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§ 1. Introduction

An independent set in a graph is an arbitrary set of its pairwise nonadjacent vertices.
We always assume that the empty set is also independent. An independent set in a graph
is maximal if it is maximal under inclusion A maximum independent set is an independent
set of the largest size (cardinality). The cardinality of a maximum independent set
of a graph G will be denoted by α(G). We shall write “IS”, “MLIS” and “MMIS” to
abbreviate, respectively, the phrases “independent set(s)”, “maximal independent set(s)”,
and “maximum independent set(s)”. The number of all MMIS of a graph G will be
denoted by ξ(G).

The problem of enumeration of IS (MLIS or MMIS) in various classes of graphs
has been extensively studied. The literature on this subject is constantly updated.
In the well-known paper by Moon and Moser [16], the maximal possible number of
MLIS and MMIS in n-vertex graphs was found and the corresponding extreme graphs
were described. These sets were found to be disconnected. In [6], an analogous result
was obtained for connected graphs. In [10, 11, 15], the maximal possible numbers of
MLIS were obtained for triangle-free graphs, unicyclic graphs, and bipartite graphs,
respectively. In [19], the maximal possible number of MLIS in trees was found, and in
[17] all the corresponding extreme trees were described.

To date, a large number of papers have been published on the enumeration of IS in
trees under various additional constraints. In [8], for any d, a complete description was
given for the extreme trees maximizing the number of IS in the class of trees in which
any vertex has degree at most d. Moreover, each extreme tree containing at least d + 1
vertices must also contain a vertex of degree d. A similar problem for MMIS was solved
in [1]; the problem for MLIS remains open.

The attainable lower estimates for the number of IS and MLIS in various classes
of graphs have been much less studied, since in many cases they are trivial and the
corresponding extreme graphs are very simple. So, lower estimate for the number of IS
(respectively, MLIS) in the class of all trees is trivial and is attained on a simple path
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(respectively, on a star-graph). Dainyak [5] described all trees of fixed diameter with
minimal number of MLIS. Such trees are simple paths whose endpoints are augmented
with some leaf vertices which contain twin-leaves. In [2], a more precise lower estimate
for the number of MLIS in n-vertex trees without twin-leaves was obtained and the
corresponding extreme trees were described.

In [9] it was shown that, for any k > 2, there exists a k-regular graph containing
a unique MMIS. Moreover, in [9] an attainable lower estimate for the independence
number for graphs with a unique MMIS was derived and a criterion for the uniqueness
of an MMIS in a tree was put forward. The survey [12] provides the maximal values of
the number of MMIS in n-vertex graphs from some classes (in particular, for connected
graphs, unicyclic graphs, and triangle-free graphs). In [20], the maximal possible number
of MMIS in n vertex trees was found and the corresponding extreme trees were described.

It is clear that a simple path is a unique tree with two leaves. Moreover, n > l + 1
for any tree with n vertices and l leaves. Hence in what follows, we will assume that
n > l > 3. In [3] and [18], the problem of maximization of the number of IS in n-vertex
trees with precisely l leaves was solved. It was found that the corresponding extreme
tree T ′

n,l consists of a central vertex augmented with l−1 leaves and a simple path Pn−l.
The similar problem for minimum is at present open, but in this direction a result from
[7] is worth mentioning on minimization of the number of IS in n-vertex trees containing
at least ⌊n

2 ⌋+1 leaves. The problem of maximization of the number of MLIS in n-vertex
trees with precisely l leaves is open; the corresponding minimization problem is trivial,
the corresponding extreme trees coinciding with trees T ′

n,l.
The problem on maximization of the number of IS in n-vertex trees of diameter d was

solved in many papers (see, for example, in [4, 13, 14]). The corresponding extreme tree
was shown to be isomorphic to the tree T ′

n,n−d+1. For MLIS and MMIS this problem
remains open.

Рис. 1. The tree T ′
8,4.

In the present paper, for any n > l > 3, we completely describe the trees with maximal
possible number of maximum independent sets among the n-vertex trees containing
precisely l leaves. In what follows, even(x) will denote the largest even number not
exceeding a given real number x. By Tn,l we will denote an n-vertex tree with l leaves
containing a maximal possible number of MMIS among all such trees. We shall show
that, for any values of the parameters n and l, the tree Tn,l is unique and is as follows:

(A) If n 6 2l, then the tree Tn,l consists of a vertex adjacent to 2l − n + 1 leaves and
n − l − 1 paths P2.

