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We study relations between a structure of non-wandering set of a Morse–Smale diffeomorphism 𝑓 and its
carrying closed manifold 𝑀𝑛. We prove that if 𝑓 has no any saddle periodic points with one-dimensional
unstable manifolds, and for any periodic point 𝜎 of Morse index (𝑛−1) its unstable manifolds do not intersect
stable invariant manifolds of saddle periodic points different from 𝜎, then 𝑀𝑛 is simply connected. This fact
does not follow from Morse inequalities that give only restrictions on homology groups of 𝑀𝑛.
1. Introduction and statement of results

A diffeomorphism 𝑓 ∶𝑀𝑛 →𝑀𝑛 of a closed smooth manifold 𝑀𝑛 is
called Morse–Smale if its non-wandering set is finite and hyperbolic, and
invariant manifolds of periodic points intersect each other transversely.
A number 𝑖𝑝 equal to the dimension of unstable invariant manifold 𝑊 𝑢

𝑝
of a hyperbolic periodic point 𝑝 is called a Morse index of 𝑝. We will
denote by 𝑘𝑖 the number of all periodic points of 𝑓 with Morse index
equal to 𝑖 ∈ {0,… , 𝑛}. A Morse–Smale diffeomorphism 𝑓 is called polar,
if 𝑘0 = 𝑘𝑛 = 1.

Smale proved in Ref. 1 that a gradient flow of any Morse function
𝜑 ∶ 𝑀𝑛 → R can be arbitrary closely approximated by a structurally
stable flow. A time-one shift along trajectories of this flow is a Morse–
Smale diffeomorphism. Hence, Morse–Smale diffeomorphisms exist on
all closed smooth manifolds. In Refs. 2, 3 the inequalities connecting
numbers 𝑘𝑖 with Betti numbers of 𝑀𝑛 were obtained similar to Morse
inequalities of Morse function. In particular, there was proved the
following generalization of Poincare–Hopf formula:
𝑛
∑

𝑖=0
(−1)𝑖𝑘𝑖 = 𝜒(𝑀𝑛),

where 𝜒(𝑀𝑛) is the Euler characteristic of 𝑀𝑛.
Since the Euler characteristic is a complete topological invariant for

two-dimensional closed manifolds, in case 𝑛 = 2 the formula above
completely determines a topology of the manifold carrying a Morse–
Smale diffeomorphism with given number of sink, source and saddle
periodic points. For 𝑛 ≥ 3, this formula is not so informative, because,
for instance, 𝜒(𝑀2𝑘+1) = 0 for any manifold 𝑀2𝑘+1 of odd dimension.

Some additional assumptions on the dynamics help to clarify the
topology of manifolds. Denote by 𝐺(𝑀𝑛) a class of Morse–Smale dif-
feomorphisms such that for any 𝑓 ∈ 𝐺(𝑀𝑛) an (𝑛 − 1)-dimensional
invariant manifold of arbitrary saddle periodic point of Morse index 1
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or (𝑛−1) either do not intersect invariant manifolds of any other saddles
or intersect only one-dimensional invariant manifolds. In the last case
it follows from transversality condition that the intersection consists of
a finite number of isolated points. If 𝑊 𝑢

𝑝 ∩𝑊
𝑠
𝑞 = ∅ for any pair of saddle

periodic points of a Morse–Smale diffeomorphism 𝑓 , we say that 𝑓 has
no heteroclinic intersections.

In, Ref. 4 the following result is proved for 𝑛 = 3.

Statement 1. Let 𝑓 ∈ 𝐺(𝑀3) and 𝑀3 be orientable. Then 𝑔𝑓 ≥ 0 and
𝑀3 is diffeomorphic to the connected sum of the sphere 𝑆3 and 𝑔𝑓 copies
of the direct product 𝑆2 × 𝑆1.

There are a lot of generalizations of this fact for 𝑛 ≥ 4 (see Ref. 5 for
references). In particular, in Ref. 6, Theorem 1 the following statement
is proved.

Statement 2. Let 𝑀𝑛 be an orientable closed manifold of dimension 𝑛 ≥ 4
and 𝑓 ∶𝑀𝑛 →𝑀𝑛 be a Morse–Smale diffeomorphisms without heteroclinic
intersections such that all saddle periodic points of 𝑓 has Morse index 1.
Then 𝑀𝑛 is homeomorphic to the sphere 𝑆𝑛.

It is clear that the conclusion of Statement 2 stays true for a Morse–
Smale diffeomorphism 𝑓 ∶𝑀𝑛 →𝑀𝑛 without heteroclinic intersections
under the assumptions that all saddle periodic points of 𝑓 has Morse
index (𝑛−1) (since 𝑓−1 satisfies Statement 2). In Ref. 7 it is shown that
the requirement of orientability of three-dimensional ambient manifold
𝑀3 may be omitted and the statement holds for an arbitrary 𝑓 ∈
𝐺(𝑀3).

Due to Ref. 8, Theorem 1.3, the following result holds.

Statement 3. Let 𝑀𝑛 be a closed orientable manifold of dimension
𝑛 ≥ 4 and 𝑓 ∶ 𝑀𝑛 → 𝑀𝑛 be a Morse–Smale diffeomorphism without
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heteroclinic intersections. Then if 𝑀𝑛 is homeomorphic to sphere 𝑆𝑛 then
𝑘2 = ⋯ = 𝑘𝑛−2 = 0.

The next result follows from Ref. 9, Corollary 1.

Statement 4. Let 𝑀𝑛 be a closed manifold of dimension 𝑛 ≥ 4, and
∶𝑀𝑛 →𝑀𝑛 be a Morse–Smale diffeomorphism such that 𝑘1 = 𝑘𝑛−1 = 0.

Then 𝑓 is polar and 𝑀𝑛 is simply connected.

