel of the base language Fig. 7. Diagram customization
for diagram creation example

6. Generating Code for Data Visualization Based on Created Models

Using DSL, visualization models are built, but code generation (also called “Model-To-Text”
transformation) is required for data visualization. The vast majority of modern DSM platforms use
a template-based approach to code generation, which allows efficient templates reuse [16].
Templates are described not for a specific model, but for a meta-model [17], or in this case a
visualization language. Each template consists of two parts — static and dynamic. The static part is
the same for all models, and the dynamic part uses information “extracted” from a particular model.
In this paper, we propose to use the approach described in [15], which consists in creating and using
transformation rules in the visual environment in the form of a constructor. Each rule consists of the
left part — visual language metamodel objects and the corresponding right part — textual language
constructs, which are templates. All language constructs, as well as created transformation rules, are
stored in a multifaceted ontology.

136

Jlxeiipansu A. 1., Epmakos U.]I, ITpockypskos K. A., JIanosa JI. H. [IpoexktupoBanne cHCTEMBI BU3yaM3aluy JJAHHBIX, OCHOBAHHOH Ha
SI3IKOBO-OPHEHTHPOBAHHOM moaxoze. Tpyowst UCI1 PAH, 2024, Tom 36, Bbim. 2, 2024. ¢. 127-140.

Python and R are the preferred programming languages for data visualization purposes. Python is
widely popular in this area due to its wide range of suitable libraries, including Matplotlib, Seaborn
and Plotly, and its simple syntax. Although R is second only to Python in industry, it also has a rich
arsenal of visualization tools and continues to be a popular choice in academia. Thus, as textual
language constructs, it makes sense to use code fragments in Python and R containing calls to library
functions for data visualization.

Once transformation rules are created, they can be applied to specific models to generate data
visualization code. The code generation algorithm is based on traversing the internal representation
of models, which can be modeled with a graph.

7. Conclusion

In this paper a structure of a knowledge-driven data visualization tool based on a language-oriented
approach is proposed. This approach allows overcoming several limitations of existing visualization
tools and providing users an ability to customize the data visualization models for different domain
areas via creating special languages and reduces the requirements for end user’s programming skills
when creating DSL and charts.

The practical applicability of this approach is demonstrated through the example of creating a chart
for assessing customer service quality. New base domain-specific language metamodel for data
visualization was created with using the proposed approach. Then a diagram model was built with
created DSL and data visualization was built according to the specified requirements.

The next stage of the research is implementing of the described ideas and expanding possibilities of
interactive visualization via interpretation of the created models. The theoretical basis to developing
this approach is Vega-Lite [18], a high-level grammar that enables rapid specification of interactive
data visualizations.

References

[1]. Midway S. R. Principles of Effective Data Visualization. Patterns, 2020, vol. 1, issue 9, article 100141.
DOI: 10.1016/j.patter.2020.100141.

[2]. Oral E., Chawla R., Wijkstra M., Mahyar N., Dimara E. From Information to Choice: A Critical Inquiry
Into Visualization Tools for Decision Making. IEEE Transactions on Visualization and Computer
Graphics, 2024, vol. 30, no. 1, pp. 359-369. DOI: 10.1109/TVCG.2023.3326593.

[3]. Morgan R., Grossmann G., Schrefl M., Stumptner M, Payne T. VizDSL: A Visual DSL for Interactive
Information Visualization. In Proc. of the 30th International Conference “Advanced Information Systems
Engineering”, CAiSE 2018, 2018, pp. 440-455. DOI: 10.1007/978-3-319-91563-0_27.

[4]. Lyadova L., Sukhov A., Nureev M. An Ontology-Based Approach to the Domain Specific Languages
Design. In Proc. of the 15th IEEE International Conference on Application of Information and
Communication Technologies (AICT2021), 2021, 6 p. DOI: 10.1109/AICT52784.2021.9620493.

[5]. Kulagin G., Ermakov 1., Lyadova L Ontology-Based Development of Domain-Specific Languages via
Customizing Base Language. In Proc. of the 16th IEEE International Conference on Application
of Information and Communication Technologies (AICT2022), 2022, 6p.
DOI: 10.1109/AICT55583.2022.10013619.