(B) If n > 2l and n = 2k, then the tree T2k,l is unique and consists of a vertex
adjacent to one leave, r paths PA, and l − r − 1 paths PA+2, where A = even(n−2

l−1 ) and
r = 1

2 (n − 2 − (l − 1)A).
(C) If n > 2l and n = 2k + 1, then the tree T2k+1,l is unique and consists of a vertex

adjacent to two leaves, r paths PB , and q paths PB+2, where B = even(n−3
l−2 ) and

r = 1
2 (n − 3 − (l − 2)B).

Рис. 2. The trees T10,4 and T15,5.

§ 2. Definitions and notation

As usual, we denote by Pn a simple n-vertex path, and by deg(x) we denote the degree
of a vertex x. Given a tree T and its vertex v, by ξ+(T, v) we denote the number of MMIS
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in the tree T containing the vertex v, and by ξ−(T, v) we denote the number of MMIS
of the tree T not containing the vertex v. A vertex of a tree is called universal if it is
contained in each MMIS of the tree; a vertex is empty if it is not contained in any MMIS
of the tree.

By Sk1,...,kl
we denote the result of merging of the endpoints of paths of lengths

k1, . . . , kl. We shall assume that k1 > k2 > . . . > kl.

Рис. 3. The tree S4,3,2,1,1.

A path (v1, v2, . . . , vk) of a tree is called extreme if v1 is a leaf of the tree, each of the
vertices v2, . . . , vk has degree 2 in the tree, and the vertex vk is adjacent to some vertex
of degree > 3. A vertex of a tree is called extreme if its degree is > 3 and if all the
subtrees adjacent to it are extreme paths (except, possibly, one subtree).

Figure 4 depicts a tree containing two extreme vertices, of which one is adjacent to
three extreme paths of zero length and the second one is adjacent to three extreme paths
of length one. Note that if a tree contains more than one extreme vertex, then each
extreme vertex u of this tree contains a unique neighbor w not ling in the extreme path.
Moreover, it is easily seen that if a tree contains at least three leaves, then it is either of
the form Sk1,...,kl

, or it contains at least two extreme vertices.

Рис. 4. An illustration of an extreme vertex and an extreme path.

§ 3. Structure of extreme trees

In this section, it will be shown that, for all admissible n > l > 3, the tree Tn,l contains
a unique extreme vertex, i.e., it has the form Sk1,k2,...,kl

. Before proving this fact, we
shall prove some auxiliary results that give various constraints on the structure of the
extreme trees Tn,l.

Lemma 1. If an extreme vertex u of the tree Tn,l is universal, then it is not adjacent to
an extreme path of even length.

Proof. Assume that the tree Tn,l contains an extreme vertex u adjacent to an extreme
path P of length 2m. We denote the vertices of this path by x1, . . . , x2m+1. Consider
an arbitrary MMIS J of the tree Tn,l. It is easily seen that J contains the vertex u and
in addition precisely m vertices of the path P . Consider the set J ′ obtained from J by
replacing these m + 1 vertices by the vertices x1, x3, . . . , x2m+1. it is clear that J ′ is also
an MMIS of the tree Tn,l. But then the vertex u is not universal, a contradiction.

Lemma 2. If an extreme vertex u of the tree Tn,l is empty, then it is adjacent to at least
one path of even length.

Proof. Assume that an empty extreme vertex u of degree d is not adjacent to any
extreme path of even length. Then it is adjacent to d − 1 extreme paths of odd length
and also to some nonleaf vertex w. Since the vertex u is empty, there exists some MMIS
I not containing u and not containing the endpoints of all extreme paths of odd length
that are adjacent to u in the tree Tn,l. Hence I contains the vertex w, for otherwise
I could be augmented with the vertex u, which would give an IS of larger cardinality.
Next, we replace in I the vertex w by the vertex u. The resulting set I ′ is also an MMIS,
but in this case the vertex u is not empty. This contradiction proves the lemma.

Lemma 3. If an extreme vertex u of the tree Tn,l is adjacent to at least two extreme
paths of even length, then it is empty.
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Proof. Assume that an extreme vertex u is not empty and is adjacent to two extreme
paths X and Y of even length. We denote their vertices by x1, . . . , x2a+1 and y1, . . . , y2b+1,
respectively. Since u is not empty, it is contained in at least one MMIS I of the tree
Tn,l. Hence the set I does not contain the vertices x1 and y1, and therefore, it contains
at most a + b vertices from the extreme paths X and Y . Consider the set I ′ containing
the vertices x1, x3, . . . , x2a+1 of the path X, the vertices y1, y3, . . . , y2b+1 of the path Y ,
and all the remaining vertices from the set I \ (V (X)∪V (Y )) (except the vertex u). It is
clear that I ′ is also an IS, but I ′ has one more vertex than I. Hence I is not an MMIS,
a contradiction.