Despite the fact that in the paper9 only orientable manifolds are
considered, the proof of Statement 4 does not require the orientability
of the manifold 𝑀𝑛 (see also Ref. 5, Proposition 4.1).

We show that the condition 𝑘1 = 𝑘𝑛−1 = 0 cannot be omitted and
prove the following fact.

Proposition 1. Let 𝑀𝑛 be a closed manifold of dimension 𝑛 ≥ 3 and
∈ 𝐺(𝑀𝑛) be a polar diffeomorphism. If 𝑘21 + 𝑘2𝑛−1 ≠ 0 then 𝑀𝑛 is not

simply connected.

The requirement 𝑓 ∈ 𝐺(𝑀𝑛) above is essential, since there is a polar
diffemorphisms on 𝑆𝑛 with 𝑘1 = 𝑘2 = 1, 𝑘3 = ⋯ = 𝑘𝑛−1 = 0 for any 𝑛 ≥ 4
(see, for instance, Ref. 10, Theorem 2). Due to Statement 3, wandering
set of all such diffeomorphisms must contain heteroclinic intersection.
It follows from transversality, that this intersection has dimension one.

Main result of the present paper is the following.

Theorem 1. Let 𝑀𝑛 be a closed manifold, 𝑛 ≥ 4, and 𝑓 ∈ 𝐺(𝑀𝑛). If
1 = 0 then 𝑀𝑛 is simply connected.

Let us remark that for 𝑛 = 3, the unique simply connected manifold
s sphere 𝑆3. For 𝑛 ≥ 4, there are numerous simply connected manifolds
ot homeomorphic to sphere (for instance, 𝑆𝑘×𝑆𝑙, 𝑘, 𝑙 ≥ 2, 𝑘+𝑙 = 𝑛), but

a complete classification of simply connected manifolds is known only
for 𝑛 = 4 due to non-trivial results of Rochlin, Freedman, Donaldson
and Furuta (see Refs. 11–14 and a book15).

It follows from Morse inequalities that if 𝑘1 = 0, then a one-
dimensional homology group 𝐻1(𝑀𝑛) of manifold 𝑀𝑛 is trivial. How-
ever, it does not mean that the fundamental group 𝜋1(𝑀𝑛) of 𝑀𝑛

is trivial. To prove Theorem 1, we obtain the following topologi-
cal version of well known smooth result that can be of independent
interest:

Proposition 2. Let 𝑄𝑛−1,𝑀𝑛 be closed topological manifolds, 𝑄𝑛−1 is
simply connected and locally flat in 𝑀𝑛. Then there exists an embedding
𝑒 ∶ 𝑄𝑛−1 × [−1, 1] →𝑀𝑛 such that 𝑒(𝑄𝑛−1 × {0}) = 𝑄𝑛−1.

2. Definitions and auxiliary results

2.1. Topology

A purpose of this section is to prove Proposition 2. A sketch of
proof of similar statement for smooth submanifolds is given in Ref. 16,
Theorem 4. We provide a complete proof for topological manifolds and
give below all necessary definitions. In fact, Proposition 2 follows from
Statement 5 and Proposition 3 below.

Everywhere below R𝑛 denotes the Euclidean space of dimension
𝑛 ≥ 1. For 𝑘 < 𝑛 the space R𝑘 is considered as a subset of R𝑛 determined
by condition 𝑥𝑘+1 = ⋯ = 𝑥𝑛 = 0; and R𝑘+ is a subset of R𝑘 determined
by the inequality 𝑥𝑘 ≥ 0. 𝑆𝑛−1, 𝐵𝑛, 𝑛 ≥ 1, denote the topological
𝑛−1)-dimensional sphere and the 𝑛-dimensional compact ball, that are
anifolds homeomorphic to
𝑛−1 = {𝑥 ∈ R𝑛 ∶ ‖𝑥‖ = 1},B𝑛 = {𝑥 ∈ R𝑛 ∶ ‖𝑥‖ ≤ 1},

orrespondingly. An annulus 𝐾𝑛 is a manifold homeomorphic to the
direct product 𝑆𝑛−1 × [0, 1].

Recall that a path-connected topological space 𝑋 is called simply
2

onnected if its fundamental group 𝜋1(𝑋) is trivial.
Let 𝑋, 𝑌 be arbitrary topological spaces. A continuous map 𝑒 ∶ 𝑋 →

is called a topological embedding if it homeomorphically maps 𝑋 onto
he subspace 𝑒(𝑋) ⊂ 𝑌 with a topology induced by the topology of 𝑌 .
et 𝑋 be a subset of a manifold 𝑀𝑛. According to Ref. 17, 𝑋 is called
ocally flat in 𝑀𝑛 at a point 𝑥 ∈ 𝑋 if there is an open neighborhood 𝑈𝑥
f 𝑥 in 𝑀𝑛 and a homeomorphism ℎ ∶ 𝑈𝑥 → R𝑛 such that ℎ(𝑈𝑥∩𝑋) = R𝑘

r ℎ(𝑈𝑥 ∩ 𝑋) = R𝑘+ depending on whether 𝑥 ∈ int𝑋 or 𝑥 ∈ 𝜕𝑋,
espectively. If 𝑋 is locally flat in 𝑀𝑛 at all points then, 𝑋 is locally
lat in 𝑀𝑛. If 𝑋 is not locally flat at a point 𝑦 ∈ 𝑋, then 𝑦 is called a
oint of wildness and 𝑋 is called wild. By definition, the set 𝑋 is locally
lat in 𝑀𝑛 if and only if it is a topological submanifold of 𝑀𝑛.

An (𝑛 − 1)-dimensional topological manifold 𝑄𝑛−1 ⊂ 𝑀𝑛 is called
wo-sided in 𝑀𝑛 if it has a connected neighborhood in 𝑀𝑛 separated by
𝑛−1. Otherwise, 𝑄𝑛−1 is one-sided in 𝑀𝑛.

