
Vol.:(0123456789)

Computing and Software for Big Science (2024) 8:12
https://doi.org/10.1007/s41781-024-00120-5

RESEARCH

Soft Margin Spectral Normalization for GANs

Alexander Rogachev1 · Fedor Ratnikov1

Received: 6 December 2023 / Accepted: 4 June 2024
© The Author(s) 2024

Abstract
In this paper, we explore the use of Generative Adversarial Networks (GANs) to speed up the simulation process while
ensuring that the generated results are consistent in terms of physics metrics. Our main focus is the application of spectral
normalization for GANs to generate electromagnetic calorimeter (ECAL) response data, which is a crucial component of
the LHCb. We propose an approach that allows to balance between model’s capacity and stability during training proce-
dure, compare it with previously published ones and study the relationship between proposed method’s hyperparameters
and quality of generated objects. We show that the tuning of normalization method’s hyperparameters boosts the quality of
generative model.

Keywords Generative models · High energy physics · Deep learning · Regularization

Introduction

The Large Hadron Collider (LHC), built by the European
Organization for Nuclear Research (CERN), is the world’s
largest collider. The LHCb experiment [1] at LHC focuses
on studies of the heavy flavor physics, precise measurements
of CP violation, and other effects in and beyond the Stand-
ard Model. The LHCb detector consists of several compo-
nents, including an electromagnetic calorimeter (ECAL).
The ability to simulate the expected detector response is a
vital requirement for the physics analysis of the collected
data and extracting physics results. The use of the Geant4
package [2] for simulating detector responses is computa-
tionally expensive and resource-intensive, requiring to speed
this process up.

Previously, it was shown [3] that GAN-based frameworks
have the potential to serve as fast generative models to speed
up the simulation. The auxiliary regression extension [4],
that introduces physics metrics to a Discriminator part of
the model, allowing it to detect objects with poorly repro-
duced properties, demonstrated improvements of the physics

quality for generated objects. We proposed to train the model
in a multitask manner using two objectives: adversarial and
regressive ones. However, we used spectral normalization
to achieve training stability, and resulted in a reduction in
model’s capacity, thus it was complicated for the model to
solve multiple tasks at the same moment.

In this paper, we study the relationship between model’s
Lipschitz constant and quality of generated objects. We
propose a regularization technique that allows to balance
between model’s capacity and stability. We compare the
quality achieved using different regularization techniques,
evaluating the generated objects in terms of both general
and physics metrics, including shower asymmetry, shower
width, and sparsity level, and study the relationship between
the learning rate, method’s hyperparameters and quality of
generated objects.

GANs in High Energy Physics

Generative adversarial networks (GANs) approach is a
prominent technique for developing generative models.
GAN framework comprises two components, the genera-
tor and discriminator, which compete against each other to
recreate objects from a given distribution [5]. The genera-
tor (G) learns to map an easy-to-sample distribution, such
as a standard normal distribution, to the target distribution.
The discriminator (D) provides feedback to improve the

 * Alexander Rogachev
 airogachev@hse.ru

 Fedor Ratnikov
 fedor.ratnikov@cern.ch

1 Laboratory of Methods for Big Data Analysis, HSE
University, 11 Pokrovsky Bulvar, Moscow, Russia

http://crossmark.crossref.org/dialog/?doi=10.1007/s41781-024-00120-5&domain=pdf

 Computing and Software for Big Science (2024) 8:12 12 Page 2 of 13

generator by detecting discrepancies between real reference
objects and ones generated by the model. Mathematically,
this can be represented as a mini-max game:

where pdata is a true data distribution, D(x) is the output of
the discriminator.

GAN can be extended to a conditional model (CGAN)
if both the generator and discriminator are conditioned on
additional information y such as class labels or some prop-
erty of objects we want to generate:

The idea of utilizing GANs for simulation in high energy
physics was introduced by Paganini et al. [6] and subse-
quently developed in [7–10] with the implementation of
Wasserstein conditional GAN, [11] investigated the opti-
mization of GANs with hyperparameter scans, [12] applied
three-dimensional convolutional layers. Comparisons were
made between GAN performance and models based on con-
ditional variational autoencoders, and their combination,
with CGAN yielding the best results [13].

Through the Fast Calorimeter Simulation Challenge 2022
[14], the research community organized competition, novel
GAN-based [15] methods were introduced, as well as flows
[16–18] and diffusion-based ones [19–21].