[6]. Qin X., Luo Y., Tang, N., Li G. Making Data Visualization More Efficient and Effective: a Survey. The
VLDB Journal, 2019, vol. 29, no. 1, pp. 93-117. DOI: 10.1007/s00778-019-00588-3.

[7]. Cepero Garcia M. T., Montané-Jiménez L. G. Visualization to Support Decision-Making in Cities:
Advances, Technology, Challenges, and Opportunities. In Proc of the 8th International Conference in
Software Engineering Research and Innovation (CONISOFT), 2020, pp. 198-207. DOI:
10.1109/CONISOFT50191.2020.00037.

[8]. Zelazny G. The Say It with Charts Complete Toolkit. New York, McGraw-Hill Professional, 2006, 312 p.

[9]. Kirk A., Data Visualization: A Successful Design Process. Birmingham, Packt Publishing Ltd, 2012,
189 p.

[10]. Smeltzer K., Erwig M., Metoyer R. A transformational Approach to Data Visualization. In the Proc. of
the 2014 International Conference on Generative Programming: Concepts and Experiences (GPCE 2014),
2014, pp. 53-62. DOI: 10.1145/2658761.2658769.

137

Dzheiranian A. D., Ermakov I. D., Proskuryakov K. A., Lyadova L. N. Designing Data Visualization System Based on Language-Oriented
Approach. Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 2, 2024. pp. 127-140.

[11]. Smeltzer K., Erwig M. A Domain-Specific Language for Exploratory Data Visualization. In Proc. of the
17th ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences
(GPCE 2018), 2018, pp. 1-13. DOI: 10.1145/3278122.3278138.

[12]. Ledur C., Griebler D., Manssour 1., Fernandes L. G. A High-Level DSL for Geospatial Visualizations with
Multi-core Parallelism Support. In Proc. of the IEEE 41st Annual Computer Software and Applications
Conference (COMPSAC), 2017, pp. 298-304. DOI: 10.1109/COMPSAC.2017.18.

[13]. Zayakin V., Lyadova L., Rabchevskiy E. Design Patterns for a Knowledge-Driven Analytical Platform.
Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS), 2022, vol. 34,
no. 2, pp. 43-56. DOI: 10.15514/ISPRAS-2022-34(2)-4.

[14]. Zayakin V. S., Lyadova L. N., Lanin V. V., Zamyatina E. B., Rabchevskiy E. A. An Ontology-Driven
Approach to the Analytical Platform Development for Data-Intensive Domains. Knowledge Discovery,
Knowledge Engineering and Knowledge Management. IC3K 2021. Communications in Computer
and Information Science. Springer, Cham. 2023, vol. 1718, pp. 129-149.
DOI: 10.1007/978-3-031-35924-8 8.

[15]. Lyadova L., Ermakov 1., Lanin V., Proskuryakov K. Approach to the Development of Ontology-Driven
Language Toolkits Based on Metamodeling. In Proc. of the IEEE 17th International Conference on
Application of Information and Communication Technologies (AICT2023), 2023, 6 p. DOLI:
10.1109/AI1CT59525.2023.10313152.

[16]. Kahani N., Bagherzadeh M., Cordy J. Survey and Classification of Model Transformation Tools. Software
& Systems Modeling, 2019, vol. 18, pp. 2361-2397. DOI: 10.1007/510270-018-0665-6.

[17]. Ding J., Lu J., Wang G., Ma J., Kiritsis D., Yan Y. Code Generation Approach Supporting Complex
System Modeling Based on Graph Pattern Matching. IFAC-PapersOnLine, 2022, vol. 55, Issue 10,
pp- 3004-3009. DOI: 10.1016/j.ifac0l.2022.10.189.

[18]. Satyanarayan A., Moritz D., Wongsuphasawat K, Heer J. Vega-Lite: A Grammar of Interactive Graphics.
IEEE Transactions on Visualization and Computer Graphics, 2016, vol. 23, no. 1, pp. 341-350. DOI:
10.1109/TVCG.2016.2599030.