The manifold 𝑄𝑛−1 ⊂ 𝑀𝑛 is called collared in 𝑀𝑛 if there is an
mbedding 𝑒 ∶ 𝑄𝑛−1 × [0, 1) → 𝑀𝑛 such that 𝑒(𝑄𝑛−1 × {0}) = 𝑄𝑛−1;
nd 𝑄𝑛−1 is called bi-collared in 𝑀𝑛 if there is an embedding 𝑒 ∶
𝑛−1 ×(−1, 1) →𝑀𝑛 such that 𝑒(𝑄𝑛−1 ×{0}) = 𝑄𝑛−1. In the first case the

mage 𝑒(𝑄𝑛−1 × [0, 1)) is called a collar of 𝑄𝑛−1 in 𝑀𝑛.
According to Ref. 17, Theorem 3, the following statement is true.

tatement 5. A locally flat two-sided manifold 𝑄𝑛−1 in 𝑀𝑛 is bi-collared.

Hence, the proof of Proposition 2 follows from the combination of
tatement 5 and the following proposition.

roposition 3. Let 𝑄𝑛−1 ⊂ 𝑀𝑛 be a simply connected locally flat closed
anifold. Then 𝑄𝑛−1 is two-sided.

To prove Proposition 3, let us recall some facts on covering maps.
Let 𝑋, 𝑋 be arbitrary topological spaces. A continuous map 𝑝 ∶ 𝑋 →

𝑋 is called a covering if it satisfies the next conditions:

• for any 𝑥 ∈ 𝑋 there is an open neighborhood 𝑈𝑥 such that 𝑝−1(𝑈𝑥)
consists of disjoint union of subsets of 𝑋;

• for any connected component 𝑉𝑗 of the union 𝑝−1(𝑈𝑥) =
⋃

𝑗∈𝐽 𝑉𝑗
the restriction 𝑝|𝑉𝑗 ∶ 𝑉𝑗 → 𝑈𝑥 is a homeomorphism.

he space 𝑋 is called a covering space or cover, the space 𝑋 is called
base of the covering 𝑝. If 𝑋 is a simply connected, then 𝑝 is called a

universal covering.
The next statement is proved in Ref. 18, Theorem 18.1.

Statement 6. Let 𝑋 be a path-connected, 𝑝 ∶ 𝑋 → 𝑋 be a covering and
𝑝∗ ∶ 𝜋1(𝑋) → 𝜋1(𝑋) be a homomorphism induced by 𝑝. Then 𝑝∗ is injective.

Corollary 1. If 𝑝 ∶ 𝑋 → 𝑋 is a covering with simply connected base 𝑋,
than 𝑋 is either path-disconnected or simply connected

If 𝑝 ∶ 𝑋 → 𝑋 is a covering and 𝑋 is path connected, then the
ardinality of the set 𝑝−1(𝑥) does not depend on the point 𝑥 ∈ 𝑋 (see,
or example, Ref. 18, Exercise 17.9 (h)). If the set 𝑝−1(𝑥) is finite and
onsists of 𝑘 points, then 𝑝 is called a 𝑘-fold covering.

The following statement proved in Ref. 18, Theorem 17.8.

tatement 7. Let 𝑝 ∶ 𝑋 → 𝑋 be a universal covering. Then there is a
ne-to-one correspondence between 𝜋1(𝑋) and 𝑝−1(𝑥), where 𝑥 ∈ 𝑋 is an

arbitrary point.

Any manifold 𝑀𝑛 has a two-fold covering 𝑝 ∶ 𝑀𝑛 → 𝑀𝑛 such that
𝑝−1(𝑥) is a local orientation at the point 𝑥 ∈ 𝑀𝑛 and 𝑀𝑛 is orientable
(see, for example19, §3.3). Moreover, due to Ref. 19, Proposition 3.25,
a connected manifold 𝑀𝑛 is orientable if and only of 𝑀𝑛 has two con-
ected components. If 𝑀𝑛 is simply connected, then due to Corollary 1,
̃𝑛 is either simply connected or disconnected. By definition, 𝑝−1(𝑥)
onsists of two points. If 𝑀𝑛 is connected then, due to Statement 7,
(𝑀𝑛) is not trivial. Hence 𝑀𝑛 is disconnected and 𝑀𝑛 is orientable.
1



Partial Differential Equations in Applied Mathematics 11 (2024) 100759E.Y. Gurevich and I.A. Saraev

P

a
ℎ
p
S
A
t
𝑈
p
o
e
𝑀

o
𝜕
A
𝑥
n

2

t
d
a
𝑝
c

s
2

S
T

b
n
2

S
T

M
(

L
𝑊
i

P
s

𝑊
w
T
c
o
i
i

C
h
i

P
e
S

b
o
𝑥
i
𝑢
i
f
𝑚

R
c
n
(

a
a
(
𝑈

P

𝑓

w
(

P
a

f
𝜓
d
𝑎
ℎ

𝑀
𝑝
s
𝑝
i
i
i

Corollary 2. Every simply connected manifold 𝑁𝑛 is orientable.

roof of Proposition 3. Suppose that 𝑄𝑛−1 ⊂ 𝑀𝑛 is simply connected
and locally flat. Then for any point 𝑥 ∈ 𝑄𝑛−1 there is a neighborhood
𝑉𝑥 ⊂ 𝑄𝑛−1 (open in the topology on 𝑄𝑛−1 induced by one on 𝑀𝑛)
nd a topological embedding ℎ𝑥 ∶ 𝑉𝑥 × [−1, 1] → 𝑀𝑛 such that
𝑥(𝑉𝑥 × {0}) = 𝑉𝑥. Since 𝑄𝑛−1 is compact, there is a finite number of
oints 𝑥1,… , 𝑥𝑠 ∈ 𝑄𝑛−1 such that the union 𝑉 =

