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Abstract
In this paper, we explore the use of Generative Adversarial Networks (GANs) to speed up the simulation process while 
ensuring that the generated results are consistent in terms of physics metrics. Our main focus is the application of spectral 
normalization for GANs to generate electromagnetic calorimeter (ECAL) response data, which is a crucial component of 
the LHCb. We propose an approach that allows to balance between model’s capacity and stability during training proce-
dure, compare it with previously published ones and study the relationship between proposed method’s hyperparameters 
and quality of generated objects. We show that the tuning of normalization method’s hyperparameters boosts the quality of 
generative model.

Keywords Generative models · High energy physics · Deep learning · Regularization

Introduction

The Large Hadron Collider (LHC), built by the European 
Organization for Nuclear Research (CERN), is the world’s 
largest collider. The LHCb experiment [1] at LHC focuses 
on studies of the heavy flavor physics, precise measurements 
of CP violation, and other effects in and beyond the Stand-
ard Model. The LHCb detector consists of several compo-
nents, including an electromagnetic calorimeter (ECAL). 
The ability to simulate the expected detector response is a 
vital requirement for the physics analysis of the collected 
data and extracting physics results. The use of the Geant4 
package [2] for simulating detector responses is computa-
tionally expensive and resource-intensive, requiring to speed 
this process up.

Previously, it was shown [3] that GAN-based frameworks 
have the potential to serve as fast generative models to speed 
up the simulation. The auxiliary regression extension [4], 
that introduces physics metrics to a Discriminator part of 
the model, allowing it to detect objects with poorly repro-
duced properties, demonstrated improvements of the physics 

quality for generated objects. We proposed to train the model 
in a multitask manner using two objectives: adversarial and 
regressive ones. However, we used spectral normalization 
to achieve training stability, and resulted in a reduction in 
model’s capacity, thus it was complicated for the model to 
solve multiple tasks at the same moment.

In this paper, we study the relationship between model’s 
Lipschitz constant and quality of generated objects. We 
propose a regularization technique that allows to balance 
between model’s capacity and stability. We compare the 
quality achieved using different regularization techniques, 
evaluating the generated objects in terms of both general 
and physics metrics, including shower asymmetry, shower 
width, and sparsity level, and study the relationship between 
the learning rate, method’s hyperparameters and quality of 
generated objects.

GANs in High Energy Physics

Generative adversarial networks (GANs) approach is a 
prominent technique for developing generative models. 
GAN framework comprises two components, the genera-
tor and discriminator, which compete against each other to 
recreate objects from a given distribution [5]. The genera-
tor (G) learns to map an easy-to-sample distribution, such 
as a standard normal distribution, to the target distribution. 
The discriminator (D) provides feedback to improve the 
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generator by detecting discrepancies between real reference 
objects and ones generated by the model. Mathematically, 
this can be represented as a mini-max game:

where pdata is a true data distribution, D(x) is the output of 
the discriminator.

GAN can be extended to a conditional model (CGAN) 
if both the generator and discriminator are conditioned on 
additional information y such as class labels or some prop-
erty of objects we want to generate:

The idea of utilizing GANs for simulation in high energy 
physics was introduced by Paganini et al. [6] and subse-
quently developed in [7–10] with the implementation of 
Wasserstein conditional GAN, [11] investigated the opti-
mization of GANs with hyperparameter scans, [12] applied 
three-dimensional convolutional layers. Comparisons were 
made between GAN performance and models based on con-
ditional variational autoencoders, and their combination, 
with CGAN yielding the best results [13].

Through the Fast Calorimeter Simulation Challenge 2022 
[14], the research community organized competition, novel 
GAN-based [15] methods were introduced, as well as flows 
[16–18] and diffusion-based ones [19–21].

Currently, diffusion models show state-of-the-art results 
in terms of quality of generated objects. In this work, we 
focus on GANs as they accelerate the simulation the most, 
providing appropriate quality, and we focus on the stability 
of the training process.

In our prior work [3], we proposed enhancing the gen-
erative model’s quality by adding self-attention layers to 
the previously best-performing architecture. This approach 
allowed convolutional neural networks to capture and 
employ long-range relationships between image regions 
throughout the training process. Spectral normalization [22] 
was also added into both models to stabilize the training 
process.

Lately in [4] we trained GAN with additional regressors 
that evaluated object’s physics properties simultaneously 
with the adversarial objective. This setting led to better 
reproduced metrics that were introduced to the regressor.