Currently, diffusion models show state-of-the-art results
in terms of quality of generated objects. In this work, we
focus on GANs as they accelerate the simulation the most,
providing appropriate quality, and we focus on the stability
of the training process.

In our prior work [3], we proposed enhancing the gen-
erative model’s quality by adding self-attention layers to
the previously best-performing architecture. This approach
allowed convolutional neural networks to capture and
employ long-range relationships between image regions
throughout the training process. Spectral normalization [22]
was also added into both models to stabilize the training
process.

Lately in [4] we trained GAN with additional regressors
that evaluated object’s physics properties simultaneously
with the adversarial objective. This setting led to better
reproduced metrics that were introduced to the regressor.

Spectral Normalization for GANs

One of the key challenges in the training of GANs is the
performance control of the discriminator. This procedure
is highly unstable due to step-by-step two-models training

(1)
min
G

max
D

Ex∼pdata(x)

[
logD(x)

]
+ Ez∼N(0,I)

[
log(1 − D(G(z)))

]
,

(2)
min
G

max
D

Ex∼pdata(x)
[logD(x|y)] + Ez∼N(0,I)

[
log(1 − D(G(z|y)))

]
.

setting, therefore, the density ratio estimation done by the
discriminator may be inaccurate, generator networks fail to
learn the multimodal structure of the target distribution, gra-
dients may vanish and explode [23]. These facts motivated
researches to introduce different forms of restrictions and
regularization to the choice of the discriminator.

Spectral Normalization introduced in [22] outperforms
other techniques, such as weight normalization [23], weight
clipping [24], and gradient penalty [25] as the Lipschitz con-
stant is the only hyperparameter to be tuned, and the power
iteration method [26], used under the hood of this approach,
is relatively fast.

A neural network f� with parameter � is called Lipschitz
continuous if there exist a constant c ≥ 0 such that:

for all possible inputs t0, t1 under a p-norm of choice. The
parameter c is called the Lipschitz constant. Intuitively, this
constant c bounds the rate of change of f�.

Spectral normalization controls the Lipschitz constant of
the discriminator function D by constraining the spectral
norm of each layer g(h) = Wh . By definition, Lipschitz norm
‖g‖Lip is equal to sup

h
�(∇

h
g(h)) , where �(A) is the spectral

norm of the matrix A (L2 matrix norm of A)

which is equivalent to the largest singular value of A.
Thus, for a given layer g(h) = Wh , the norm is given by
‖g‖Lip = sup

h
�(∇g(h)) = sup

h
�(W) = �(W).

It was shown in [22] that if we normalize each Wl using
spectral normalization, we can achieve the fact that ‖f‖Lip
is bounded from above by 1. Thus, the vanilla spectral nor-
malization requires no hyperparameters to be tuned, however
we have no ability to control the degree of regularization.

Lipschitz Networks

Reduction of the Capacity Background

The expressivity reduction issue introduced by the normali-
zation was faced on our own during research, presented in
[4]. We suggested training GAN in a multitask manner, add-
ing regressors that evaluate some predefined object’s prop-
erties. These regressors share layers and weights with the
Discriminator, and we use mean squared error as a loss func-
tion for this part of the network, therefore the new objective
function has the following form:

(3)‖f�(t0) − f�(t1)‖p ≤ c ‖t0 − t1‖p,

(4)�(A) ∶= max
h∶h≠0

‖Ah‖2
‖h‖2

= max
‖h‖2≤1

‖Ah‖2,

Computing and Software for Big Science (2024) 8:12 Page 3 of 13 12

where Ladv(�) is the adversarial part of the Discriminator’s
loss, K is the number of the object’s properties, that we eval-
uate via regressors, �k is the weight of k-th regression loss,
N is the number of objects, oi is the real property value and
õi is the predicted value.

We expected the discriminator to focus on some specific
features of the objects, that pass through, forcing the genera-
tor to reproduce them better. As the model now has to opti-
mize multiple loss functions and solve additional tasks, our
model is required to be more expressive. As traverse cluster
asymmetry was reproduced the worst, we set its values as
targets for the regressive part of the model.