⋃𝑠
𝑖=1 𝑉𝑥𝑖 contains 𝑄𝑛−1.

et 𝑈𝑥𝑖 = ℎ𝑥𝑖 (𝑉𝑥𝑖 × [−1, 1]), 𝑈+
𝑥𝑖

= ℎ𝑥𝑖 (𝑉𝑥) × [0, 1], 𝑈−
𝑥𝑖

= ℎ𝑥𝑖 (𝑉𝑥) × [−1, 0].
ccording to Ref. 17, Lemma 4 for any 𝑉𝑥𝑖 , 𝑉𝑥𝑗 such that 𝑉𝑥𝑖 ∩ 𝑉𝑥𝑗 ≠ ∅

here exists a pair of topological embeddings ℎ±𝑖,𝑗 ∶ (𝑉𝑥𝑖 ∪ 𝑉𝑥𝑗 ) × [0, 1] →
𝑥𝑖 ∪ 𝑈𝑥𝑗 such that ℎ±𝑖,𝑗 ((𝑉𝑥𝑖 ∪ 𝑉𝑥𝑗 ) × {0}) = 𝑉𝑥𝑖 ∪ 𝑉𝑥𝑗 . There are two
ossibilities (up to choice of 𝑖, 𝑗): either ℎ+𝑖,𝑗 ((𝑉𝑥𝑖 ∪𝑉𝑥𝑗 )×[0, 1]) ⊂ 𝑈

+
𝑥𝑖
∪𝑈+

𝑥𝑗
r ℎ+𝑖,𝑗 ((𝑉𝑥𝑖 ∪ 𝑉𝑥𝑗 ) × [0, 1]) ⊂ 𝑈+

𝑥𝑖
∪ 𝑈−

𝑥𝑗
, In both cases the union of

mbeddings ℎ+𝑖,𝑗 , ℎ
−
𝑖,𝑗 determines a bi-collared embedding of 𝑉𝑖 ∪ 𝑉𝑗 in

𝑛. Set 𝑈 =
⋃𝑠
𝑖,𝑗=1 ℎ

+
𝑖,𝑗 (𝑉𝑥𝑖 ∪ 𝑉𝑥𝑗 × [0, 1]) ∪

⋃𝑠
𝑖,𝑗=1 ℎ

−
𝑖,𝑗 (𝑉𝑥𝑖 ∪ 𝑉𝑥𝑗 × [0, 1]).

By construction, 𝑈 is compact and a projection 𝑝 ∶ 𝜕𝑈 → 𝑄𝑛−1 along
ne-dimensional fibers is two-fold covering. If 𝑄𝑛−1 is one-sided, then
𝑈 is path-connected and, due to Statement 6, is simply connected.
t the same time each point 𝑥 ∈ 𝑄𝑛−1 has two preimages 𝑝−1(𝑥) =
× {−1; 1}. Due to Statement 7 the fundamental group 𝜋1(𝜕𝑈 ) is

on-trivial. The contradiction proves that 𝑄𝑛−1 is two-sided in 𝑀𝑛.

.2. Dynamics

A main tool of the proof of Theorem 1 is a surgery along separatrices
hat we describe below. Let 𝑓 ∶ 𝑀𝑛 → 𝑀𝑛 be a Morse–Smale
iffeomorphism. We denote by 𝛺𝑓 the non-wandering set of 𝑓 . 𝑊 𝑠

𝑝 ,𝑊
𝑢
𝑝

re the stable and unstable invariant manifolds of a periodic point
∈ 𝛺𝑓 , correspondingly, 𝑖𝑝 = dim𝑊 𝑢

𝑝 , and 𝑙𝑢𝑝 denotes a connected
omponent of 𝑊 𝑢

𝑝 ⧵ 𝑝.
The asymptotic behavior of orbits of 𝑓 is described in the following

tatement proved in Ref. 20, Theorem 2.3 (see also Ref. 21, Statement
.1.1).

tatement 8. Suppose 𝑓 ∶𝑀𝑛 →𝑀𝑛 is a Morse–Smale diffeomorphism.
hen:

1. 𝑀𝑛 =
⋃

𝑝∈𝛺𝑓 𝑊
𝑠
𝑝 =

⋃

𝑝∈𝛺𝑓 𝑊
𝑢
𝑝 ;

2. for any 𝑝 ∈ 𝛺𝑓 the set 𝑊 𝑢
𝑝 is a smooth submanifold in 𝑀𝑛

diffeomorphic to R𝑖𝑝 ;
3. for any 𝑝 ∈ 𝛺𝑓 and for any separatrix 𝑙𝑢𝑝 the equality cl 𝑙𝑢𝑝 ⧵ ({𝑝} ∪

𝑙𝑢𝑝) =
⋃

𝑞∈𝛺𝑓 ,𝑊 𝑠
𝑞 ∩𝑙𝑢𝑝≠∅

𝑊 𝑢
𝑞 holds.

Following Smale, we determine a Smale relation ≺ on the set 𝛺𝑓
y the rule: 𝑝 ≺ 𝑞 if and only if 𝑊 𝑠

𝑝 ∩ 𝑊 𝑢
𝑞 ≠ ∅ or 𝑖𝑝 < 𝑖𝑞 . The

ext statement is well known (see, for example, Ref. 5, Statement
.3,Ref. 21, Statement 1.2.5).

tatement 9. Let 𝑓 ∶ 𝑀𝑛 → 𝑀𝑛 be a Morse–Smale diffeomorphism.
hen:

1. for any saddle points 𝑝, 𝑞, 𝑟 conditions 𝑝 ≺ 𝑞, 𝑞 ≺ 𝑟 imply 𝑝 ≺ 𝑟;
2. there is no set of pairwise distinct saddles 𝑝1,… , 𝑝𝑘 such that for any

𝑖 ∈ {1,… , 𝑘 − 1} the equality 𝑝𝑖 ≺ 𝑝𝑖+1 holds and 𝑝𝑘 ≺ 𝑝1.