Spectral Normalization for GANs

One of the key challenges in the training of GANs is the 
performance control of the discriminator. This procedure 
is highly unstable due to step-by-step two-models training 

(1)
min
G

max
D

Ex∼pdata(x)

[
logD(x)

]
+ Ez∼N(0,I)

[
log(1 − D(G(z)))

]
,

(2)
min
G

max
D

Ex∼pdata(x)
[logD(x|y)] + Ez∼N(0,I)

[
log(1 − D(G(z|y)))

]
.

setting, therefore, the density ratio estimation done by the 
discriminator may be inaccurate, generator networks fail to 
learn the multimodal structure of the target distribution, gra-
dients may vanish and explode [23]. These facts motivated 
researches to introduce different forms of restrictions and 
regularization to the choice of the discriminator.

Spectral Normalization introduced in [22] outperforms 
other techniques, such as weight normalization [23], weight 
clipping [24], and gradient penalty [25] as the Lipschitz con-
stant is the only hyperparameter to be tuned, and the power 
iteration method [26], used under the hood of this approach, 
is relatively fast.

A neural network f� with parameter � is called Lipschitz 
continuous if there exist a constant c ≥ 0 such that:

for all possible inputs t0, t1 under a p-norm of choice. The 
parameter c is called the Lipschitz constant. Intuitively, this 
constant c bounds the rate of change of f�.

Spectral normalization controls the Lipschitz constant of 
the discriminator function D by constraining the spectral 
norm of each layer g(h) = Wh . By definition, Lipschitz norm 
‖g‖Lip is equal to sup

h
�(∇

h
g(h)) , where �(A) is the spectral 

norm of the matrix A ( L2 matrix norm of A)

which is equivalent to the largest singular value of A. 
Thus, for a given layer g(h) = Wh , the norm is given by 
‖g‖Lip = sup

h
�(∇g(h)) = sup

h
�(W) = �(W).

It was shown in [22] that if we normalize each Wl using 
spectral normalization, we can achieve the fact that ‖f‖Lip 
is bounded from above by 1. Thus, the vanilla spectral nor-
malization requires no hyperparameters to be tuned, however 
we have no ability to control the degree of regularization.

Lipschitz Networks

Reduction of the Capacity Background

The expressivity reduction issue introduced by the normali-
zation was faced on our own during research, presented in 
[4]. We suggested training GAN in a multitask manner, add-
ing regressors that evaluate some predefined object’s prop-
erties. These regressors share layers and weights with the 
Discriminator, and we use mean squared error as a loss func-
tion for this part of the network, therefore the new objective 
function has the following form:

(3)‖f�(t0) − f�(t1)‖p ≤ c ‖t0 − t1‖p,

(4)�(A) ∶= max
h∶h≠0

‖Ah‖2
‖h‖2

= max
‖h‖2≤1

‖Ah‖2,



Computing and Software for Big Science            (2024) 8:12  Page 3 of 13    12 

where Ladv(�) is the adversarial part of the Discriminator’s 
loss, K is the number of the object’s properties, that we eval-
uate via regressors, �k is the weight of k-th regression loss, 
N is the number of objects, oi is the real property value and 
õi is the predicted value.

We expected the discriminator to focus on some specific 
features of the objects, that pass through, forcing the genera-
tor to reproduce them better. As the model now has to opti-
mize multiple loss functions and solve additional tasks, our 
model is required to be more expressive. As traverse cluster 
asymmetry was reproduced the worst, we set its values as 
targets for the regressive part of the model.

Without spectral normalization, regression part per-
formed better: this model achieved a lower mean squared 
error, the second term in 5, nevertheless generative part was 
highly unstable. However, if we add regression part to the 
model with layers that were normalized, we do not improve 
the quality of generated samples as we expected, as the 
regression task is not solved with an appropriate quality.

These results led us to the need of controlling the L-con-
stant of the discriminator, balancing between training stabil-
ity and model’s capacity.

Regularization Methods

Through the application of spectral normalization it is pos-
sible to stabilize the training procedure, however it directly 
affects the expressivity of the network. Intuitively, it would 
be useful to have an ability to control the degree of regulari-
zation, balancing between stability and network’s expressive 
power.

The general idea here is to design a regularization based 
on the architecture of the k-Lipschitz networks as it was 
described in [27], constraining all the layers to be 1-Lip-
schitz and multiplying the final layer with a constant k to 
make it k-Lipschitz. Making it trainable allows us to treat k 
as a regularization term (Alpha-k), thus the augmented loss 
function J  with an original loss function L(�) and its weight 
� looks as follows:

A Lipschitz-like regularization may be redefined as the 
summation of squared Lipschitz bounds of each layer ( L2 ), 
so generalized formulation from [26] looks as follows:

(5)L(𝜃) = Ladv(𝜃) +

K∑

k=1

𝛼k

N

N∑

i=1

(oi − õi)
2,

(6)J(�, k) = L(�) + �k.