Without spectral normalization, regression part per-
formed better: this model achieved a lower mean squared
error, the second term in 5, nevertheless generative part was
highly unstable. However, if we add regression part to the
model with layers that were normalized, we do not improve
the quality of generated samples as we expected, as the
regression task is not solved with an appropriate quality.

These results led us to the need of controlling the L-con-
stant of the discriminator, balancing between training stabil-
ity and model’s capacity.

Regularization Methods

Through the application of spectral normalization it is pos-
sible to stabilize the training procedure, however it directly
affects the expressivity of the network. Intuitively, it would
be useful to have an ability to control the degree of regulari-
zation, balancing between stability and network’s expressive
power.

The general idea here is to design a regularization based
on the architecture of the k-Lipschitz networks as it was
described in [27], constraining all the layers to be 1-Lip-
schitz and multiplying the final layer with a constant k to
make it k-Lipschitz. Making it trainable allows us to treat k
as a regularization term (Alpha-k), thus the augmented loss
function J with an original loss function L(�) and its weight
� looks as follows:

A Lipschitz-like regularization may be redefined as the
summation of squared Lipschitz bounds of each layer (L2),
so generalized formulation from [26] looks as follows:

(5)L(𝜃) = Ladv(𝜃) +

K∑

k=1

𝛼k

N

N∑

i=1

(oi − õi)
2,

(6)J(�, k) = L(�) + �k.

(7)J(�) = L(�) + �

l�

i=1

‖Wi‖2p.

It was reported, that such formulation fails to capture the
exponential growth of the Lipschitz constant with respect
to the network depth [28], so changing the architecture may
require a new �.

Another approach, mentioned in [28], is to define the
Lipschitz regularization directly on the weight matrices
(Linf):

Mentioned approaches (6), (7) and (8) do not allow to
explicitly set any value as a desired Lipschitz constant of
the network. Even though otherwise it requires tuning the
hyperparameters, some settings require foreknown con-
stants, e.g., [24] requires 1-Lipschitz critic. Using [27]
may lead to constant, that is less than 1, affecting the net-
work’s capacity and gradients used to train the generator,
as the only way of controlling the regularization is the
weight � . It would be intuitive to include this constant
into the training objective in such a way that the network
remains unaffected as long as the constant is below the
target value, so we suggest defining the augmented loss
function using margin value m and hinge-loss-style form:

Learning Rate and L‑constant

As our approach requires us to set two hyperparameters,
we study the relationship between them. In [29] it is
shown that in order for the model with Lipschitz constant
L to converge learning rate � should meet the following
requirements:

In (6), (7) and (8) we can not set the L value explicitly, but
we can play around with the margin value m in (9) and com-
pare the quality of generated objects. For every particular
constant we train the model 5 times, using the same pool of
learning rates, that remain constant during the fitting proce-
dure. The main objective here is to find a value that allows
our model to start to converge, however, we also tried to find
a learning rate providing the fastest quality boosting, as it is
possible to just set a relatively low learning rate that requires
more iterations.

We define quality gain QG as the mean difference of qual-
ity of generated objects between adjacent epochs:

(8)J(�) = L(�) + �

l�

i=1

‖Wi‖∞.

(9)J(�) = L(�) + �max

�
0,

l�

i=1

‖Wi‖2 − m

�
.

(10)0 ≤ � ≤
2

L
.

 Computing and Software for Big Science (2024) 8:12 12 Page 4 of 13

where PRDi is Physical PRD evaluated after the i-th
epoch, Ne is the number of epochs, used to evaluate the
gain. As we want to find the starting point for the model to
converge and evaluate the speed of quality gain, we use only
30 first epochs to calculate the gain. We plot quality gains
versus learning rate (Figs. 4, 5) to find the best �.

ECAL Response Generation

Dataset

The dataset utilized in our experiments comprises infor-
mation concerning electron interactions within the elec-
tromagnetic calorimeter (ECAL). The ECAL employs the

(11)QG =
1

Ne

Ne∑

i=2

(PRDi − PRDi−1),
"shashlik" technology, which consists of alternating layers
of lead and scintillation plates. The readout cells within dif-
ferent modules are of varying sizes, with dimensions of 4
× 4, 6 × 6, and 12 × 12 cm2 , enabling the aggregation of
responses of 2 × 2 cm2 logical cells to obtain a response for
all granularities. All events in the dataset correspond to elec-
trons with a specific momentum and direction entering the
calorimeter at a given location, resulting in the generation
of an electromagnetic shower in the ECAL. The sum of all
energies deposited in the scintillator layers of a single cell
produces a matrix of energies corresponding to the ECAL
response for the impacting electron, as depicted in Fig. 1.
The dataset of such ECAL responses comprises a 30 × 30
cell matrix of 2 × 2 cm2 cells approximately centered on
the energy cluster’s location, produced using the GEANT4
v10.4 package. Figure 1 shows a sample of these matrices.