All statements below are given for a saddle periodic point 𝜎𝑛−1 of a
orse–Smale diffeomorphism 𝑓 ∶ 𝑀𝑛 → 𝑀𝑛, 𝑛 ≥ 4, such that 𝑊 𝑢

𝜎𝑛−1
is

𝑛 − 1)-dimensional and does not contain heteroclinic intersections.

emma 1. There exists a unique sink point 𝜔 such that cl𝑊 𝑢
𝜎𝑛−1

=
𝑢
𝜎𝑛−1

∪ {𝜔}. Moreover, cl𝑊 𝑢
𝜎𝑛−1

is a bi-collared (𝑛− 1)-dimensional sphere
n 𝑀𝑛.

roof. Due to Statement 8, there is a unique sink periodic point 𝜔
𝑢 𝑠 𝑢 𝑢
3

uch that cl𝑊𝜎𝑛−1
⧵ {𝜎𝑛−1} ⊂ 𝑊𝜔 and cl𝑊𝜎𝑛−1

= 𝑊𝜎𝑛−1
∪ {𝜔}. Since L
𝑢
𝑛−1 is diffeomorphic to R𝑛−1, cl𝑊 𝑢

𝜎𝑛−1
is a sphere of dimension (𝑛− 1)

hich is locally flat in 𝑀𝑛 at all points except 𝜔. It follows from Ref. 22,
heorem 1 (see also Ref. 23, Corollary 3 A.6) that for 𝑛 ≥ 4 the sphere
l𝑊 𝑢

𝜎𝑛−1
cannot have a unique point of wildness in 𝑀𝑛 (in fact, the set

f wildness points greater than countable). Then cl𝑊 𝑢
𝜎𝑛−1

is locally flat
n 𝑀𝑛 at 𝜔. According to Proposition 2, sphere cl𝑊 𝑢

𝜎𝑛−1
is bi-collared

n 𝑀𝑛.

orollary 3. There is a neighborhood 𝑁𝜎𝑛−1 ⊂ 𝑊 𝑠
𝜔 ∪𝑊 𝑠

𝜎𝑛−1
of cl𝑊 𝑢

𝜎𝑛−1
omeomorphic to 𝑆𝑛−1×[−1, 1] and a number 𝑚 > 0 such that 𝑓𝑚(𝑁𝜎𝑛−1 ) ⊂
nt𝑁𝜎𝑛−1 .

roof. Since cl𝑊 𝑢
𝜎𝑛−1

is a bi-collared sphere, there is a topological
mbedding 𝑒 ∶ 𝑆𝑛−1 × (−1, 1) → 𝑀𝑛 such that 𝑒(𝑆𝑛−1 × {0}) = cl𝑊 𝑢

𝜎𝑛−1
.

et 𝑁𝜎𝑛−1 = 𝑒(𝑆𝑛−1 × [−1∕2; 1∕2]).
Without loss of generality we suppose that all points of 𝜕𝑁𝜎𝑛−1

elong to the union 𝑊 𝑠
𝜎 ∪𝑊 𝑠

𝜔 (otherwise we take 𝑁𝜎𝑛−1 as the image
f 𝑆𝑛−1 × [−𝜀, 𝜀] for sufficiently small 𝜀 > 0). Then for any point
∈ 𝜕𝑁𝜎𝑛−1 there is 𝑚𝑥 > 0 such that 𝑓𝑚𝑥 (𝑥) ⊂ int𝑁𝜎𝑛−1 . Since 𝑓

s a homeomorphism, for any 𝑥 ∈ 𝜕𝑁𝜎𝑛−1 there is a neighborhood
𝑥 ⊂ 𝜕𝑁𝜎𝑛−1 such that 𝑓𝑚𝑥 (𝑦) ⊂ int𝑁𝜎𝑛−1 for any 𝑦 ∈ 𝑢𝑥. Since 𝜕𝑁𝜎𝑛−1
s compact, the set of neighborhoods {𝑢𝑥, 𝑥 ∈ 𝜕𝑁𝜎𝑛−1} contains a
inite subset {𝑢𝑥𝑖 , 𝑥𝑖 ∈ 𝜕𝑈𝜎1𝑛−1

, 𝑖 ∈ {1,… ,𝑀}}, covering 𝜕𝑁𝜎1𝑛−1
. Set

= 𝑚𝑎𝑥{𝑚𝑥𝑖 , 𝑖 ∈ {1,… ,𝑀}}. Then 𝑓𝑚(𝜕𝑁𝜎𝑛−1 ) ⊂ int𝑁𝜎𝑛−1 .

emark 1. In the case 𝑛 = 3 Corollary 3 is true but the closure
l𝑊 𝑢

𝜎2
can be a wild sphere in 𝑀3, so, the proof of the existence of its

eighborhood is a rather difficult problem. This proof is given in Ref. 4
see also Ref. 21, Section 6.1.1).

