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Abstract: 1-(3-(2-(Dimethylammonio)ethyl)-1H-indol-5-yl)-N-methylmethanesulfonamide succinate
(sumatriptan succinate, HSum+·HSucc−) is a serotonin receptor agonist used to treat migraines. By the
recrystallization of this substance from ethanol, its hemi(ethanol solvate), HSum+·HSucc−·0.5EtOH, was
obtained. The solid was characterized by X-ray diffraction and FT-IR spectroscopy. In HSum+·HSucc−·
0.5EtOH, solvent molecules link succinate anions into infinite O–H. . .O bonded chains, which are further
connected by N–H. . .O interactions with cations into H-bonded layers.
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1. Introduction

Sumatriptan succinate (HSum+·HSucc−) is the active pharmaceutical ingredient
of commercially available drugs Imitrex, Treximet and others used to treat migraine
headaches and cluster headaches. In addition, its anti-inflammatory properties were also re-
ported [1]. The corresponding free base Sumatriptan (Sum) like all triptans acts as a serotonin
5-HT1B/5-HT1D receptor agonist [2,3]. During its metabolism, Sum transforms into a glu-
curonide of indol-3-yl-acetic acid derivative via several steps [4]. The crystal structures of
both Sum and HSum+·Hsucc− were published before [5,6].

Taking into account the strong effect of solvent molecules on the properties of solids,
such as solubility, tabletability, stability and others, the pharmaceutical industry is highly
interested in the crystal structures of all solid forms of active pharmaceutical ingredients
which can occur during drug production. This information is required for phase identifica-
tion and purity control. In our study of novel solid forms of known active pharmaceutical
ingredients [7–9], the ability of sumatriptan succinate to form various solvates was exam-
ined. Recrystallization from ethanol afforded a hemisolvate, HSum+·HSucc−·0.5EtOH (1).
Herein we report on the molecular and crystal structures of 1, Scheme 1.
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2. Results and Discussion

Sumatriptan succinate was dissolved in ethanol without purification. After several
days of standing in air at r.t., orange prismatic crystals precipitated. The precipitate was
filtered off and studied using single-crystal X-ray diffraction, FT-IR and NMR spectroscopy,
as well as powder X-ray diffraction. The powder XRD pattern indicates that 1 is unstable
upon milling. Milling under hexane protection results in full ethanol loss and the formation
of a solvent free HSum+·HSucc− substance (Refcode ETITEG in the Cambridge Structural
Database [10,11]). Rietveld refinement of the sample milled under ethanol protection
revealed a mixture of 1 and HSum+·HSucc− in the 0.2:0.8 ratio. At the same time all
crystals of the precipitate that was formed had the crystal parameters of the target form 1
and were further used to collect the FT-IR spectrum.

The asymmetric unit of 1 is represented in Figure 1. It contains two cations, two
anions, and one ethanol molecule. The positions of H(C), H(N) and H(O) can be easily
revealed from difference Fourier maps. Thus, protonation of the dimethylamine moiety of
Sum and deprotonation of only one of two carboxylic groups of Succ was observed for all
symmetrically independent species. Our conclusion about the positions of hydrogen atoms
is supported by interatomic and intermolecular distances. Particularly, C–O distances
for deprotonated carboxylic groups vary from 1.238(4) to 1.274(4) Å. These values are
intermediate between C=O and C–O(H) bond lengths for protonated groups in 1 equal to,
respectively, 1.207(4)–1.210(4) and 1.313(4)–1.315(4) Å.
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Figure 1. Asymmetric unit of 1 in representation of atoms with displacement ellipsoids (p = 50%).

The molecular conformations of cations in 1 are nearly identical with the average
R.M.S.D for non-hydrogen atoms equal to 0.069 Å. In Figure 2, Sum conformations in differ-
ent solid forms are compared by superimposing the non-hydrogen atoms of the bicycle. It
is clearly seen that rotation along single C–C, S–N and C–N groups is possible so that dispo-
sition of dimethylammonioethyl (dimethylaminoethyl) and N-methylmethanesulfonamide
groups in all solids is different. The staggered conformation of succinate anions in two
solvatomorphs is nearly equal: the maximal deviation of non-hydrogen atoms is 0.639 Å
only; the C–C–C–C torsion angle is c.a. 60◦.