We use 60,000 events for training and other 60,000
events as a test dataset. We apply logarithmic transformation

Fig. 1 Sample of energy deposition matrices from the ECAL response dataset

Computing and Software for Big Science (2024) 8:12 Page 5 of 13 12

log(x + 1) to the energy deposit matrix during training, like
we did in [3, 4], as it provides a better generation quality.

Quality Evaluation

In our case generated objects do not represent an image
in general terms, so we can not use perception-based
approaches, that apply some pretrained models to compare
real and generated image. Thus, we use precision-recall-
based method.

Given a reference distribution P and a learned distribution
Q, precision intuitively measures the quality of samples from
Q, while recall measures the proportion of P that is covered
by Q. As the model generates samples that are close to some
real ones, precision increases. Meanwhile, to avoid gener-
ating same objects and evaluate variety, the model needs
to generate different samples that are close to different real
samples, increasing the recall.

Through our experiments we use precision and recall for
distributions (PRD) [30], an efficient algorithm to compute
these quantities, to evaluate the performance of different
models, comparing the quality of generated samples.

As we want to evaluate generated responses not only in
terms of general quality but in terms of physics metrics as
well, we use the minimum of two PRD-AUC scores, evalu-
ated over raw images (RAW PRD) and a set of the physics
statistics (Physical PRD):

• shower asymmetry along and across the direction of
inclination;

• shower width;
• the number of cells with energies above a certain thresh-

old, the sparsity level.

PRD requires discrete distributions as its input, so the evalu-
ation pipeline looks as follows:

• unite the objects from real and generated distributions.
• use energy deposit matrix as features to represent object

in case of RAW PRD.
• use physical properties of the object as features in case

of Physical PRD.
• cluster all objects using MiniBatchKMeans with 400

clusters based on image or physical features.
• evaluate the PRD over the pair of histograms built after

the clustering procedure.

Results and Discussion

In order to compare the behavior of different approaches,
we train the same model multiple times using different
regularization terms and weights � to achieve different

L-constants, as it is the only hyperparameter that can be
chosen on our own. Our approach requires setting the mar-
gin value, thus we divide runs into 6 groups. Every single
group represents runs with close values of the achieved
L-constant. Then we use the average of constants in every
group, achieved using other methods, and set it as a mar-
gin for our loss. We choose the best model based on PRD
evaluated on the set of physical metrics, as described in
"Quality Evaluation".

Methods that were mentioned previously, e.g., (6),
were highly sensitive to their only hyperparameter � , the
weight of the regularization term. Most of the runs pro-
vided us with highly unstable training procedure (low � ,
high L-constant) or both generative and regressive losses
did not improve (high � , low expressivity). In our approach
we can explicitly pass the desired constant as a hyperpa-
rameter, and even it is not guarantied for model to have
exactly this values as its constant, we achieve the desired
behavior. Model’s constant becomes closer the margin m,
allowing us to directly search for the L value, providing us
with the best performance.

Another advantage comes from the fact that our loss do
not penalize the model if its constant is less than margin,
thus we can pick up a relatively high � and it would not
lead to a constant’s degradation. Basically, if we set margin
m = 0 , formulation our loss becomes closer to 8, however
it may be clearly seen from Fig. 3 that Linf without mar-
gin provides us with worse quality of reproduced physics
metrics, as initially it penalizes the model even with a low
L-constant.

During the hyperparameters’ tuning of other approaches,
we often faced the problem of L-constant with values below
one. This turns into a poor quality, leading us to omit these
results on the plot, as they were way worse than the 1-con-
stant baseline. This quality degradation be explained by the
fact of model’s decreasing capacity.

According to Figs. 2 and 3 all methods have sweet-spots
providing the best possible quality. As the constant is close
to 1 the model has lower capacity. As we increase the con-
stant, the training procedure becomes unstable. However,
in our approach we don’t penalize the model if it’s constant
is less than the margin, and it leads to better results when
we allow the model to achieve higher constant. Even in case
when we set the margin equal to 1, we boost the quality of
the baseline as we allow layers to vary their constants as we
only want the product to be lower than one but not the every
single constant.

