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Abstract

In this paper, we prove two lower bounds for the maximum matching size in an arbitrary
undirected graph. Despite their simplicity, these results are not widely known. This article aims to
bring pleasure to the reader by giving short combinatorial proofs of these easy-to-state estimates.

1 Main results

We focus on simple undirected graphs with n vertices, m edges, and having the maximum degree
d. We investigate the following question: how small can its maximum matching be? Surprisingly,
the answer to this question is hard to find in the literature. In the paper by P. Erdős and T. Gallai
[2], the authors present a lower bound (Theorem 4.1); however, their proof seems quite complicated.
Another related work is the article by V. Chvátal and D. Hanson [1] providing a sharp estimate for
the maximum number of edges in a graph not containing a matching of a specific size. Their estimate
involves three cases and is not particularly easy to state. In our work, we present two easy-to-state
estimates and give short combinatorial proofs. Note that these estimates follow immediately from the
much harder Vizing’s theorem [3].

Let G = (V,E) be a simple undirected graph (i.e. without loops and multiple edges). Denote
n := |V |, m := |E|, and d := maxv∈V deg(v). A subset of edges is called a matching if no two edges
have a common vertex. Let k be the maximum matching size. We prove two following lower bounds:

1. k ≥ m/n (Theorem 1)

2. k ≥ 2/3 ·m/d (Theorem 2)

Note that these results strengthen the trivial lower bounds of m/(2n) and m/(2d) by a constant
factor. Also, the constant 2/3 in the second estimate is sharp: consider a graph consisting of r disjoint
triangles; its maximum matching has r = 2/3 · 3r/2 edges.

Let M be the set of vertices covered by the maximum matching πmax. For u ∈ M , denote by din(u)
and dout(u) the number of the incident edges in G that connect u with vertices inside and outside M ,
respectively. First, let us present the following observations.

Lemma 1. For each (u, v) ∈ πmax we have

1. din(u) + dout(u) ≤ d,

2. din(u) ≤ 2k,

3. dout(u) ≤ n− 2k,

4. either dout(u) = dout(v) = 1 or at least one of {dout(u), dout(v)} is zero.

Proof. The first claim is trivial because din(u)+dout(u) = deg(u). The second and third claims are also
clear because the graph has no multiple edges and thus din(u) ≤ |M | = 2k and dout(u) ≤ |V \M | =
n− 2k. Let us prove the last claim.

Consider the sets of vertices N(u), N(v) ⊂ V \ M which are adjacent to u and v, respectively.
We have dout(u) = |N(u)| and dout(v) = |N(v)|. If at least one of them is empty, then all is done.
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Otherwise, assume that |N(v)| ≥ 2. Take u′ ∈ N(u) and v′ ∈ N(v) such that u′ ∕= v′. In this case,
we can improve the matching πmax by removing the edge (u, v) and adding (u, u′) and (v, v′) instead.
This contradicts the maximality of πmax.

Lemma 2. We have m =
󰁓

(u,v)∈πmax

󰁫
din(u)+din(v)

2 + dout(u) + dout(v)
󰁬
.

Proof. Note that all edges of G are either inside M or go from M to V \ M ; there are no edges
completely outside M because one could add them to πmax. Let min and mout be the number of those
edges. By a simple counting argument,

2min =
󰁛

(u,v)∈πmax

din(u) + din(v) and mout =
󰁛

(u,v)∈πmax

dout(u) + dout(v),

from which the statement of the lemma follows.

Now we are ready to prove two lower bounds for the size of the maximum matching.

Theorem 1. For each graph G we have k ≥ m/n.

Proof. We have the following two cases:

1. n − 2k ≤ 1. In this case, k ≥ (n − 1)/2 ≥ m/n, where the last inequality follows from the
estimate m ≤ n(n− 1)/2.

2. n− 2k ≥ 2. In this case, for (u, v) ∈ πmax, from the last two claims of Lemma 1 it follows that
dout(u) + dout(v) ≤ n− 2k. Substituting this inequality into Lemma 2 and applying the second
claim of Lemma 1, we get

m ≤
󰁛

(u,v)∈πmax

󰀗
4k

2
+ n− 2k

󰀘
= kn,

proving the desired estimate.

Theorem 2. For each graph G with the maximum degree d we have k ≥ 2/3 ·m/d.

Proof. If d = 1, then G is a matching and thus k = m ≥ 2m
3 . Hereafter we assume d ≥ 2. For each

(u, v) ∈ πmax we will show that s(u, v) := din(u)+din(v)
2 + dout(u) + dout(v) ≤ 3

2d. From the last claim
of Lemma 1 we have the following two cases:

1. dout(u) = dout(v) = 1. From the first claim of Lemma 1 it follows that din(u), din(v) ≤ d − 1.
Thus,

s(u, v) ≤ d+ 1 ≤ 3d

2
.

2. dout(v) = 0 (wlog). Again, by the first claim of Lemma 1,

s(u, v) =

󰀕
din(u)

2
+ dout(u)

󰀖
+

din(v)

2
≤ (din(u) + dout(u)) + din(v)/2 ≤ d+ d/2 =

3d

2
.

Finally, plugging this inequality into Lemma 2 we have

m =
󰁛

(u,v)∈πmax

s(u, v) ≤ 3kd

2
=⇒ k ≥ 2/3 ·m/d.
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