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Abstract
Abiraterone (AbirOH) is an active metabolite of abiraterone acetate (AbirAc) used as a therapeutic agent against prostate 
cancer. A variety of its solid forms includes polymorphs of pure abiraterone, abiraterone acetate, and cocrystals of abiraterone 
acetate with carboxylic acids, and a pyridinium-containing (HAbirOH)+ salt as well. Herein, we present the crystal structure 
of (HAbirOH)Br · H2O as obtained by means of NoSpherA2 refinement applied to reveal charge density distribution for 
abiraterone from routine single-crystal X-ray diffraction experiment. Peculiarities of noncovalent interactions in this salt are 
discussed in terms of molecular Voronoi and Hirshfeld surfaces. The AbirOH packing in this salt and in previously reported 
solids is analyzed by means of the “Crystal Packing Similarity” tool.

Keywords  Abiraterone · Active pharmaceutical ingredient · Crystal Packing Similarity · Hirshfeld molecular surface · 
NoSphereA2 refinement · Single-crystal X-ray diffraction · Voronoi molecular surface

Introduction

Abiraterone (AbirOH) is an active metabolite of the com-
mercially available drug Zytiga (abiraterone acetate, AbirAc) 
used to treat prostate cancer. According to the results pro-
vided by macromolecular crystallography, nitrogen atom can 
coordinate heme fragment of androgen receptors. A detailed 
study of the ligand-receptor binding that was carried out on 
the base of combined study utilizing experimental charge 

density and Voronoi tessellation [1] as main methods has 
shown that weak hydrophobic H…H interactions between 
steroid fragment and amino acid residues are also very 
important for retention of abiraterone in cavity of recep-
tor formed by peptide chains and heme fragment. Mainly 
the hydrophobic molecular surface of AbirAc results in its 
poor solubility; thus, by cocrystallization of AbirAc with 
some coformers, novel solid forms of AbirAc with enhanced 
solubility were obtained [2, 3]. Acidic media hydrolysis of 
AbirAc [4] and protonation of the pyridine moiety can eas-
ily occur, which also allows to afford new solid forms of 
abiraterone for pharmaceutics [5]. Herein, we present the 
structure of (HAbirOH)Br · H2O (17-(pyridinium-3-yl)
androsta-5,16-dien-3-ol bromide monohydrate, 1; Scheme 1) 
that was found to be isostructural with previously studied 
chloride-containing analog [5].

Solid (HAbirOH)Cl · H2O and (HAbirOH)Br · H2O give 
an opportunity to obtain charge distribution in the region 
of abiraterone that can be of interest for biochemists. How-
ever, the chloride-containing salt was investigated at 298 
and 100 K [5, 6] using a standard independent atom model 
only. We also failed to obtain a single crystal of the bro-
mide-containing analog suitable for high-resolution X-ray 
diffraction experiment. Nevertheless, data collected by us 
allow application of aspherical structure factors [7] to obtain 
wavefunction related to unique parts of the unit cell. This 
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approach is suitable for the evaluation of many properties of 
small molecules and their solids, for instance, low-frequency 
lattice vibrations [8], charge density and NCI analysis [9, 
10], and proton migration study of strong H-bonds [11]. To 
our knowledge, data about charge distribution in solids of 
active pharmaceutical ingredients obtained by means of the 
NoSphereA2 refinement are limited by recent work concern-
ing crystal structure of pure imatinib [12].

Experimental

Solution of abiraterone acetate (0.012 g, 0.05 mmol) in 
1 ml of ethanol was added to a solution of FeBr3 (0.087 g, 
0.5 mmol) in 2 ml of ethanol. Mixture was heated and 
solution was cooled on air. After 2 days of standing at RT, 
white precipitate formed. Single crystals of C24H34BrNO2 
were obtained from this precipitate. 1H and 13C NMR 
spectra were recorded on 400 MHz and 101 spectrometers 
in DMSO-d6 solution. The powder X-ray diffraction pat-
terns were obtained in reflection mode. The measurements 
were performed with a Bruker D8 Advance diffractometer 
(Bragg–Brentano geometry) equipped with motorized slits 
and a LynxEye 1D position-sensitive detector (CuKa, Ni-
filter) in the range 2Ω = 3–50°. FTIR spectra were recorded 
on a Perkin Elmer Spectrum 65 spectrometer in the range 
of 400–4000 cm−1.