UHgpopmayust 06 aemopax / Information about authors

Anna Jlanuenosna [PKEVMPAHSIH — cTynent Gakanappuarta HallHOHaIEHOTO HCCIEI0BATETECKOTO
yHUBepcurteTa «Bsiciias mkona sxonomuxkwy (HY BIIID-TIepms), 06pazoBaTenbHas IporpaMma
«[Iporpammuas umxeHepus». Cdepa HaydyHBIX HHTEPECOB: aHANIMU3 M BU3yalH3alUs JaHHBIX,
reHepaTUBHBIE MOJENH, IPEIMETHO-OPUEHTUPOBAHHOE MOJIETUPOBaHHUE.

Anna Danielovna DZHEIRANIAN - undergraduate student at the National Research University —
Higher School of Economics (HSE University, Perm Branch), educational program “Software
Engineering”. Research interests: data analysis and visualization, generative models, domain-
specific modeling.

NBan J[lenmcoBna EPMAKOB - crymenr wmaructpatypsl IlepMckoro rocyaapcTBEHHOTO
HaIMOHANBHOTO HccienoBatenbckoro ynusepcurera (IITHUY), oOpasoBarenbHas mporpamma
«[Ipuxnannas marematnka u uHpopMmaruka». Cdepa HAy4dHBIX HMHTEPECOB: IPEIMETHO-
OPUCHTUPOBAHHOE MOJCIUPOBAHUC, A3BIKOBBIC HWHCTPYMEHTAPWUH, YIIPABJIACMBIE 3HAHUIMU
CHCTCMBI.

Ivan Denisovich ERMAKOV — master student at the Perm State National Research University
(PSU), educational program “Applied Mathematics and Computer Science”. Research interests:
domain-specific modeling, language toolkits, knowledge-driven systems.

Kupunn AnekcangpoBua [IPOCKVYPSKOB — crymentr wmaructpatypsl HammonansHOro
HCCIIE0BATENbCKOTO yHUBEpcUTeTa «Bblcmias mxoma skoHomukn» (HUY BIID-Tlepwms),
obpa3zoBarensHas nporpamma «busnec-uapopmartukay. Chepa HaydHBIX HHTEPECOB: IPEIMETHO-
OPHEHTHUPOBAaHHOE MOJCINPOBAHNUE, S3BIKOBBIC HHCTPYMEHTapHH, YIpaBisgeMble 3HaHUSIMU
CHCTEMBI.

138

Jlxeiipansu A. 1., Epmakos U.]I, ITpockypskos K. A., JIanosa JI. H. [IpoexktupoBanne cHCTEMBI BU3yaM3aluy JJAHHBIX, OCHOBAHHOH Ha
SI3IKOBO-OPHEHTHPOBAHHOM moaxoze. Tpyowst UCI1 PAH, 2024, Tom 36, Bbim. 2, 2024. ¢. 127-140.

Kirill Alexandrovich PROSKURYAKOV — master student at the National Research University —
Higher School of Economics (HSE University, Perm Branch), educational program “Business
Informatics”. Research interests: domain-specific modeling, language toolkits, knowledge-driven
systems.

Jlropmuna Huxonaesna JIIJIOBA — kanaupat Gu3uMKo-MaTeMaTHUECKUX HAyK, AOLEHT, JOLEHT
kadenpsl MHGOPMALUMOHHBIX TEXHOJOTHMH B OusHece HanmoHanbHOrO HCCIEIOBATEILCKOIO
yHuBepcutera «Bpiciias mkona skoHomukn» (HUY BHID-Tlepmb). Chepa HaydHBIX HHTEPECOB:
S3bIKM MOJCIMPOBAHUSA, IPEIMETHO-OPUEHTHPOBAHHOE MOJEIHPOBAHHE, A3BIKOBBHIE
u"ctpyMmenTapun, CASE-cpencTsa, CHCTEMbl IMHUTALIHOHHOT'O MOJIEIUPOBAHUSL.

Lyudmila Nikolaevna LYADOVA — Cand. Sci. (Phys.-Math.) in Computer Science, Associate
Professor of the Department of Information Technologies in Business of the National Research
University — Higher School of Economics (HSE University, Perm Branch). Research interests:
modeling languages, domain specific modeling, language toolkits, CASE tools, simulation systems.

139