Lemma 4. The tree Tn,l does not contain universal extreme vertices.

Proof. Assume that the tree Tn,l contains a universal extreme vertex v of degree d > 3.
Then by Lemma 1 this vertex is adjacent to d−1 extreme paths of odd length. Consider
two such paths and denote their vertices by x1, . . . , x2a and y1, . . . , y2b, respectively. In
the tree T , the vertices v, x2, x4, . . . , x2a, y2, y4, . . . , y2b are universal, and the vertices
x1, y1, x3, y3, . . . , x2a−1, y2b−1 are empty. We remove from Tn,l the edge y1v and add the
edge y1x1. It is clear that this transformation does not change the number of leaves and
vertices of the tree. We denote the resulting tree by T ′. Let us show that ξ(T ′) > ξ(Tn,l).

It is clear that each MMIS of the tree Tn,l is an IS of the tree T ′. Hence α(Tn,l) 6 α(T ′).
On the other hand, each MMIS I of the tree T ′ contains precisely a + b vertices of the
set S = {x1, . . . , x2a, y1, . . . , y2b}. Hence α(Tn,l) = α(T ′).

So, each MMIS of the tree T is an MMIS of the tree T ′. Adding the vertices x2, x4, . . .,
x2a, y1, y3, . . . , y2b−1 to some MMIS of the tree Tn,l \S, we get some MMIS of the tree T ′

which is not an MMIS of the tree Tn,l. Therefore, ξ(T ′) > ξ(Tn,l). But this contradicts
the assumption.

Lemma 5. If a vertex v of an arbitrary T is not universal, then ξ−(T, v) = ξ(T \ {v}).

Proof. Let a vertex v be adjacent to vertices v1, . . . , vd of connected components T1, . . . , Td

of the forest T \ {v}. The vertex v is not universal, and hence there exists at least
one MMIS of the tree T that contains v. Hence α(T ) =

∑d
i=1 α(Ti). Moreover,

α(T \ {v}) =
∑d

i=1 α(Ti). So, any MMIS of the forest T \ {v} is also an MMIS in
the tree T . On the other hand, any MMIS of the tree T not containing the vertex v is
an MMIS of the forest T \ {v}. This proves the lemma.

Lemma 6. The strict inequality ξ(Tn+2,l) > ξ(Tn,l) holds.

Proof. We claim that, for each extreme tree Tn,l, there exists an (n + 2)-vertex tree
Tn+2 for which the strict inequality ξ(Tn+2) > ξ(Tn,l) holds.

By Lemma 4, the tree Tn,l does not contain universal extreme vertices. The following
cases are possible: either the tree Tn,l contains at least one nonempty extreme vertex, or
all the extreme vertices Tn,l are empty. In the second case, either there exists at least
one empty extreme vertex adjacent to an extreme path of odd length, or there exist two
different extreme vertices not adjacent to an extreme path of odd length, or Tn,l contains
a unique extreme vertex, which is empty and is not adjacent to paths of odd length.

Case 1. The tree Tn,l contains a nonempty extreme vertex v. Then by Lemma 3
this vertex is adjacent to at least one extreme path X of length 2x − 1. We denote
by T0 the subtree of the tree Tn,l that does not contain the path X. We claim that
ξ(Tn,l) = ξ+(T0, v) + (x + 1)ξ−(T0, v).

Let us first show that ξ+(T0, v) = ξ+(Tn,l, v). We denote by X0 the set of x vertices
on the path X that lie at distances 2, 4, 6, . . . , 2x from the vertex v. It is easily seen
that each MMIS J of the tree T containing the vertex v can be represented as the union
J0∪X0, where J0 is the MMIS of the tree T0 containing the vertex v. Conversely, if J0 is
some MMIS of the tree T0 containing the vertex v, then J0 ∪X0 is an MMIS of the tree
Tn,l containing the vertex v. Now the required equality follows.
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Now let us show that (x+1)ξ−(T0, v) = ξ−(Tn,l, v). It is easily seen that the vertex v is
not universal in the tree T0. Indeed, if this were so, then the vertex v would be universal
in the tree Tn,l, which is impossible by Lemma 4.