(7)J(�) = L(�) + �

l�

i=1

‖Wi‖2p.

It was reported, that such formulation fails to capture the 
exponential growth of the Lipschitz constant with respect 
to the network depth [28], so changing the architecture may 
require a new �.

Another approach, mentioned in [28], is to define the 
Lipschitz regularization directly on the weight matrices 
( Linf ):

Mentioned approaches (6), (7) and (8) do not allow to 
explicitly set any value as a desired Lipschitz constant of 
the network. Even though otherwise it requires tuning the 
hyperparameters, some settings require foreknown con-
stants, e.g., [24] requires 1-Lipschitz critic. Using [27] 
may lead to constant, that is less than 1, affecting the net-
work’s capacity and gradients used to train the generator, 
as the only way of controlling the regularization is the 
weight � . It would be intuitive to include this constant 
into the training objective in such a way that the network 
remains unaffected as long as the constant is below the 
target value, so we suggest defining the augmented loss 
function using margin value m and hinge-loss-style form:

Learning Rate and L‑constant

As our approach requires us to set two hyperparameters, 
we study the relationship between them. In [29] it is 
shown that in order for the model with Lipschitz constant 
L to converge learning rate � should meet the following 
requirements:

In (6), (7) and (8) we can not set the L value explicitly, but 
we can play around with the margin value m in (9) and com-
pare the quality of generated objects. For every particular 
constant we train the model 5 times, using the same pool of 
learning rates, that remain constant during the fitting proce-
dure. The main objective here is to find a value that allows 
our model to start to converge, however, we also tried to find 
a learning rate providing the fastest quality boosting, as it is 
possible to just set a relatively low learning rate that requires 
more iterations.

We define quality gain QG as the mean difference of qual-
ity of generated objects between adjacent epochs:

(8)J(�) = L(�) + �

l�

i=1

‖Wi‖∞.

(9)J(�) = L(�) + �max

�
0,

l�

i=1

‖Wi‖2 − m

�
.

(10)0 ≤ � ≤
2

L
.
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where PRDi is Physical PRD evaluated after the i-th 
epoch, Ne is the number of epochs, used to evaluate the 
gain. As we want to find the starting point for the model to 
converge and evaluate the speed of quality gain, we use only 
30 first epochs to calculate the gain. We plot quality gains 
versus learning rate (Figs. 4, 5) to find the best �.

ECAL Response Generation

Dataset

The dataset utilized in our experiments comprises infor-
mation concerning electron interactions within the elec-
tromagnetic calorimeter (ECAL). The ECAL employs the 

(11)QG =
1

Ne

Ne∑

i=2

(PRDi − PRDi−1),
"shashlik" technology, which consists of alternating layers 
of lead and scintillation plates. The readout cells within dif-
ferent modules are of varying sizes, with dimensions of 4 
× 4, 6 × 6, and 12 × 12 cm2 , enabling the aggregation of 
responses of 2 × 2 cm2 logical cells to obtain a response for 
all granularities. All events in the dataset correspond to elec-
trons with a specific momentum and direction entering the 
calorimeter at a given location, resulting in the generation 
of an electromagnetic shower in the ECAL. The sum of all 
energies deposited in the scintillator layers of a single cell 
produces a matrix of energies corresponding to the ECAL 
response for the impacting electron, as depicted in Fig. 1. 
The dataset of such ECAL responses comprises a 30 × 30 
cell matrix of 2 × 2 cm2 cells approximately centered on 
the energy cluster’s location, produced using the GEANT4 
v10.4 package. Figure 1 shows a sample of these matrices.

We use 60,000 events for training and other 60,000 
events as a test dataset. We apply logarithmic transformation 

Fig. 1  Sample of energy deposition matrices from the ECAL response dataset
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log(x + 1) to the energy deposit matrix during training, like 
we did in [3, 4], as it provides a better generation quality.

Quality Evaluation

In our case generated objects do not represent an image 
in general terms, so we can not use perception-based 
approaches, that apply some pretrained models to compare 
real and generated image. Thus, we use precision-recall-
based method.

Given a reference distribution P and a learned distribution 
Q, precision intuitively measures the quality of samples from 
Q, while recall measures the proportion of P that is covered 
by Q. As the model generates samples that are close to some 
real ones, precision increases. Meanwhile, to avoid gener-
ating same objects and evaluate variety, the model needs 
to generate different samples that are close to different real 
samples, increasing the recall.