Different cation conformations should be associated with different H-bonded motifs.
Both in Sum and in HSum+·HSucc− salts, the number of H-bond donors and acceptors is
inequivalent, thus, different functional groups compete with each other to form the most
stable H-bonding pattern. What is more, the presence of a solvent molecule in this case
is expected only if the propensity of H-bond formation with this solvent is comparable
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or higher than the propensity of H-bond formation between the functional groups of the
main components [12]. The propensities of H-bond formation for the functional groups
present in HSum+·HSucc− salts with and without ethanol were estimated using the H-
bond Propensities tool of the Mercury package [13] as described in Refs. [14,15]. The data
obtained are listed in Table 1.
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Figure 2. Molecular conformations of Sum and HSum+ in 1 (red and orange), HSum+·HSucc−

(ETITEG; blue) and free base Sum (DEFZEU; purple). Non-hydrogen atoms of the bicycle are
superimposed.

Table 1. Propensities of H-bonding in HSum+·HSucc− salts.

HSum+·HSucc− (ETITEG [6]) 1
Donor Acceptor Propensity Observed Donor Acceptor Propensity Observed

R-COOH CO2 0.85 Yes R-COOH CO2 0.84 Yes
SO2 0.51 SO2 0.46

COOH 0.33 COOH 0.26
R-OH 0.34 Yes

Ammonium R3NH+ CO2 0.90 Yes Ammonium R3NH+ CO2 0.81 Yes
SO2 0.63 SO2 0.43

COOH 0.43 COOH 0.23
R-OH 0.31

Indole NH CO2 0.97 Yes Indole NH CO2 0.87
SO2 0.88 SO2 0.52

COOH 0.79 COOH 0.31 Yes
R-OH 0.40

Sulfonamide SO2NH CO2 0.92 Yes Sulfonamide SO2NH CO2 0.91 Yes
SO2 0.68 SO2 0.62

COOH 0.50 COOH 0.40
ROH CO2 0.84 Yes

SO2 0.47
COOH 0.26
R-OH 0.34

The evaluated propensities indicate that in HSum+·HSucc− (ETITEG; [6]), all donors
take part in H-bonding with the most likely acceptors. The presence of ethanol molecules
becomes possible because it is as likely an H-bond donor as COOH and R3NH groups. In
1, two unlikely H-bonds are present, thus more stable polymorphs of this salt can exist.
Fragments of experimentally obtained H-bonded networks in these two salts are compared
in Figure 3. The parameters of H-bonds in solid HSum+·HSucc−·0.5EtOH are listed in
Table 2.

HSucc− anions form infinite chains in HSum+·HSucc− (ETITEG; [6]) in accordance
with the most likely H-bonds (red chains in Figure 3a). In HSum+·Hsucc−·0.5EtOH, ethanol
molecules act as linkers within similar chains (red chains in Figure 3b). HSum+ cations
connect these chains into infinite frameworks and layers, respectively. In both solids, the
cation acts as a three-connected node of an H-bonded network, and the anion is a five-
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connected node. The resulting topologies of the underlying 3,5-c binodal H-bonded nets in
these compounds evaluated with the ToposPro package [16] are, respectively, seh-3,5-P21/c
and 3,5L24 (for notation of nets see Ref. [17]). Analysis of the H-bonding nets in the CSD
using Topcryst service [18] indicates that these nets were previously met in, respectively,
six and one hundred and seventy four organic solids.
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Figure 3. Fragment of H-bonded motifs in (a) HSum+·HSucc− (ETITEG; [6]), (b) 1. HSum+ and
HSucc− ions are marked with blue and red, respectively. H-bonds are dashed. (c,d) Underlying
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Table 2. Hydrogen bonding parameters for 1 (Å, ◦).