According to Figs. 4 and 5, the higher margin and con-
stant we have, the lower learning rate we should use. This
fact should be taken into account for our approach, otherwise
we can face a situation when 𝛾 >

2

L
≥

2

m
 , model does not

converge and our loss does not push the model to decrease
its constant.

 Computing and Software for Big Science (2024) 8:12 12 Page 6 of 13

Figure 4 shows the overall situation, meanwhile Fig. 5
focuses on the part that is mostly important for our
needs—the learning rate values when models start to con-
verge. These values slightly differ from the theoretical esti-
mations. However, we may notice that models that have
relatively low margins (1 and 8) start to converge only
when they have learning rates less than theoretical estima-
tions. Meanwhile, models with relatively high margins (64
and 125) start to do it with even a bit higher learning rates
than we expect. This behavior may be explained as we do

not set the L-constant of the model explicitly, but we set
the margin to add penalty for the cases above it. Thus, the
model may achieve even lower constant itself and start to
converge with a slightly higher learning rate.

Even though quality gain values of all the trained mod-
els with different margins trained using learning rates
� ∈ [10−4 ∶ 10−2] are close to each other, and these rates
may be a reliable choice to pick from, Figs. 2 and 3 show that
margins provide different best achieved qualities through the
whole training.

Fig. 2 RAW PRD-score of different regularization techniques, evaluated over raw images. Baselines represents model without SN; Alpha-k, L2,
Linf represent approaches (6), (7), (8) respectively; Hinge represents our approach (9)

Fig. 3 Physical PRD-score of different regularization techniques, evaluated over physical properties ("Quality Evaluation"). Baselines represents
model without SN; Alpha-k, L2, Linf represent approaches (6), (7), (8) respectively; Hinge represents our approach (9)

Computing and Software for Big Science (2024) 8:12 Page 7 of 13 12

Conclusion

In this paper we propose a novel adaptive normalization
technique that allows us to control the balance between
GAN’s capacity and training stability. We successfully
apply this technique to the LHCb ECAL dataset, boosting
previously published quality metrics.

To deal with the model’s capacity reduction we intro-
duce an additional loss with a margin hyperparameter,

allowing it to avoid penalizing the model with a constant
that is lower than the predefined value. We demonstrate
that it improves the quality of generated objects, compar-
ing with other techniques.

We also consider the relationship between margin and
learning rate and empirically show that increasing the mar-
gin we should decrease the learning rate for a better model
convergence. This relationship should be taken into account
during training procedure hyperparameters’ optimization. The

Fig. 4 The relationship between the quality gain and learning rate. L/2 lines are plotted as dotted ones

Fig. 5 The relationship between the quality gain and learning rate zoomed

 Computing and Software for Big Science (2024) 8:12 12 Page 8 of 13

problem of searching the margin value, providing the best
quality and stability is going to be a subject for the future work.

Fast simulation applications would benefit from the pro-
posed method, as it allows stabilizing GAN training, provid-
ing quality boosting. Our Hinge regularization is a generic
technique that is not initially restricted to LHCb ECAL case.
We would be interested in applying our regularization to

other architectures, even not GAN-based ones, tasks, and
datasets.

Appendix A Dataset Details

See Figs. 6 and 7.

Fig. 6 Visualization of the averaged deposited energy in ECAL dataset in original and logarithmic domain

Fig. 7 Distributions of particle point and momentum, used as condition for generation, in the ECAL dataset

Computing and Software for Big Science (2024) 8:12 Page 9 of 13 12

Appendix B Training Details

The general idea of the discriminator’s architecture that was
used through all the experiments is shown at Fig. 8.

The discriminator consists of multiple convolutional lay-
ers one after another. We used 5 layers with LeakyReLU
activation function. The output of the 3rd convolutional
layer is fed both into the 4th convolutional layer and into
the regressor [4], thus we use very first layers for both gen-
erative and regression tasks. The regressor itself is quite
straightforward and consists only of a convolutional layer
and a fully connected one. We use the output of the FC-
layer to calculate regressive loss and feed it back to the Dis-
criminator, concatenating it with other inner features. The
flattened and concatenated features are processed by multi-
ple fully-connected layers, providing the final output of the
Discriminator.

