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Abstract — The vortical Whitham equation is modeled with quadratic and cubic nonlinearity,
satisfying the unidirectional dispersion relation used to describe the propagation of nonlinear waves
in the presence of a vertically sheared current of constant vorticity. In this article, we neglect the
quadratic nonlinearity to numerically investigate solitary wave interactions. We show that the ge-
ometric Lax categorization is satisfied; however, an algebraic categorization based on the ratio of
the initial solitary wave amplitudes is not possible. Specifically, our numerical simulations indicate
that for solitary waves with large amplitudes, the interactions maintain two well-separated crests.
Additionally, for solitary waves of different polarities, we find that wave-breaking may occur.
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1. INTRODUCTION

A soliton is a coherent and localized structure symmetric with respect to its crest that maintains its shape
while travelling over long distances at a constant speed, exhibiting a particle-like behavior. Its significance is
evident in various natural science applications, such as modeling tsunamis in water waves, signal propagation
in neuroscience, optics, and plasma physics [13]. When a wave field predominantly consists of solitons, the
physical system is characterized as soliton turbulence or a soliton gas, typically explored through integrable
equations like the nonlinear Schrödinger equation (NLS) or the Korteweg-de Vries equation (KdV) and its
variations [1]. In the context of a periodic domain with two particles, it corresponds to the highly rarefied
gas scenario. An examination of the interactions between two solitons is fundamental in soliton turbulence,
and has revealed the pivotal role of such processes in the statistical behavior of rarefied soliton gases within
KdV-like models [2, 20, 22].

Zabusky and Kruskal [28] performed the first study of solitary wave interactions using the KdV equation.
The authors observed that the solitary waves preserved their shapes and speeds after the interaction; i.e.,
the collision of solitary waves resulted in an elastic behavior. Solitary waves with these properties became
known as solitons. This study arose interest in the properties of solitary wave collisions. A seminal work in
this field was done Lax [18], who classified the types of collisions geometrically into three categories based on
the number of local maxima. He also demonstrated that these categories depend solely on the ratio between
two soliton amplitudes. This investigation has been extended to various frameworks, including the Euler
equations [5], Whitham equation [9], the Schamel equation [11] and also in laboratory [25]. Among these
models, the Euler equation is the only one that allows for an algebraic categorization, albeit with a range
distinct from the one predicted by Lax.

It is broadly known that, in the shallow-water limit, the KdV equation approximates the Euler equations
asymptotically [26]. However, this model does not exhibit several nonlinear properties present in the Eu-
ler equation, namely, peaking, wave-breaking, and short waves. To address these issues, Whitham [26, 27]
proposed an ad-hoc model that has the unidirectional dispersion relation of the Euler equations and the
KdV quadratic nonlinearity. This model presents many theoretical challenges and has been the subject of
extensive mathematical investigation in recent years [3, 6–8, 12, 17, 19, 21, 24]. Extensions of the Whitham
equation, including a cubic nonlinear term, have recently appeared in the study of flows over a linear ver-
tically sheared current with constant vorticity [15, 16]. This modified equation is referred to as the vortical
Whitham equation. Travelling waves to this equation were later investigated in the work of Carter et al. [4].
The inclusion of the cubic nonlinear term enriches the dynamics, possibly allowing the existence of breathers.
For instance, Kalisch et al. [14] considered the cubic Whitham equation (essentially the vortical Whitham
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equation neglecting the quadratic term) and numerically computed breather solutions. Their results strongly
indicate the existence of breathers in the cubic Whitham equation.

In this study, we conduct a numerical investigation into overtaking collisions of two solitary waves utilizing
the vortical Whitham equation [4] while disregarding the quadratic nonlinear term, see [14]. By doing so, the
modified Korteweg-de Vries (mKdV) equation emerges as an asymptotic approximation to this particular
model. Our goal is to study the characteristics of overtaking collisions between solitary waves for the cubic
Whitham equation. We observe that the three geometric categories described by Lax [18] are preserved.
However, we demonstrate that cubic Whitham equation does not admit an algebraic Lax categorization.
Moreover, when considering solitary waves of different polarities, we uncover numerical evidence indicating
wave-breaking as the two solitary waves merge. This paper is structured as follows. Numerical methods to
solve the cubic Whitham equation are presented in Section 2. Numerical results are discussed in Section 3
and the final remarks in Section 4.

2. THE CUBIC WHITHAM EQUATION AND NUMERICAL METHODS

We consider the cubic Whitham equation in canonical form

ut − 6ux + 6u2ux +K ∗ ux = 0. (1)

Here, K is the nonlocal operator defined through the Fourier transform ( ̂K)

̂K(k) = 6

√

tanhk

k
.