By Lemma 5, we have ξ−(T0, v) = ξ(T0 \ {v}) and

ξ−(Tn,l, v) = ξ(Tn,l \ {v}) = ξ(X)ξ(T0 \ {v}) = (x + 1)ξ(T0 \ {v}).

Augmenting the endpoint of the path X by two vertices, we get the tree Tn+2, for which
ξ(Tn+2) = ξ+(T0, v) + (x + 2)ξ−(T0, v). Hence ξ(Tn+2) > ξ(Tn,l), the result required.

Case 2a. The tree Tn,l contains at least one empty extreme vertex v, which is adjacent
to an extreme path of odd length. We denote this path by X. Let 2x − 1 be the length
of this path. We denote by T0 the subtree obtained by removing this path from Tn,l.
Then by Lemma 5 we have the equality ξ(Tn,l) = ξ−(T, v) = (x + 1)ξ(T0). We augment
the endpoint of the path X with two vertices. Then, for the tree Tn+2 thus obtained,
the vertex v is clearly empty. Hence by Lemma 5 we have ξ(Tn+2) = (x + 2)ξ(T0), the
result required.

Case 2b. The tree Tn,l contains at least two empty extreme vertices u and v which
are not adjacent to an extreme path of odd length. Then each of these vertices is adjacent
to at least two extreme paths of even length. We denote by Tu (respectively, Tv) the
subtree of the tree Tn,l consisting of the vertex u (respectively, v) and all extreme paths
adjacent to this vertex. We denote by T0 the subtree of the tree Tn,l containing all the
vertices not lying in the subtrees Tu and Tv.

Since all the vertices of the subtrees Tu and Tv are either empty or universal in the
tree Tn,l, we have ξ(Tn,l) = ξ(T0). In the subtree Tu, we choose one of the extreme paths
of even length and increase it by one vertex. Let T ′

u be the subtree just obtained. The
subtree T ′

v is defined in the same way. We denote by Tn+1 the tree obtained from the tree
Tn,l by replacing the subtree Tu by T ′

u. This tree contains just one more vertex than the
original tree. We claim that ξ(Tn+1) > ξ(Tn,l). Since in the tree T ′

u the vertex u is still
adjacent to at least one extreme path of odd length, it is not universal. By Lemma 5,

ξ(Tn+1) > ξ−(Tn+1, u) = ξ(Tn+1 \ {u}) > 2ξ(T0).

This last inequality is satisfied, because the vertex u in the tree Tn+1 is adjacent to at
least one extreme path of odd length.

Replacing in the tree Tn+1 the subtree Tv by the subtree T ′
v, one can easily show that

ξ(Tn+2) > 2ξ(Tn+1) for the resulting tree Tn+2. Hence ξ(Tn+2) > ξ(Tn,l), the result
required.

Case 2c. The tree Tn,l contains a unique extreme vertex v, which is empty and is
adjacent only to extreme paths of odd length. In this case Tn,l has the form Sk1,...,kl

. It
is easily seen that in this case all vertices of the tree are either empty or universal, and
thence the MMIS of the tree is unique.

We increase by 1 the lengths of two arbitrary extreme paths adjacent to vertex v. It
is clear that the resulting tree Tn+2 contains the same number of leaves as the original
tree Tn,l. Moreover, in the tree Tn+2 the extreme vertex v is adjacent to an extreme path
of even length, and hence by Lemma 1 the vertex v cannot be universal in Tn+2. If the
vertex v is empty in Tn+2, then ξ(Tn+2) = ξ(Tn+2 \ {v}). Since two components of the
forest Tn+2 \ {v} are paths of odd length, we have ξ(Tn+2) > 1. If v is not an empty
vertex in Tn+2, then the tree Tn+2 contains at least two different MMIS, i.e., the number
of MMIS is greater than in the original tree Tn,l.

Corollary 1. Each empty extreme vertex of the tree Tn,l is adjacent to at least one leave
and is not adjacent to an extreme path of nonzero even length.

Proof. Assume that in the tree Tn,l there exists a empty extreme vertex adjacent to an
extreme path of even length at least 2. Then the vertices of this path are either empty
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or universal. We reduce the length of the path by 2. Then the resulting tree T ′ contains
n−2 vertices, l leaves, and the same number of MMIS as the original tree. By Lemma 6,
there exists an n-vertex tree T ′′ containing l leaves and for which the number of MMIS
is greater than in the original one, but this contradicts the extremality of the tree Tn,l.