1H NMR (400 MHz, DMSO-d6) δ: 0.92–1.08 (m, 2H, 
CH), 0.99 (s, 3H, CH3), 1.03 (s, 3H, CH3), 1.27–2.34 (m, 
18H, other CH and CH2), 3.19–3.31 (m (seems like quintet, 
J = 5.3 Hz), 1H, CH(OH)), 4.30 (ws, OH, H +, H2O), 5.30 
(d, J = 5.0 Hz, 1H, CH = C), 6.46 (s, 1H, CH = C), 7.93 (t, 
J = 7.0 Hz, 1H, Ar), 8.49 (d, J = 8.2 Hz, 1H, Ar), 8.73 (d, 
J = 5.6 Hz, 1H, Ar), 8.86 (s, 1H, Ar). 13C NMR (101 MHz, 

DMSO-d6) δ: 16.39, 19.53, 20.80, 30.32, 31.33, 31.84, 
32.03, 34.47, 36.71, 37.29, 42.68, 47.15, 50.17, 57.45, 
70.42, 120.58, 127.05, 134.33, 135.36, 140.48, 141.37, 
141.75, 142.10, 148.74. IR-spectrum (FTIR) (cm−1): 3328 s, 
2960 m, 2909 s, 2889 s, 1550 s, 1057 s, 804 s, 684 s.

The intensities of 10,124 reflections were collected at 
“Belok/XSA” beamline of the Kurchatov Synchrotron 
Radiation Source [13, 14]. Diffraction patterns were col-
lected using a 1-axis MarDTB goniometer equipped with a 
Rayonix SX165 CCD 2D positional sensitive CCD detector 
(λ = 0.745 Å, φ-scanning in 1.0° steps) in the direct geome-
try with a detector plane perpendicular to its beam. Approxi-
mately 180 diffraction frames were collected for each data 
set. Thus, obtained data were indexed and integrated using 
the XDS software suite [15]. At 100 K, crystal system is 
monoclinic, space group P21: a = 6.6520(13), b = 11.136(2), 
c = 14.513(3) Å, α = 90, β = 94.25(3), γ = 90°, V = 1072.1(4) 
Å3, Z = 2, µ = 2.178  mm−1, Dcalc = 1.389  g  cm−3, 
F(000) = 471.2.

The structure was solved by the dual-space algorithm 
[16] and initially refined by full-matrix least squares 
against F2 using the IAM model (SHELXL program [17]) 
to R1 = 0.0376 and wR2 = 0.0949, ρmin/ρmax = − 0.93/0.87 
e. Non-hydrogen atoms were refined in an anisotropic 
approximation; anharmonic refinement for bromine atom 
was applied. Hydrogen atoms were located on difference 
Fourier maps and refined with unfixed bond distances; their 
ADPs were calculated with SHADE3 [18] and fixed at the 
calculated values. The application of the NoSpherA2 algo-
rithm [7] implemented within the Olex2 package [19] for 
subsequent refinement led to a noticeable decrease of resid-
ual factors. Refinement converged to R1 = 0.0295 (for 5468 
observed reflections and 382 parameters), wR2 = 0.0693, 
and GOF = 1.039 (for 5852 independent reflections, 
Rint = 0.0338), ρmin/ρmax = − 0.31/0.51 e.

Peculiarities of the Voronoi molecular polyhedra were 
calculated using the ToposPro package [20]. The Hirshfeld 
surface analysis was performed by the CrystalExplorer 17.5 
package [21]. Analysis of electron density function and visu-
alization of results were carried out with Multiwfn [22] and 
VMD software [23].

Results and discussion

In our study of novel solid forms of known active phar-
maceutical ingredients [12, 24], the ability of abiraterone 
acetate to form salts with various metals was examined. 
Solution of abiraterone acetate in ethanol was added to 
a solution of FeBr3 in equimolar ratio (1:1). After sev-
eral days of standing on air at RT, red precipitate formed. 

Scheme 1   Schematic representation of 17-(pyridinium-3-yl)androsta-
5,16-dien-3-ol bromide monohydrate
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The red color of precipitate can be easily explained by the 
formation of colloid Fe(OH)3. At the same time, small 
colorless crystals were also found in a microscopic study. 
The phase purity of the colorless phase was checked using 
XRPD. No significant differences in peak positions and 
intensities between experimental and calculated patterns 
were found (Fig. 1). Subsequently, the synchrotron X-ray 
diffraction study has revealed that colorless crystals cor-
respond to salt 1. Thus, it was proved that abiraterone 
acetate can be hydrolyzed in acidic media at presence of 
iron(III) salt, although no complexation with metal atom 
occurred. Note also that recrystallization of AbirAc from 
2 M and concentrated 48% HBr affords, respectively, start-
ing AbirAc or an amorphous product as obtained from 
powder X-ray diffraction.