Notice that, for small frequencies (k ≈ 0), we obtain the following approximation

√

tanhk

k
≈ 1− k2

6
. (2)

Consequently, the mKdV equation
ut + 6u2ux + uxxx = 0, (3)

approximate asymptotically Eq. (1).
In order to solve Eq. (1), we employ a Fourier pseudospectral method with an integrating factor similar

to the one described by [10]. The spatial computational domain consists in a uniform grid with N points
and a step size of Δx. Spatial derivatives and the operator K are computed spectrally [23]. Additionally, the
time evolution is computed using the explicit fourth-order Runge–Kutta method with a time step denoted
as Δt.

Solitary waves with speed c are obtained through a Newton method’s type in the Fourier space. Writing
Eq. (1) in Fourier space, we have

(−c− 6 + ̂K(k))û + 2̂u3 = 0. (4)

To solve this equation, the initial guess (u0, c0) is taken as the soliton solutions of the mKdV Eq. (3)

u0(x) = A sech(Ax) and c0 = −A2. (5)
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Fig. 1. A comparison of high amplitude soliton of the cubic Whitham equation. The mKdV equation

and a peakon wave.

Although, in this work, we do not focus on computing the limit-wave, it is worth to mention that our nu-
merical method can approximate a nonsmooth solutions. Figure 1 displays a comparison between a Whitham
solitary wave, a mKdV soliton and the peakon wave G(x) = ae−b|x|. As we can see these two functions are
close one to another.

In order to verify the stability of the Newton method, the computed solitary waves are utilized as initial
data for the Whitham Eq. (1). Simulations are conducted over extended periods (specifically, t = 1500), and
no indications of instability are observed. Moreover, the numerical simulations are tracked by evaluating the
first and second moments with machine precision and a precision of 10−7, respectively.

3. RESULTS

Solitary wave interactions are investigated, as reported in [9, 11]. Initially, we compute two solitary waves,
namely, S1 and S2 with amplitudes A1 and A2, respectively, where A1 > A2, for Eq. (1). Subsequently, we
position them far apart and equidistantly from the origin. More precisely, we choose the initial data in the
form:

u(x, 0) = S1(x+ x0) + S2(x− x0), (6)

where x0 represents a phase constant.
To comprehend the dynamics of solitary wave interactions, we revisit the Lax geometric and algebraic

categorizations specific to the KdV equation, considering two solitons with amplitudes A1 > A2 [18].

(A) The solution of the KdV equation has two local maxima at any given time for A1/A2 < (3 +
√
5)/2 ≈

2.62.

(B) The number of local maxima varies according to the law 2 → 1 → 2 → 1 → 2. This case happens when
(3 +

√
5)/2 < A1/A2 < 3.

(C) The number of local maxima changes as 2 → 1 → 2 during the interaction. This means that, in a
period of time the solitons join together to form a wave with a single local maximum. This occurs as
long as A1/A2 > 3.

After the interaction ceases, the solitons undergo a phase shift. In other words, their crests are shifted from
their incoming trajectories.

Numerically, it is convenient to consider the interaction in the moving frame of one of the solitary waves.
For this purpose, we present the following graph in the S2 moving frame. In this scenario, wave S2 remains
stationary while S1 moves towards S2. Since the cubic Whitham equation is not integrable, the collisions are
not elastic. Consequently, dispersion radiation is produced during solitary wave interactions. However, the
radiation is minor, and as a consequence, the solitary waves retain almost their initial shape right after the
interaction. Specific instances illustrating these characteristics are provided in the accompanying Table 1.
As we can see, both solitary waves almost preserve their amplitudes accompanied by phase-shifts.
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Table 1. The solitary wave amplitudes before and after the interaction were examined. The amplitudes

after the interaction were computed over extended periods, ensuring that the crests of S1 and S2 are

well separated.

Initial Amplitudes After the interaction Phase-shift Category
A1 A2 A1 A2 S1 S2 –

0.500 0.400 0.500 0.400 −9.370 12.190 A
0.500 0.180 0.500 0.179 −0.960 8.340 B
0.500 0.100 0.500 0.099 1.600 7.500 C
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Fig. 2. Top: Solitary wave interactions for the cubic Whitham equation – category (A). Bottom: (Left)

The variation of the number local maxima over time. (Right) The maximum value of the interaction

over time. Parameters A1 = 0.50, A2 = 0.40, and x0 = 30.

Figure 2 displays the solitary wave interactions. The two solitary waves are initially with their crests far
apart, as time elapses, S1 moves towards S2, resulting in a collision. As this collision unfolds, S1 diminishes
(see Fig. 2 bottom-right), while S2 expands, leading to a complete role reversal between the two waves
(see Fig. 2 in the bottom-right). It is worth noting that, at any given point in time, there exist two local
maxima, indicating that the crests of the two waves never join together (refer to Fig. 2 in the bottom-left).
This particular scenario corresponds to case (A), as categorized by Lax. The dynamics characteristic of
category (B) are visually represented in Figure 3. The initial solitary waves have amplitudes A1 = 0.50 and
A2 = 0.18, respectively. In the course of their interaction, S1 absorbs S2, leading to the formation of a single
crest. Subsequently, it bifurcates into two distinct waves, followed immediately by the resurgence of a unique
local maximum. Over time, the waves gradually move apart, ultimately giving rise to two well-defined crests
once again. It is noteworthy that, while not explicitly presented in this article, additional simulations were
conducted, and their respective classifications can be found in Table 2.