Through our experiments we use precision and recall for 
distributions (PRD) [30], an efficient algorithm to compute 
these quantities, to evaluate the performance of different 
models, comparing the quality of generated samples.

As we want to evaluate generated responses not only in 
terms of general quality but in terms of physics metrics as 
well, we use the minimum of two PRD-AUC scores, evalu-
ated over raw images (RAW PRD) and a set of the physics 
statistics (Physical PRD):

• shower asymmetry along and across the direction of 
inclination;

• shower width;
• the number of cells with energies above a certain thresh-

old, the sparsity level.

PRD requires discrete distributions as its input, so the evalu-
ation pipeline looks as follows:

• unite the objects from real and generated distributions.
• use energy deposit matrix as features to represent object 

in case of RAW PRD.
• use physical properties of the object as features in case 

of Physical PRD.
• cluster all objects using MiniBatchKMeans with 400 

clusters based on image or physical features.
• evaluate the PRD over the pair of histograms built after 

the clustering procedure.

Results and Discussion

In order to compare the behavior of different approaches, 
we train the same model multiple times using different 
regularization terms and weights � to achieve different 

L-constants, as it is the only hyperparameter that can be 
chosen on our own. Our approach requires setting the mar-
gin value, thus we divide runs into 6 groups. Every single 
group represents runs with close values of the achieved 
L-constant. Then we use the average of constants in every 
group, achieved using other methods, and set it as a mar-
gin for our loss. We choose the best model based on PRD 
evaluated on the set of physical metrics, as described in 
"Quality Evaluation".

Methods that were mentioned previously, e.g., (6), 
were highly sensitive to their only hyperparameter � , the 
weight of the regularization term. Most of the runs pro-
vided us with highly unstable training procedure (low � , 
high L-constant) or both generative and regressive losses 
did not improve (high � , low expressivity). In our approach 
we can explicitly pass the desired constant as a hyperpa-
rameter, and even it is not guarantied for model to have 
exactly this values as its constant, we achieve the desired 
behavior. Model’s constant becomes closer the margin m, 
allowing us to directly search for the L value, providing us 
with the best performance.

Another advantage comes from the fact that our loss do 
not penalize the model if its constant is less than margin, 
thus we can pick up a relatively high � and it would not 
lead to a constant’s degradation. Basically, if we set margin 
m = 0 , formulation our loss becomes closer to 8, however 
it may be clearly seen from Fig. 3 that Linf  without mar-
gin provides us with worse quality of reproduced physics 
metrics, as initially it penalizes the model even with a low 
L-constant.

During the hyperparameters’ tuning of other approaches, 
we often faced the problem of L-constant with values below 
one. This turns into a poor quality, leading us to omit these 
results on the plot, as they were way worse than the 1-con-
stant baseline. This quality degradation be explained by the 
fact of model’s decreasing capacity.

According to Figs. 2 and 3 all methods have sweet-spots 
providing the best possible quality. As the constant is close 
to 1 the model has lower capacity. As we increase the con-
stant, the training procedure becomes unstable. However, 
in our approach we don’t penalize the model if it’s constant 
is less than the margin, and it leads to better results when 
we allow the model to achieve higher constant. Even in case 
when we set the margin equal to 1, we boost the quality of 
the baseline as we allow layers to vary their constants as we 
only want the product to be lower than one but not the every 
single constant.

According to Figs. 4 and 5, the higher margin and con-
stant we have, the lower learning rate we should use. This 
fact should be taken into account for our approach, otherwise 
we can face a situation when 𝛾 >

2

L
≥

2

m
 , model does not 

converge and our loss does not push the model to decrease 
its constant.
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Figure 4 shows the overall situation, meanwhile Fig. 5 
focuses on the part that is mostly important for our 
needs—the learning rate values when models start to con-
verge. These values slightly differ from the theoretical esti-
mations. However, we may notice that models that have 
relatively low margins (1 and 8) start to converge only 
when they have learning rates less than theoretical estima-
tions. Meanwhile, models with relatively high margins (64 
and 125) start to do it with even a bit higher learning rates 
than we expect. This behavior may be explained as we do 

not set the L-constant of the model explicitly, but we set 
the margin to add penalty for the cases above it. Thus, the 
model may achieve even lower constant itself and start to 
converge with a slightly higher learning rate.

Even though quality gain values of all the trained mod-
els with different margins trained using learning rates 
� ∈ [10−4 ∶ 10−2] are close to each other, and these rates 
may be a reliable choice to pick from, Figs. 2 and 3 show that 
margins provide different best achieved qualities through the 
whole training.