D–H···A D–H H···A D···A D–H···A
1 N(1)–H(1)···O(1C) 0.90(3) 1.95(3) 2.844(4) 173(4)
2 N(2)–H(2)···O(3B i) 0.89(3) 2.07(3) 2.877(5) 151(3)
3 N(3)–H(3)···O(2C) 0.89(3) 1.81(3) 2.669(4) 162(3)
4 N(1A)–H(1AA)···O(2B ii) 0.87(3) 1.95(3) 2.794(4) 163(4)
5 N(2A)–H(2AA)···O(3C iii) 0.89(3) 2.06(3) 2.866(4) 161(1)
6 N(3A)–H(3A)···O(1B) 0.88(4) 1.80(4) 2.636(4) 158(5)
7 O(4C)–H(4C)···O(1S) 0.86(3) 1.68(3) 2.532(4) 170(4)
8 O(1S)–H(1S)···O(1B) 0.85(3) 1.78(3) 2.603(4) 162(5)
9 O(4B)–H(4B)···O(2C iii) 0.84(4) 1.70(4) 2.526(4) 165(4)

Symmetry codes: (i) 1 + x, y, z; (ii) x, −1 + y, z; (iii) −1 + x, y, z.

To sum up, by recrystallization from ethanol, we obtained a novel solid form of
sumatriptan succinate used to treat migraine and cluster headaches. Co-crystallization
with ethanol is in accordance with the most likely H-bonds in a three-component mixture
as estimated using the H-bond propensity tool, because the propensities of OH. . .O2C and
COOH. . .O2C bonds were found to be similar. In both solids, the cations and anions act
as three- and five-connected nodes, and ethanol molecules—as simple linkers between
two anions. Nevertheless, the presence of solvent molecules strongly affects the overall
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H-bonding network. In HSum+·HSucc−, a 3D H-bonded framework is observed, while in
HSum+·HSucc−·0.5EtOH, 2D layers are found.

3. Materials and Methods

Fine powder of sumatriptan succinate obtained from Sigma Aldrich (Moscow, Russia;
0.012 g, 0.0046 mmol) was dissolved in 3 mL of water-ethanol mixture. Single crystals
were grown by slow evaporation. NMR spectra (Figures S1–S7, SI) were obtained for 1H
at 400 MHz, for 13C at 100 MHz and for 15N at 40 MHz, using Bruker AVANCE III WB
400 spectrometer (Bruker, Billerica, MA, USA). FTIR spectrum (Figure S8, SI) was recorded
on an IR spectrometer with a Fourier transformer Shimadzu IRTracer100 (Kyoto, Japan) in
the range of 4000–600 cm−1 at a resolution of 1 cm−1 (Nujol mull, KBr pellets). The powder
XRD data were recorded at Bruker D8 Advance diffractometer (Bruker, Billerica, MA, USA)
equipped a LynxEye detector and Ge(111) monochromator in a transmission mode. CuKα

radiation with a wavelength of 1.544493 Å was used. The 2θ range was 4.0–60.0◦ with a
step size of 0.2◦ (Figure S9, SI).

X-ray Diffraction

The intensities of reflections were collected at the Centre for Molecular Studies of
INEOS RAS with Bruker D8 QUEST diffractometer at 100 K (MoKα = 0.71072 Å, φ and
ω-scans). The structure was solved by the dual-space algorithm [19] and refined by full-
matrix least squares against F2 as two component inversion twin (SHELXL program [20])
using OLEX2 package [21], scale factors for two components are equal to 0.32(7) and
0.68(7), respectively. Non-hydrogen atoms were refined in an anisotropic approximation.
Hydrogen atoms at carbon ones were calculated and included in the refinement with
Uiso(H) = 1.2Ueq(C). Hydrogen atoms of N-H and O-H groups were located in difference
Fourier maps and refined with unconstrained Uiso and fixed bond distances (0.88 and
0.85Å, respectively).

Crystal Data for C19H30N3O6.5S (M = 436.52 g/mol): monoclinic, space group Pc
(no. 7), a = 9.834(9), b = 12.609(10), c = 16.946(16) Å, α = 90, β = 90.94(3), γ = 90◦,
V = 2101(3) Å3, Z = 4, µ = 0.198 mm−1, Dcalc = 1.380 g cm−3, F(000) = 932, 22256 reflections
measured (4.0◦ ≤ 2Θ ≤ 61.8◦), 10388 unique (Rint = 0.0602, Rsigma = 0.0763) which were
used in all calculations. The final R1 was 0.0467 (I > 2σ(I)) and wR2 was 0.1188 (all data).

Supplementary Materials: NMR and FTIR spectra, Rietveld plot, crystallographic data in Crystallo-
graphic Information File (CIF) format.
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