By Lemma 2, each empty extreme vertex of the tree Tn,l is adjacent to at least one
extreme path of even length, which by the above is a leaf.

Lemma 7. The tree Tn,l contains at most one empty extreme vertex.

Proof. Assume that the tree Tn,l contains at least two empty extreme vertices u and v.
By the first assertion of Corollary 1 to Lemma 6, none of these vertices is adjacent to
an extreme even path of nonzero length. We denote by Tu the subtree consisting of
the vertex u and all extreme paths adjacent to this vertex. Next, let u′ be the vertex
adjacent to u and not lying in Tu. From the definition of an extreme vertex it follows that
u′ exists and is unique. In a similar manner, we define the subtree Tv and the vertex v′.
We denote by 2p1 − 1, . . . , 2pk − 1 the lengths of extreme paths of odd length adjacent
to the vertex u, and denote by 2q1 − 1, . . . , 2qs − 1 the lengths of extreme paths of odd
length adjacent to the vertex v. We set P =

∏k
i=1(pi + 1) and Q =

∏s
i=1(qi + 1). In

the case k = 0 (respectively, l = 0), we set P = 1 (respectively, Q = 1). Moreover, we
denote by T0 the subtree of the tree Tn,l containing all the vertices not involved in Tu

and in Tv. From Corollary 1 it easily follows that ξ(Tn,l) = PQξ(T0). Only the following
cases are possible: 1) the vertices u and v are adjacent, 2) the vertices u and v are not
adjacent and max(deg(v′), deg(u′)) > 2, 3) the vertices u and v are not adjacent and
deg(v′) = deg(u′) = 2.

Case 1). The vertices u and v are adjacent in the tree Tn,l. In this case, the vertex
u coincides with v′ and the vertex v is equal to u′. Hence the tree T0 is empty and
ξ(Tn,l) = P ·Q. We remove from v and connect to u all the extreme paths adjacent to v,
except one leaf w. The tree T ′ just obtained contains the same number of vertices and
leaves as the tree Tn,l. It is easily seen that in this tree T ′ the vertex u is still empty.
Hence ξ(T ′) = 2PQ, inasmuch as u is adjacent to the extreme path vw of length 1.
Consequently, ξ(T ′) > ξ(Tn,l), a contradiction to the assumption.

Case 2). The vertices u and v are not adjacent in Tn,l and at least one of the vertices
u′ and v′ has degree > 2 in the tree Tn,l. We shall assume that deg(v′) > 3. We denote
by w one of the leaves adjacent to the vertex v. We remove from the tree the vertices v
and w, attach to the vertex u all the extreme paths which were adjacent to the vertex v,
and attach to the vertex u an extreme path of length 1. Applying Lemma 5 to the
vertex u of the resulting tree T ′, one cam easily check that after the transformation the
number of MMIS is increased by a factor of two.

Case 3). The vertices u and v are not adjacent in Tn,l, moreover, deg(u′) = deg(v′) =
2. We denote by w one of the leaves adjacent to v in the tree Tn,l. We remove from the
tree Tn,l the vertices v and w, after which we connect the vertex u with all extreme paths
that were connected to the vertex v in the original tree. The resulting tree contains n−2
vertices, l leaves, and the same number of MMIS as Tn,l. Hence by Lemma 6 there exists
some tree T ′ containing n vertices, l leaves, and in which the number of MMIS is strictly
greater than in the original tree Tn,l, which contradicts the extremality of Tn,l.

Theorem 1. The tree Tn,l contains a unique extreme vertex.

Proof. Assume that in the tree Tn,l there exist two different extreme vertices u and v. We
shall show that in this case there always exists a transformation which strictly increases
the number of MMIS in the tree, but the number of vertices and leaves remains the same.
This will contradict the extremality of Tn,l.

We shall assume that vertex u is adjacent to r paths of odd length 2p1−1, . . . , 2pr −1,
and define P =

∏r
i=1(pi + 1). Similarly, the vertex v is adjacent to s extreme paths

of odd length 2q1 − 1, . . . , 2qs − 1. We set Q =
∏s

i=1(qi + 1). Moreover, we define



Trees with a given number of leaves 7

P̃ =
∏r−1

i=1 (pi + 1) and put Q̃ =
∏s−1

i=1 (qi + 1). Hence P = (pr + 1)P̃ and Q = (qs + 1)Q̃.
It is clear that if the vertex u (respectively, v) is adjacent to at least two extreme paths
of odd length, then P̃ > 1 (respectively, Q̃ > 1). In the case r > 2, by the terminal path
we shall mean the rth extreme path of odd length adjacent to the vertex u (and having
the length 2pr − 1). The terminal path for the vertex v is defined similarly.