Fig. 2  RAW PRD-score of different regularization techniques, evaluated over raw images. Baselines represents model without SN; Alpha-k, L2, 
Linf represent approaches (6), (7), (8) respectively; Hinge represents our approach (9)

Fig. 3  Physical PRD-score of different regularization techniques, evaluated over physical properties ("Quality Evaluation"). Baselines represents 
model without SN; Alpha-k, L2, Linf represent approaches (6), (7), (8) respectively; Hinge represents our approach (9)
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Conclusion

In this paper we propose a novel adaptive normalization 
technique that allows us to control the balance between 
GAN’s capacity and training stability. We successfully 
apply this technique to the LHCb ECAL dataset, boosting 
previously published quality metrics.

To deal with the model’s capacity reduction we intro-
duce an additional loss with a margin hyperparameter, 

allowing it to avoid penalizing the model with a constant 
that is lower than the predefined value. We demonstrate 
that it improves the quality of generated objects, compar-
ing with other techniques.

We also consider the relationship between margin and 
learning rate and empirically show that increasing the mar-
gin we should decrease the learning rate for a better model 
convergence. This relationship should be taken into account 
during training procedure hyperparameters’ optimization. The 

Fig. 4  The relationship between the quality gain and learning rate. L/2 lines are plotted as dotted ones

Fig. 5  The relationship between the quality gain and learning rate zoomed
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problem of searching the margin value, providing the best 
quality and stability is going to be a subject for the future work.

Fast simulation applications would benefit from the pro-
posed method, as it allows stabilizing GAN training, provid-
ing quality boosting. Our Hinge regularization is a generic 
technique that is not initially restricted to LHCb ECAL case. 
We would be interested in applying our regularization to 

other architectures, even not GAN-based ones, tasks, and 
datasets.

Appendix A Dataset Details

See Figs. 6 and 7.

Fig. 6  Visualization of the averaged deposited energy in ECAL dataset in original and logarithmic domain

Fig. 7  Distributions of particle point and momentum, used as condition for generation, in the ECAL dataset
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Appendix B Training Details

The general idea of the discriminator’s architecture that was 
used through all the experiments is shown at Fig. 8.

The discriminator consists of multiple convolutional lay-
ers one after another. We used 5 layers with LeakyReLU 
activation function. The output of the 3rd convolutional 
layer is fed both into the 4th convolutional layer and into 
the regressor [4], thus we use very first layers for both gen-
erative and regression tasks. The regressor itself is quite 
straightforward and consists only of a convolutional layer 
and a fully connected one. We use the output of the FC-
layer to calculate regressive loss and feed it back to the Dis-
criminator, concatenating it with other inner features. The 
flattened and concatenated features are processed by multi-
ple fully-connected layers, providing the final output of the 
Discriminator.

We apply spectral normalization to all the layers to set 
the model’s Lipschitz constant to 1. Then we add a trainable 
constant after every single FC-layer to perform our experi-
ments, using these values to calculate all the regularization 
terms.

Baseline model was trained using no regularization tech-
nique, its Lipschitz constant is set to 1. Alpha-k (6), L2 (7), 
Linf  (8) and our Hinge (9) models were trained using same 
architecture, varying type and hyperparameters of regulari-
zation term. All models were trained using the following 
parameters:

• Generator’s input latent dimension size: 256.
• Batch size: 256.
• Number of Discriminator/generator learning steps ratio: 

3.
• Optimizer: Adam(betas=[0,0.99]).
• Number of epochs: 150.
• GPU: NVIDIA RTX 3090.

One training epoch takes 3.57 ± 0.13 min.
Fitted generator requires 1.18 ms ± 69.9 μ s to generate 

one object. However, it is complicated to compare it with 
GEANT4 performance (250 ms) side-by-side, as we can 
utilize batch inference, e.g., it takes 17.8 ms ± 467 μ s to 
generate a batch of 4096 objects.

Fig. 8  Visualization of the architecture
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Appendix C Physical metrics

Here we plot distributions of physical properties of 
generated objects achieved using baseline without any 

regularization and best models trained with regularization 
methods Alpha-k (6), L2 (7), Linf  (8) and our Hinge (9) 
(Figs. 9, 10, 11, 12, 13).

Fig. 9  Physical metrics distribu-
tions of dataset, generated using 
baseline

Fig. 10  Physical metrics dis-
tributions of dataset, generated 
using L

2
 (7)
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Fig. 11  Physical metrics dis-
tributions of dataset, generated 
using Alpha-k (6)

Fig. 12  Physical metrics dis-
tributions of dataset, generated 
using Linf  (8)
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