We apply spectral normalization to all the layers to set
the model’s Lipschitz constant to 1. Then we add a trainable
constant after every single FC-layer to perform our experi-
ments, using these values to calculate all the regularization
terms.

Baseline model was trained using no regularization tech-
nique, its Lipschitz constant is set to 1. Alpha-k (6), L2 (7),
Linf (8) and our Hinge (9) models were trained using same
architecture, varying type and hyperparameters of regulari-
zation term. All models were trained using the following
parameters:

• Generator’s input latent dimension size: 256.
• Batch size: 256.
• Number of Discriminator/generator learning steps ratio:

3.
• Optimizer: Adam(betas=[0,0.99]).
• Number of epochs: 150.
• GPU: NVIDIA RTX 3090.

One training epoch takes 3.57 ± 0.13 min.
Fitted generator requires 1.18 ms ± 69.9 μ s to generate

one object. However, it is complicated to compare it with
GEANT4 performance (250 ms) side-by-side, as we can
utilize batch inference, e.g., it takes 17.8 ms ± 467 μ s to
generate a batch of 4096 objects.

Fig. 8 Visualization of the architecture

 Computing and Software for Big Science (2024) 8:12 12 Page 10 of 13

Appendix C Physical metrics

Here we plot distributions of physical properties of
generated objects achieved using baseline without any

regularization and best models trained with regularization
methods Alpha-k (6), L2 (7), Linf (8) and our Hinge (9)
(Figs. 9, 10, 11, 12, 13).

Fig. 9 Physical metrics distribu-
tions of dataset, generated using
baseline

Fig. 10 Physical metrics dis-
tributions of dataset, generated
using L

2
 (7)

Computing and Software for Big Science (2024) 8:12 Page 11 of 13 12

Fig. 11 Physical metrics dis-
tributions of dataset, generated
using Alpha-k (6)

Fig. 12 Physical metrics dis-
tributions of dataset, generated
using Linf (8)

 Computing and Software for Big Science (2024) 8:12 12 Page 12 of 13

Acknowledgements The research leading to these results has received
funding from the Basic Research Program at the National Research
University Higher School of Economics. This research was supported
in part through computational resources of HPC facilities at NRU HSE.

Author contributions A.R. wrote the main manuscript text, prepared
figures, performed all the model experiments. FR wrote the introduc-
tion, discussed experiments and reviewed the manuscript.

Data Availability No datasets were generated or analysed during the
current study.

Declarations

Competing Interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. The LHCb Collaboration (2008) The LHCb detector at the LHC.
J Instrum 3(08):08005–08005. https:// doi. org/ 10. 1088/ 1748-
0221/3/ 08/ s08005

 2. Agostinelli S et al (2003) Geant4—a simulation toolkit. Nucl
Instrum Methods Phys Res Sect A 506:250. https:// doi. org/ 10.
1016/ S0168- 9002(03) 01368-8

 3. Rogachev A, Ratnikov F (2021) Fast simulation of the electro-
magnetic calorimeter response using self-attention generative
adversarial networks. EPJ Web Conf 251:03043. https:// doi. org/
10. 1051/ epjco nf/ 20212 51030 43

 4. Rogachev A, Ratnikov F (2022) GAN with an auxiliary regres-
sor for the fast simulation of the electromagnetic calorimeter
response. arXiv. https:// doi. org/ 10. 48550/ ARXIV. 2207. 06329 .
https:// arxiv. org/ abs/ 2207. 06329

 5. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley
D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial
networks. arXiv. https:// doi. org/ 10. 48550/ arXiv. 1406. 2661

 6. Paganini M, Oliveira L, Nachman B (2018) Calogan: simulating
3d high energy particle showers in multilayer electromagnetic
calorimeters with generative adversarial networks. Phys Rev D
97(1):041021. https:// doi. org/ 10. 1103/ physr evd. 97. 014021

 7. Chekalina V, Orlova E, Ratnikov F, Ulyanov D, Ustyuzhanin A,
Zakharov E (2019) Generative models for fast calorimeter simula-
tion: the lhcb case. EPJ Web Conf 214:02034. https:// doi. org/ 10.
1051/ epjco nf/ 20192 14020 34