Note that if the extreme vertex is not empty, then by Lemma 3 it is adjacent to at
most one extreme path of even length.

We remove from the tree all the vertices of the extreme paths that are adjacent to the
vertices u and v. We denote by σ00 the number of MMIS of the resulting tree which do
not contain the vertices u and v. Next, we denote by σ10 the number of MMIS containing
the vertex u and not containing the vertex v. Further, σ01 will denote the number of
MMIS not containing the vertex u and containing the vertex v. We also denote by σ11

the number of MMIS containing both vertices u and v. Only two cases are possible:
either none of the vertices u and v is empty or at least one of the vertices u and v is
empty. Let us consider separately each of these cases.

Case 1. The vertices u and v are both nonempty. Hence by Lemma 3 each of these
vertices is adjacent to at most one extreme path of even length. Next, we will consider
three possible variants: both vertices u and v are adjacent to extreme paths of even
length, precisely one of them is adjacent to an extreme path of even length, and none of
the vertices u and v is adjacent to an extreme path of even length.

Case 1a. The vertex u is adjacent to an extreme path X of length 2x − 2 > 0, and
the vertex v is adjacent to an extreme path Y of length 2y − 2 > 0. Then

ξ(Tn,l) = PQσ00 + yPσ01 + xQσ10 + xyσ11.

For reasons of symmetry, we may assume that Pσ01 > Qσ10. If y < x, then the paths
X and Y can be swapped, thereby increasing the number of MMIS in the tree and not
changing the number of its vertices and leaves. Indeed, for the tree T ′ obtained in this
way, we have

ξ(T ′) = PQσ00 + xPσ01 + yQσ10 + xyσ11 > ξ(T ).

So, we assume that y > x. We disconnect all the extreme paths of odd length from
the vertex v and connect them to the vertex u. It is clear that after this transformation
the number of vertices and the number leaves will remain the same. For the tree T1 thus
obtained, we have

ξ(T1) = PQσ00 + yPQσ01 + xσ10 + xyσ11.

From the inequalities Pσ01 > Qσ10 > σ10, y > x, min(P, Q) > 1 we have the strict
inequality yPσ01 + xQσ10 < yPQσ01 + xσ10. Hence, the transformation increases the
number of MMIS, which contradicts the extremality of the tree Tn,l.

Case 1b. The vertex u is adjacent to an extreme path X of even length 2x − 2 > 0,
and the vertex v is not adjacent to extreme paths of even length. Hence

ξ(Tn,l) = PQσ00 + Pσ01 + xQσ10 + xσ11.

Assume that σ01 > σ10. If, in addition, P < xQ, then we swap all the extreme paths
adjacent to the vertex u and all the extreme paths adjacent to the vertex v. It is easily
checked that after this transformation the number of MMIS will increase, because after
the transformation the number of MMIS will be equal to

PQσ00 + xQσ01 + Pσ10 + xσ11.

If now P > xQ, then we connect the vertex u with all the extreme paths of odd length,
except the last one, which were connected to the vertex v. For the resulting tree T2, we
have

ξ(T2) = PQσ00 + PQ̃σ01 + x(qs + 1)σ10 + xσ11.
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Since
σ01 > σ10, P > xQ > x, Q = (qs + 1)Q̃, Q̃ > 1,

we have ξ(T2) > ξ(Tn,l).
Let us now assume that σ01 6 σ10. If, in addition, P > xQ, then we swap all the

extreme paths adjacent to the vertex u and all the extreme paths adjacent to the vertex v.
It is easily checked that after this transformation the number of MMIS will not decrease,
since after the transformation the number of MMIS is equal to

PQσ00 + xQσ01 + Pσ10 + xσ11.

If P 6 xQ, then we augment the vertex x with all the extreme paths of odd length
that were adjacent to the vertex u. Hence, for the tree T3 thus obtained, we have

ξ(T3) = PQσ00 + σ01 + xPQσ10 + xσ11.

Next, min(P, Q) > 1, x > 1, σ01 6 σ10, and so ξ(T3) > ξ(Tn,l).
It is easily seen that in the case when the vertex v is adjacent to an extreme path

of even length and the vertex u is not adjacent to extreme paths of even length, the
arguments are similar.