Set 𝑆𝜎𝑛−1 = cl𝑊 𝑢
𝜎𝑛−1

= 𝑊 𝑢
𝜎𝑛−1

∪ {𝜔}. Suppose that 𝜎𝑛−1, 𝜔 are fixed
nd 𝑓 (𝑈𝜎𝑛−1 ) ⊂ int 𝑈𝜎𝑛−1 (otherwise consider the diffeomorphism 𝑓𝑚 for
n enough big 𝑚 ∈ N). It follows from Lemmas 1 and 3, that the set
𝑊 𝑠
𝜔 ∪𝑊 𝑠

𝜎𝑛−1
) ⧵𝑆𝜎𝑛−1 consists of two 𝑓 -invariant connected components

+, 𝑈−.

roposition 4. There is a homeomorphism ℎ± ∶ 𝑈± → R𝑛 ⧵{𝑂} such that

|𝑈±
= ℎ−1± 𝑎ℎ±|𝑈±

,

here 𝑎 ∶ R𝑛 → R𝑛 is a linear automorphism defined by 𝑎(𝑥1,… , 𝑥𝑛) =
1
2𝑥1,… , 12𝑥𝑛

)

.

roof. Set 𝐾 = 𝑁𝜎𝑛−1 ⧵ int 𝑓 (𝑁𝜎𝑛−1 ). Since 𝐾 belongs to an open
nnulus 𝑆𝜎𝑛−1 × (−1, 1), it also can be embedded in R𝑛 ⧵ {𝑂}. Due to

Annulus theorem (see Ref. 5, Theorem 14.3 for references), 𝐾 is a union
of two disjoint closed annuli 𝐾+, 𝐾−. Suppose that 𝐾+ ⊂ 𝑈+. Then
⋃

𝑛∈Z 𝑓
𝑛(𝐾+) = 𝑈+ and for any 𝑥 ∈ (𝑊 𝑠

𝜔 ∪ 𝑊 𝑠
𝜎𝑛−1

) ⧵ 𝑆𝜎𝑛−1 there exists
𝑛𝑥 ∈ Z such that 𝑓 𝑛𝑥 (𝑥) ∈ 𝐾+.

Let 𝜓0 ∶ 𝑆+ → S𝑛−1 be an arbitrary homeomorphism, where
𝑆+ is a connected component of 𝜕𝐾 that belongs to 𝐾+. Define a
homeomorphism 𝜓1 ∶ 𝑓 (𝑆+) → 𝑎(S𝑛−1) by 𝜓1 = 𝑎𝜓0𝑓−1. It follows
rom Ref. 24, Ref. 25, Proposition 6, that there exists a homeomorphism

∶ 𝐾+ → K𝑛 such that 𝜓|𝑆+ = 𝜓0, 𝜓|𝑓 (𝑆+) = 𝜓1. Then the
esired homeomorphism ℎ+ ∶ 𝑈+ → R𝑛 ⧵ {𝑂} is defined by ℎ+(𝑥) =
−𝑛𝑥 (𝜓(𝑓 𝑛𝑥 (𝑥))), where 𝑥 ∈ 𝑈+ and 𝑓 𝑛𝑥 (𝑥) ⊂ 𝐾+. The homeomorphism
− ∶ 𝑈− → R𝑛 ⧵ {𝑂} can be constructed in similar way.

For points 𝑥 ∈ 𝑈±, 𝑦 ∈ R𝑛 × Z2 set 𝑥 ∼ 𝑦 if 𝑦 = ℎ±(𝑥) and denote by
′ a factor-space of (𝑀𝑛 ⧵ 𝑆𝜎𝑛−1 ) ∪ (R𝑛 × Z2)∕∼. The natural projection
∶ (𝑀𝑛 ⧵ 𝑆𝜎𝑛−1 ) ∪ (R𝑛 × Z2) → 𝑀 ′ induces on 𝑀 ′ a structure of a

mooth manifold. A map 𝑓 ′ ∶ 𝑀 ′ → 𝑀 ′ that coincides with 𝑝𝑓 on
(𝑀𝑛 ⧵ 𝑆𝜎𝑛−1 ) and with 𝑝𝑎 on each connected component of 𝑝(R𝑛 × Z2)
s a Morse–Smale diffeomorphisms. We will say that the pair {𝑀 ′, 𝑓 ′}
s obtained from {𝑀𝑛, 𝑓} by surgery along 𝑊 𝑢

𝜎𝑛−1
. The following result

mmediately follows from the definition of surgery and from Ref. 26,
emma 7.
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Proposition 5. Let {𝑀 ′, 𝑓 ′} be obtained from {𝑀𝑛, 𝑓} by surgery along
𝑊 𝑢
𝜎𝑛−1

. Then

1. 𝑘′0 = 𝑘0 + 1, 𝑘′𝑛−1 = 𝑘𝑛−1 − 1; 𝑘′𝑖 = 𝑘𝑖 for all 𝑖 ∈ {1, 2,… , 𝑛 − 2, 𝑛};
2. if 𝑀 ′ has two connected components 𝑀+,𝑀−, then 𝑀𝑛 is homeo-

morphic to a connected sum of 𝑀+ and 𝑀−;
3. if 𝑀𝑛 is orientable and 𝑀 ′ is connected, then 𝑀𝑛 is homeomorphic

to 𝑀 ′#(𝑆𝑛−1 × 𝑆1).

. Proof of main results

.1. Proof of Theorem 1

Let 𝑀𝑛 be a connected manifold of dimension 𝑛 ≥ 3 and 𝑓 ∈ 𝐺(𝑀𝑛),
hat is 𝑓 ∶ 𝑀𝑛 → 𝑀𝑛 be a Morse–Smale diffeomorphism such all
𝑛 − 1)-dimensional unstable manifolds of its saddle periodic points
ither do not intersect any invariant manifolds of other saddles or
ntersect only one-dimensional invariant manifolds. We prove that 𝑀𝑛

s simply connected. We suppose that 𝑘1 = 0 and prove that 𝑀𝑛 is
imply connected. For 𝑘𝑛−1 = 0 the theorem follows from Statement 4.
uppose 𝑘𝑛−1 ≠ 0. Since we are interested only in topology of the
anifold 𝑀𝑛, we suppose without loss of generality that all periodic
oints of 𝑓 are fixed (that is 1-periodic, in the opposite case we may
onsider a homeomorphism 𝑓𝑁 for sufficiently large 𝑁 defined on the
ame manifold).