 8. Erdmann M, Geiger L, Glombitza J, Schmidt D (2018) Generat-
ing and refining particle detector simulations using the Wasser-
stein distance in adversarial networks. Comput Softw Big Sci 2:4.
https:// doi. org/ 10. 1007/ s41781- 018- 0008-x

 9. Buhmann E, Diefenbacher S, Eren E, Gaede F, Kasieczka G,
Korol A, Krüger K (2021) Getting high: high fidelity simulation
of high granularity calorimeters with high speed. Comput Softw
Big Sci 5(1):13. https:// doi. org/ 10. 1007/ s41781- 021- 00056-0

 10. Erdmann M, Glombitza J, Quast T (2019) Precise simulation of
electromagnetic calorimeter showers using a Wasserstein gen-
erative adversarial network. Comput Softw Big Sci 3(1):1–13.
https:// doi. org/ 10. 1007/ s41781- 018- 0019-7

 11. Belayneh D, Carminati F, Farbin A, Hooberman B, Khattak
G, Liu M, Liu J, Olivito D, Pacela VB, Pierini M, Schwing

Fig. 13 Physical metrics dis-
tributions of dataset, generated
using Hinge (9)

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/1748-0221/3/08/s08005
https://doi.org/10.1088/1748-0221/3/08/s08005
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1051/epjconf/202125103043
https://doi.org/10.1051/epjconf/202125103043
https://doi.org/10.48550/ARXIV.2207.06329
https://arxiv.org/abs/2207.06329
https://doi.org/10.48550/arXiv.1406.2661
https://doi.org/10.1103/physrevd.97.014021
https://doi.org/10.1051/epjconf/201921402034
https://doi.org/10.1051/epjconf/201921402034
https://doi.org/10.1007/s41781-018-0008-x
https://doi.org/10.1007/s41781-021-00056-0
https://doi.org/10.1007/s41781-018-0019-7

Computing and Software for Big Science (2024) 8:12 Page 13 of 13 12

A, Spiropulu M, Vallecorsa S, Vlimant J-R, Wei W, Zhang M
(2020) Calorimetry with deep learning: particle simulation and
reconstruction for collider physics. Eur Phys J C 80(7):1–31.
https:// doi. org/ 10. 1140/ epjc/ s10052- 020- 8251-9

 12. Vallecorsa Sofia (2019) Carminati, Federico, Khattak, Gul-
rukh: 3d convolutional gan for fast simulation. EPJ Web Conf
214:02010. https:// doi. org/ 10. 1051/ epjco nf/ 20192 14020 10

 13. Sergeev F, Jain N, Knunyants I, Kostenkov G, Trofimova E (2021)
Fast simulation of the LHCb electromagnetic calorimeter response
using VAEs and GANs. J Phys Conf Ser 1740(1):012028. https://
doi. org/ 10. 1088/ 1742- 6596/ 1740/1/ 012028

 14. Giannelli MF, Kasieczka G, Krause C, Nachman B, Salamani D,
Shih D, Zaborowska A (2022) Fast calorimeter simulation chal-
lenge. https:// caloc halle nge. github. io/ homep age/. https:// caloc
halle nge. github. io/ homep age/

 15. Giannelli MF, Zhang R (2023) CaloShowerGAN, a Generative
Adversarial Networks model for fast calorimeter shower simula-
tion. arXiv. https:// doi. org/ 10. 48550/ arXiv. 2309. 06515

 16. Pang I, Raine JA, Shih D (2023) Supercalo: calorimeter shower
super-resolution. arXiv preprint arXiv: 2308. 11700

 17. Buckley MR, Krause C, Pang I, Shih D (2023) Inductive caloflow.
arXiv preprint arXiv: 2305. 11934

 18. Krause C, Pang I, Shih D (2022) Caloflow for calochallenge data-
set 1. arXiv preprint arXiv: 2210. 14245

 19. Buhmann E, Diefenbacher S, Eren E, Gaede F, Kasicezka G,
Korol A, Korcari W, Krüger K, McKeown P (2023) Caloclouds:
fast geometry-independent highly-granular calorimeter simula-
tion. J Instrum 18(11):11025

 20. Amram O, Pedro K (2023) Denoising diffusion models with
geometry adaptation for high fidelity calorimeter simulation. Phys
Rev D 108(7):072014