Case 1c. The vertices u and v are not adjacent to an extreme path of even length.
Then, clearly, min(P̃ , Q̃) > 1. For reasons of symmetry, we can assume that σ01 > σ10.
We may also assume that pr > qs, for otherwise we may swap the corresponding paths — it
is easily seen that the number of MMIS will not be reduced. Hence

ξ(Tn,l) = PQσ00 + (pr + 1)P̃ σ01 + (qs + 1)Q̃σ10 + σ11.

We disconnect all the extreme paths of odd length, except the last one, from the
vertex v and attach them to the vertex u. Hence, for the tree T4 thus obtained. we have

ξ(T4) = PQσ00 + (pr + 1)P̃ Q̃σ01 + (qs + 1)σ10 + σ11.

From the inequalities

σ01 > σ10, pr > qs, min(P̃ , Q̃) > 1

we have the strict inequality

(pr + 1)P̃ σ01 + (qs + 1)Q̃σ10 < (pr + 1)P̃ Q̃σ01 + (qs + 1)σ10.

Hence ξ(T4) > ξ(Tn,l).
Case 2. The vertex u is empty, and the vertex v is not empty. By Lemma 3, the

vertex v is adjacent to at most one extreme path of even length, and by the first assertion
of Corollary 1 to Lemma 6, the vertex u is not adjacent to extreme even paths of nonzero
length. We denote by T ′′ the subtree of the tree Tn,l not containing the vertex u and all
the extreme paths adjacent to v and which also does not contain all the extreme paths
adjacent to the vertex v. We set η0 = ξ−(T ′′, v) and η1 = ξ+(T ′′, v). There are two
subcases to consider: the vertex v is adjacent to an extreme path of even length and the
vertex v is not adjacent to an extreme path of even length.

Case 2a. The vertex v is adjacent to an extreme path X of length 2x − 2. We have

ξ(Tn,l) = PQη0 + Pxη1.

We disconnect all the extreme paths of odd length from the vertex v and connect them
to the vertex u. For the resulting tree T5, we have

ξ(T5) = PQη0 + PQxη1.
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It is clear that ξ(T5) > ξ(Tn,l).
Case 2b. The vertex v is not adjacent to an extreme path of even length. Then

ξ(Tn,l) = PQη0 + Pη1.

We disconnect all the extreme paths, except the last one, from the vertex v and connect
them to the vertex u. Hence, for the tree T6 thus obtained, we have

ξ(T6) = PQη0 + PQ̃η1.

The vertex v is adjacent to at least two extreme even paths, and hence we have Q̃ > 1.
Therefore, we have the strict inequality ξ(T6) > ξ(Tn,l).

§ 4. A complete description of extreme trees

By Theorem 1, any tree Tn,l has the form Sk1,...,kl
, where ki > 1 for any i and∑l

i=1 ki = n − 1. In this section, we will find ki for all n > l > 3.

Lemma 8. No extreme vertex of the tree Tn,l can be adjacent to an extreme path of
nonzero even length.

Proof. We denote by v an extreme vertex of the tree Tn,l of the form Sk1,...,kl
. Let us

prove that v cannot be adjacent to an extreme path of even length at least 2. Assume
the contrary. By Lemma 4, the vertex v cannot be universal. By the first assertion of
Corollary 1 to Lemma 6, if v is empty, then the condition of the lemma is satisfied and
there is nothing to prove.

Assume that the extreme vertex v is not empty and is adjacent to some extreme
path X of length 2x > 2. By Lemma 3, the vertex v is not adjacent to other extreme
paths of even length. Hence it is adjacent to at least l − 1 > 2 extreme odd paths. We
denote by Y some extreme odd path of length 2y − 1 which is adjacent to v, and the
lengths of the remaining extreme odd paths we denote by 2q1 − 1, 2q2 − 1, . . . , 2ql−2 − 1.
We set Q =

∏l−2
i=1(qi + 1). From the condition l > 3, we have the inequality Q > 2.

We have ξ+(T, v) = x + 1 and ξ−(T, v) = (y + 1)Q. We reduce the length of the
path X by 2 vertices and increase the length of the path Y by 2 vertices. It is clear
that the resulting tree T ′ contains the same number of vertices and leaves as the original
tree Tn,l. Since ξ+(T ′, v) = x and ξ−(T ′, v) = (y + 2)Q and since Q > 2, it follows that
ξ(T ′) > ξ(Tn,l), a contradiction.

Lemma 9. An extreme vertex v of the tree Tn,l of the form Sk1,...,kl
cannot be adjacent

to extreme paths of odd length, whose length differ more than by two.