Figure 4 displays a typical case of category (C). The two solitary wave are engaged in the interaction,
with S1 exhibiting a significantly larger amplitude compared to S2 (A1 = 0.50) and A2 = 0.10). During a
specific time interval, the two solitary waves join together to form a single local maximum. Throughout the
collision process, S1 assimilates S2, and subsequently they split into two waves and S1 is later emitted again,
accompanied by a phase lag in the trajectories of their crests (see Figure 4 at the bottom).

We have conducted several simulations with the aim of identifying a classification similar to that provided
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Fig. 3. Top: Solitary wave interactions for the cubic Whitham equation – category (B). Bottom: (Left)

The variation of the number local maxima over time. (Right) The maximum value of the interaction

over time. Parameters A1 = 0.50, A2 = 0.18, and x0 = 80.

by Lax for the cubic Whitham equation. Table 2 displays the categorizations of the interaction between two
solitary waves. Initially, it appears possible to apply a classification similar to the one given for the KdV Eq.
[18] and the Euler Eq. [5], both based on the ratio of the initial amplitudes of the two solitary waves. Table
3 presents specific cases illustrating the impracticality of a Lax-algebraic classification relying on the initial
amplitude ratio of two solitons for the cubic Whitham equation. Nevertheless, the cubic Whitham equation
still captures the geometric features of the Lax categorization. These findings align with results reported by
Flamarion [9]. Importantly, it is worth mentioning that the layer in which category (B) occurs is very thin.

Table 2. Classification of the collision for different values of A1 and A2.
A1 A2 A1/A2 Category
0.50 0.40 1.25 A
0.50 0.35 1.43 A
0.50 0.30 1.67 A
0.50 0.25 2.00 A
0.50 0.20 2.50 A
0.50 0.19 2.63 A
0.50 0.18 2.78 B
0.50 0.17 2.94 C
0.50 0.10 5 C
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Fig. 4. Top: Solitary wave interactions for the cubic Whitham equation – category (C). Bottom: (Left)

The variation of the number of local maxima over time. (Right) The maximum value of the interaction

over time. Parameters A1 = 0.50, A2 = 0.10, and x0 = 100.

Table 3. Classification of the collision for different values of A1 and A2.
A1 A2 A1/A2 category
0.75 0.255 2.94 A
0.75 0.27 2.78 A
0.75 0.30 2.50 A

Our simulations reveal that interactions involving solitary waves of large amplitude consistently maintain
two local maxima (category (A)), albeit with increased dispersion in the interaction. Figure 5 displays the
collision of two solitary waves of amplitudes A1 = 0.75 and A2 = 0.30 at different times. As we can see, a
visible dispersion tails appears right after the collision and the solitary waves no longer conserve energy.

The characteristics of pair soliton interactions of different polarities is depicted in Fig. 6. In the lower
part of this figure (right plot), the evolution of the wave field maximum is illustrated. It is evident that,
prior to the interaction, this maximum value is equivalent to the amplitude of the larger soliton. During
the interaction, it surges to 0.570, and upon separation, it reverts to its initial value, persisting at the
level of 0.400. This observation implies that the energy is nearly conserved post-collision, with deviations
up to the order of O(10−3). Notably, there is an absence of radiation that dampens both solitons. These
interaction characteristics are highly dependent on the amplitudes of the solitons. Another instance of pair
soliton interactions reveals that the maximum wave field value surpasses the sum of the amplitudes of the
solitary waves. Specifically, it was observed that for solitary waves of larger amplitude, the wave field becomes
sharper, leading to code break (see Fig. 7). These observations indicate the onset of wave breaking in bipolar
interactions. Further investigation using a more suitable numerical method is warranted to explore this
phenomenon in greater detail. It is important to mention that these results were obtained using different
numbers of Fourier modes and the results were the same.

4. CONCLUSIONS

In this work, we have investigated the properties of solitary wave interactions within the framework of
the cubic Whitham equation. We have demonstrated that the collision is nearly elastic for solitary waves
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Fig. 5. A series of snapshots of the interaction of the solitary waves during the collision–category (A).

Parameters A1 = 0.75, A2 = 0.30, and x0 = 50.

with moderate amplitudes, fitting into the geometric Lax categorization. Additionally, we have shown that an
algebraic categorization based on the ratio of the initial solitary wave amplitudes is not possible. Furthermore,
in the case of bipolar collisions, there appears to be an initiation of wave-breaking when two solitary waves
coalesce, even for solitary waves of modest amplitude.
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Fig. 6. Top: Bipolar of two solitons for the cubic Whitham equation. Bottom: (Left) The number

of local maxima as a function of time. (Right) The maximum and minimum amplitude as a function

of time. The parameters are A1 = 0.40, A2 = −0.10, and x0 = 80.
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