Due to Statement 8, 𝑀𝑛 is the union of stable manifolds of all fixed
oints of 𝑓 . Since the union 𝑋 of stable manifolds of all source and
addle fixed points of 𝑓 have dimension less than (𝑛 − 1), it does not
ivide 𝑀𝑛. Hence, 𝑀𝑛 ⧵ 𝑋 is connected. But 𝑀𝑛 ⧵ 𝑋 coincides with
he union of pairwise disjoint stable manifolds of all sink fixed points.
onsequently, the number 𝑘0 of sinks of 𝑓 equals one.

It follows from the definition of the class 𝐺(𝑀𝑛) and Statement 9,
hat there is a smallest with respect Smale relation ≺ saddle fixed point
𝑛−1 ∈ 𝛺𝑓 . Then 𝑊 𝑢

𝜎𝑛−1
does not intersect stable manifold of any saddle

ixed point different from 𝜎𝑛−1. Due Lemma 1, there exist a sink 𝜔 such
hat cl𝑊 𝑢

𝜎𝑛−1
= 𝑊 𝑢

𝜎𝑛−1
∪𝑊 𝑢

𝜔 , and the set cl𝑊 𝑢
𝜎𝑛−1

is a locally flat (𝑛 − 1)-
imensional sphere in 𝑀𝑛. Applying the surgery operation along 𝑊 𝑢

𝜎𝑛−1
,

e obtain a pair {𝑓1,𝑀1} of a closed manifold 𝑀1 and a Morse–Smale
iffeomorphism 𝑓1 ∶ 𝑀1 → 𝑀1. If 𝑘𝑛−1 = 1, then non-wandering set
f 𝑓1 does not contain saddle fixed points of indices 1 and (𝑛 − 1) and
ontain exactly two sinks. It follows from Statement 4, that 𝑀1 has two
onnected components 𝑀+,𝑀−, each of which is simply-connected.
ence, 𝑀𝑛 is a connected sum of 𝑀+,𝑀−. It follows from Van Kampen
heorem (see, for instance, Ref. 19, Theorem 1.20) that 𝑀𝑛 is simply
onnected.

If 𝑘𝑛−1 > 1, then restriction of 𝑓 ′ on at least one component 𝑀+,𝑀−
atisfies the conditions of Theorem 1 and we repeat the surgery oper-
tion and all arguments above. After 𝑘𝑛−1 steps we obtain a manifold
𝑘𝑛−1 consisting of 𝑘𝑛−1 +1 connected components and a Morse–Smale

iffeomorphism 𝑓𝑘𝑛−1 ∶𝑀𝑘𝑛−1 →𝑀𝑘𝑛−1 such that the restriction 𝑓𝑘𝑛−1 on
ach connected component is polar. Then each connected component
f 𝑀𝑘𝑛−1 is simply connected and so is 𝑀𝑛.

.2. Proof of Proposition 1

Let 𝑀𝑛 be a closed connected manifold of dimension 𝑛 ≥ 3, and
∈ 𝐺(𝑀𝑛) be a polar flow such that 𝑘21+𝑘

2
𝑛−1 ≠ 0. We prove that 𝑀𝑛 is

ot simply connected. Suppose the contrary. Hence, due to Corollary 2,
𝑛 is orientable.
We may assume that 𝑘𝑛−1 ≠ 0 (otherwise consider the diffeomor-

hism 𝑓−1) and that all periodic points of 𝑓 are fixed. It follows from
he definition of the class 𝐺(𝑀𝑛) and Statement 9, that there is a
mallest with respect Smale relation ≺ saddle fixed point 𝜎𝑛−1 ∈ 𝛺𝑓 .
hen 𝑊 𝑢

𝜎𝑛−1
does not intersect stable manifold of any saddle fixed point

ifferent from 𝜎 . Due Lemma 1, there exist a sink 𝜔 such that
4

𝑛−1
l𝑊 𝑢
𝜎𝑛−1

= 𝑊 𝑢
𝜎𝑛−1

∪ 𝑊 𝑢
𝜔 , and the set cl𝑊 𝑢

𝜎𝑛−1
is a locally flat (𝑛 − 1)-

imensional sphere in 𝑀𝑛. Let us prove that 𝑀𝑛 ⧵cl𝑊 𝑢
𝜎𝑛−1

is connected.
uppose the contrary. Then each connected component of 𝑀𝑛 ⧵cl𝑊 𝑢

𝜎𝑛−1
ontain a connected components of 𝑊 𝑠

𝜎 ⧵ 𝜎, consequently, in virtue of
tatement 8, contain a source. But by assumption 𝑓 is polar, so its
on-wandering set contains exactly one source. Hence, 𝑀𝑛 ⧵ cl𝑊 𝑢

𝜎𝑛−1
s connected.

Applying surgery along 𝑊 𝑢
𝜎𝑛−1

we obtain a pair {𝑓 ′,𝑀 ′} of a closed
onnected manifold 𝑀 ′ and a Morse–Smale diffeomorphism 𝑓 ′ ∶𝑀 ′ →
′. Due to Proposition 5, 𝑀𝑛 is a connected sum of 𝑀 ′ and 𝑆𝑛−1 ×𝑆1.

ence, according to Van Kampen Theorem, the fundamental group
1(𝑀𝑛) of 𝑀𝑛 is a free product of 𝜋1(𝑀 ′) and 𝜋1(𝑆𝑛−1 × 𝑆1). The last
roup is isomorphic to Z, so 𝜋1(𝑀𝑛) is non-trivial.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

Data will be made available on request.

cknowledgment

This work is an output of a research project implemented as part of
he Basic Research Program at the National Research University Higher
chool of Economics (HSE University).

eferences

1. Smale S. On gradient dynamical systems. Ann of Math. 1961;74(1):199–206.
http://dx.doi.org/10.2307/1970311.

2. Èl’sgol’c LE. An estimate for the number of singular points of a dynamical system
defined on a manifold. Mat Sb (N.S.). 1950;26(68):215–223.