Proof. Assume that vertex v is adjacent to an extreme path X of length 2x − 1 and
an extreme path Y of length 2y − 1, and assume that x > y + 1. We denote by 2p1 −
1, . . . , 2ps − 1 the lengths of the other extreme paths of odd length adjacent to v, and
define P =

∏s
i=1(pi + 1). If s = 0, then we put P = 1. We claim that if the length of X

is reduced by 2 and the length of Y is increased by 2, then the number of MMIS in the
resulting tree T ′ will be strictly greater than in the original tree Tn,l.

If the vertex v is empty, then

ξ(Tn,l) = (x + 1)(y + 1)P and ξ(T ′) = x(y + 2)P.

We have x > y + 1, and hence xy + x + y + 1 < xy + 2x. Therefore, ξ(T ′) > ξ(Tn,l).
If the vertex v is not empty, then by Lemma 3 it is adjacent to at most one extreme

path of even length, which by Lemma 8 is a leaf. Hence

ξ(Tn,l) = (x + 1)(y + 1)P + 1 and ξ(T ′) = x(y + 2)P + 1,

which also implies that ξ(Tn,l) < ξ(T ′).
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Thus, for any tree Tn,l, there exists a natural number m depending on n and l such
that Tn,l has the form Sk1,...,kl

, where ki ∈ {1, 2m, 2m+2} and 1 6 i 6 l. We recall that
even(x) is the largest even number not exceeding a given real number x.

Theorem 2. (A) If n 6 2l, then the tree Tn,l is unique and consists of an extreme
vertex v adjacent to 2l − n + 1 leaves and n − l − 1 paths P2 .

(B) If n > 2l and n = 2k , then the tree T2k,l is unique and consists of an extreme
vertex v adjacent to one leave, r paths PA and l−r−1 paths PA+2 , where A = even(n−2

l−1 )
and r = 1

2 (n − 2 − (l − 1)A).
(C) If n > 2l and n = 2k+1, then the tree T2k+1,l is unique and consists of an extreme

vertex v adjacent to two leaves, r paths PB and q paths PB+2 , where B = even(n−3
l−2 ) and

r = 1
2 (n − 3 − (l − 2)B).

Proof. Let us prove the first assertion of the theorem. We claim that tree Tn,l, for
which n 6 2l, cannot contain extreme paths of odd length > 3. Indeed, assume that
there exists at least one path X of length 2x − 1 > 3. Then from the inequality n 6 2l
it follows that the extreme vertex v is adjacent to at least three leaves. We denote by
2p1 − 1, . . . , 2ps − 1 the lengths of all other (i.e., different from X) extreme odd paths of
the tree, and put P =

∏s
i=1(pi + 1). Then ξ(Tn,l) = (x + 1)P .

We reduce the length of the path X by two vertices, and then replace some two leaves
of the tree by two paths of length one. If in the resulting tree T ′ the extreme vertex is
empty, then ξ(T ′) = 4xP , since otherwise ξ(T ′) = 4xP + 1. In both cases, the number
of MMIS in tree is increased after the transformation, while the number of vertices and
leaves will not change. So, the tree Tn,l does not contain extreme odd paths of length
> 1 and extreme even paths of nonzero length. It is clear that n = l + 1 + a for some
0 6 a < l. Hence Tn,l contains a paths of length 1 and l − a leaves, which implies the
first assertion of the theorem.

Let us prove the second assertion of the theorem. We claim that the extreme vertex v
of the tree is adjacent precisely to one leave. If v is not adjacent to leaves, then by
Lemma 8 all the adjacent extreme paths have odd length. But then v is universal,
which is impossible by Lemma 4. Since the number of vertices of the tree is even, the
tree contains an odd number of extreme paths from an odd number of vertices, and
moreover, by Lemma 8 all such paths are leaves. Assume that the number of such leaves
is at least three. Now the inequality n > 2l implies that the tree has at least one extreme
path of length > 3. But then one can apply the transformation described in the proof
of Lemma 9; this transformation strictly increases the number of MMIS of the tree. But
this is a contradiction, and hence, the vertex v is adjacent precisely to one leave. By
Lemma 8, there exists a number m such that all extreme paths of odd length adjacent
to the vertex v are isomorphic either to the path P2m or to the path P2m+2. Hence
2m(l− 1) 6 n− 2 and (2m + 2)(l− 1) > n− 2, which implies the second assertion of the
theorem.

The last assertion of the theorem is proved similarly.
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