 21. Mikuni V, Nachman B (2022) Score-based generative models
for calorimeter shower simulation. Phys Rev D 106(9):092009.
https:// doi. org/ 10. 1103/ physr evd. 106. 092009

 22. Miyato T, Kataoka T, Koyama M, Yoshida Y (2018) Spectral
normalization for generative adversarial networks. arXiv. https://
doi. org/ 10. 48550/ arXiv. 1802. 05957

 23. Arjovsky M, Bottou L (2017) Towards principled methods for
training generative adversarial networks. arXiv. https:// doi. org/
10. 48550/ ARXIV. 1701. 04862. arXiv: 1701. 04862

 24. Arjovsky M, Chintala S, Bottou L (2017) Wasserstein GAN.
arXiv. https:// doi. org/ 10. 48550/ ARXIV. 1701. 07875 . arXiv: 1701.
07875

 25. Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V, Courville A
(2017) Improved training of Wasserstein GANs. arXiv. https://
doi. org/ 10. 48550/ ARXIV. 1704. 00028 . arXiv: 1704. 00028

 26. Yoshida Y, Miyato T (2017) Spectral norm regularization for
improving the generalizability of deep learning. arXiv. https://
doi. org/ 10. 48550/ ARXIV. 1705. 10941. arXiv: 1705. 10941

 27. Anil C, Lucas J, Grosse R (2019) Sorting out lipschitz function
approximation. In: International Conference on Machine Learn-
ing, pp. 291–301

 28. Liu H-TD, Williams F, Jacobson A, Fidler S, Litany O (2022)
Learning smooth neural functions via lipschitz regularization.
arXiv. https:// doi. org/ 10. 48550/ ARXIV. 2202. 08345. arXiv: 2202.
08345

 29. Taylor AB, Hendrickx JM, Glineur F (2017) Exact worst-case
convergence rates of the proximal gradient method for composite
convex minimization. arXiv. https:// doi. org/ 10. 48550/ ARXIV.
1705. 04398. arXiv: 1705. 04398

 30. Sajjadi MSM, Bachem O, Lucic M, Bousquet O, Gelly S (2018)
Assessing Generative Models via Precision and Recall

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1140/epjc/s10052-020-8251-9
https://doi.org/10.1051/epjconf/201921402010
https://doi.org/10.1088/1742-6596/1740/1/012028
https://doi.org/10.1088/1742-6596/1740/1/012028
https://calochallenge.github.io/homepage/
https://calochallenge.github.io/homepage/
https://calochallenge.github.io/homepage/
https://doi.org/10.48550/arXiv.2309.06515
http://arxiv.org/abs/2308.11700
http://arxiv.org/abs/2305.11934
http://arxiv.org/abs/2210.14245
https://doi.org/10.1103/physrevd.106.092009
https://doi.org/10.48550/arXiv.1802.05957
https://doi.org/10.48550/arXiv.1802.05957
https://doi.org/10.48550/ARXIV.1701.04862
https://doi.org/10.48550/ARXIV.1701.04862
http://arxiv.org/abs/1701.04862
https://doi.org/10.48550/ARXIV.1701.07875
http://arxiv.org/abs/1701.07875
http://arxiv.org/abs/1701.07875
https://doi.org/10.48550/ARXIV.1704.00028
https://doi.org/10.48550/ARXIV.1704.00028
http://arxiv.org/abs/1704.00028
https://doi.org/10.48550/ARXIV.1705.10941
https://doi.org/10.48550/ARXIV.1705.10941
http://arxiv.org/abs/1705.10941
https://doi.org/10.48550/ARXIV.2202.08345
http://arxiv.org/abs/2202.08345
http://arxiv.org/abs/2202.08345
https://doi.org/10.48550/ARXIV.1705.04398
https://doi.org/10.48550/ARXIV.1705.04398
http://arxiv.org/abs/1705.04398

	Soft Margin Spectral Normalization for GANs
	Abstract
	Introduction
	GANs in High Energy Physics
	Spectral Normalization for GANs
	Lipschitz Networks
	Reduction of the Capacity Background
	Regularization Methods
	Learning Rate and L-constant

	ECAL Response Generation
	Dataset
	Quality Evaluation

	Results and Discussion
	Conclusion
	Appendix A Dataset Details
	Appendix B Training Details
	Appendix C Physical metrics
	Acknowledgements
	References