3. Smale S. Morse inequalities for a dynamical system. Bull Am Math Soc.
1960;61(1):43–49.

4. Bonatti C, Grines V, Medvedev V, Pecou E. Three-dimensional manifolds ad-
mitting Morse-Smale diffeomorphisms without heteroclinic curves. Topol Appl.
2002;117:335–344.

5. Grines VZ, Gurevich EY. Problems of topological classification of multidimensional
morse-smale systems. Izhevsk: Izhevskiy institut computernykh issledovaniy; 2022.

6. Grines VZ, Gurevich EY, Medvedev VS. Peixoto graph of Morse-Smale diffeo-
morphisms on manifolds of dimension greater than three. Proc Steklov Inst Math.
2008;261:59–83. http://dx.doi.org/10.1134/S0081543808020065.

7. Pochinka OV, Osenkov EM. The unique decomposition theorem for 3-manifolds,
admitting Morse-Smale diffeomorphisms without heteroclinic curves. Moscow Math
J. 2024. in press.

8. Grines VZ, Gurevich EY, Pochinka OV. Topological classification of Morse–Smale
diffeomorphisms without heteroclinic intersections. J Math Sci. 2015;208(1):81–
90.

9. Grines VZ, Medvedev VS, Zhuzhoma EV. On the topological structure of manifolds
supporting Axiom A systems. Regul Chaotic Dyn. 2022;27:613–628. http://dx.doi.
org/10.1134/S1560354722060028.

10. Medvedev VS, Zhuzhoma EV. Supporting manifolds for high-dimensional Morse-
Smale diffeomorphisms with few saddles. Topol Appl. 2020;282. http://dx.doi.org/
10.1016/j.topol.2020.107315.

11. Rochlin VA. New results of the four-dimensional Manifold theory. Docl Acad Nauk
SSSR. 1952;84:221–224.

12. Freedman MH. The topology of four-dimensional manifolds. J Differential Geom.
1982;17:357–453.

13. Donaldson S. An application of Gauge theory to four-dimensional topology. J
Differential Geom. 1983;18:279–315.

14. Furuta M. Monopole equation and the 11
8

-conjecture. Math Res Lett.
2001;8(3):279–291.

15. Skorpan A. The wild world of 4-manifolds. American Mathematical Society; 2005.
16. Woll Jr John W. One-sided surfaces and orientability. Two-Year Coll Math J.

1971;2(1):5–18. Spring.
17. Brown MA. Locally flat imbeddings of topological Manifolds. Ann of Math (2).

1962;75(2):331–341.
18. Kosnevsky C. Initial course in algebraic topology. M. Mir; 1983.

19. Hatcher A. Algebraic topology. Cambridge University Press; 2002:544.

http://dx.doi.org/10.2307/1970311
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb2
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb2
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb2
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb3
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb3
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb3
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb4
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb4
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb4
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb4
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb4
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb5
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb5
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb5
http://dx.doi.org/10.1134/S0081543808020065
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb7
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb7
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb7
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb7
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb7
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb8
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb8
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb8
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb8
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb8
http://dx.doi.org/10.1134/S1560354722060028
http://dx.doi.org/10.1134/S1560354722060028
http://dx.doi.org/10.1134/S1560354722060028
http://dx.doi.org/10.1016/j.topol.2020.107315
http://dx.doi.org/10.1016/j.topol.2020.107315
http://dx.doi.org/10.1016/j.topol.2020.107315
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb11
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb11
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb11
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb12
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb12
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb12
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb13
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb13
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb13
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb14
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb14
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb14
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb15
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb16
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb16
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb16
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb17
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb17
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb17
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb18
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb19


Partial Differential Equations in Applied Mathematics 11 (2024) 100759E.Y. Gurevich and I.A. Saraev
20. Smale S. Differentiable dynamical systems Bull. Amer Math Soc. 1967;73(6):747–
817.

21. Grines VZ, Pochinka OV. Introduction to the topological classification of cascades
on manifolds of dimension two and three. Moscow, Izhevsk: Regular and Chaotic
Dynamics Research Centre; Izhevsk Institute for Computer Studies; 2011:424.

22. Kirby RC. On the set of non-locally flat points of a submanifold of codimension
one. Ann Math Second Ser. 1968;88(2):281–290.
5

23. Daverman JR, Venema GA. Embeddings in Manifolds. Grad Stud Math. 2009;10.
24. Frank Quinn Ends of maps III. Dimensions 4 and 5. J Differential Geom.

1982;17(3):503–521.
25. Kirby RC. Stable homeomorphisms and the annulus conjecture. Ann of Math.

1969;89(3):575–582. http://dx.doi.org/10.2307/1970652.
26. Medvedev VS, Umansky YL. On the decomposition of 𝑛-manifolds into simple

manifolds. Soviet Math (Iz VUZ). 1979;23(1):36–39.

http://refhub.elsevier.com/S2666-8181(24)00145-1/sb20
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb20
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb20
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb21
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb21
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb21
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb21
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb21
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb22
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb22
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb22
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb23
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb24
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb24
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb24
http://dx.doi.org/10.2307/1970652
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb26
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb26
http://refhub.elsevier.com/S2666-8181(24)00145-1/sb26

	On Morse–Smale diffeomorphisms on simply connected manifolds
	Introduction and statement of results
	Definitions and auxiliary results
	Topology
	Dynamics

	Proof of main results
	Proof of Theorem 1 
	Proof of Proposition 1 

	Declaration of competing interest
	Data availability
	Acknowledgment
	References