Molecular and crystal structure of 1

The unit cell of (HAbirOH)Br · H2O is represented in Fig. 2. 
The positions of all hydrogen atoms can be easily revealed 
from difference Fourier maps and the most expected 
H-bonds. These should be present for O1…Br1, O1W…
Br, and O1W…O1 distances as short as 3.245(2), 3.356(2), 
and 2.778(3) Å. In addition, the protonation of pyridine 
fragment is expected from N1…Br1 distance as short as 
3.211(2)Å (Table 1). Thus, the positions of all hydrogen 
atoms were revealed on difference Fourier maps and refined 
with unfixed bond distances, while ADPs of hydrogen 
atoms were calculated with SHADE3 web application [18] 
and fixed at the calculated values as it was previously sug-
gested by Woińska et al. [25]. N1-H1A, O1-H1, and O1W-H 

Fig. 1   PXRD patterns of (HAbirOH)Br · H2O at RT (red line—calculated profile; black line—experimental profile) in 2Ω range 5 − 35° 

Fig. 2   Molecular view of 1 in representation of atoms with thermal 
ellipsoids (p = 50%)

Table 1   H-bond lengths (Å, °) for salt 1 

Symmetry transformations used: (i) 1 − x, − 1/2 + y, 1 − z; (ii) 1 + x, 
y, − 1 + z; (iii) x, y, 1 + z

D—H···A D—H H···A D···A D—H···A

N1—H1A···Br1 1.04(4) 2.16(4) 3.211(2) 178(4)
O1—H1···Br1i 0.93(4) 2.34(4) 3.245(2) 165(3)
O1W—H1WA···O1 1.02(4) 1.77(4) 2.778(3) 172(4)
O1W—H1WB···Br1ii 0.97(3) 2.39(3) 3.356(2) 174(4)
C16—H16···O1Wiii 1.09(3) 2.27(3) 3.325(3) 167(3)



1930	 Structural Chemistry (2023) 34:1927–1934

1 3

distances (1.04(4), 0.93(4), and 0.97(3)—1.02(4) Å) refined 
with NoSpherA2 [7] are close to the values obtained from 
neutron diffraction studies (1.05, 0.98, and 0.97 [26, 27]).

Strong hydrogen bonding in solid 1 results in the 
formation of H-bonded layers. Parameters of H-bonds are 
listed in Table 1, and the fragment of the layer is depicted in 
Fig. 3. The bromide anions and the cations both act as three-
connected nodes of the layer (these ions take part in three 
hydrogen bonds), and water molecules are two-connected 
nodes or simple linkers (weak C–H…O bonding is not 
considered). The resulting H-bonded network obtained 
by simplification of cations, anions, and water molecules 
to their centers followed by removal of simple linkers 
as described in Ref. [28] is given in Fig. 3b. It has the 
honeycomb topology which is one of the most widespread 
among H-bonded nets of molecular crystals [29].

Packing similarity of 1 and previously reported 
forms of abiraterone

In several previously reported X-ray studies of solid forms 
of AbirOH, AbirAc, and (HAbirOH)+, it was shown that the 

character of intermolecular pairwise interactions is almost 
independent from the presence of the acetate group or pro-
tonation of the pyridine fragment. Particularly, high (up 
to 82%) contribution of H…H interactions to the Voronoi 
molecular surface was found [1]. This quantity and the steric 
repulsion of methyl groups from one another are favorable 
for retaining the conformation of steroid core unchanged. 
The crystal packing in salt 1 is very similar to its isostruc-
tural chloride-containing analog; both compounds form 
H-bonded layers (Fig. 4a); moreover, the “Crystal Packing 
Similarity” tool described in Refs. [30, 31] demonstrates 
that clusters composed of 20 HAbirOH+ cations in these 
two salts are also close to each other (Fig. 4a) demonstrating 
similarity of layers packing through hydrophobic interac-
tions. The role of hydrophobic interactions in packing of 
abiraterone and its derivatives can be highlighted also by the 
fact that the “Crystal Packing Similarity” tool also revealed 
similarly packed chains through H…H interaction molecules 
in (HAbirOH)Br · H2O 1 and AbirAc · p-HOC6H4COOH 
[2], AbirAc · HOOC(CH2)3COOH [2], AbirAc · TAA 
(TAA = trans-aconitic acid [3]), and pure AbirOH (poly-
morph II [5]; Fig. 4b).

Fig. 3   a Fragment of H-bonded layers in (HAbirOH)Br · H2O, and b underlying H-bonded net of salt 1 (centers of cations and anions are 
depicted as brown and green spheres, respectively, keeping connectivity of the network)

Fig. 4   a Comparison of molecular clusters in (HAbirOH)Br · H2O (red) and (HAbirOH)Cl · H2O (green); and b H…H connected chains in 
(HAbirOH)Br · H2O (red) and form II of pure AbirOH (blue)
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Contribution of various types of interactions 
to the molecular surface of abiraterone

The molecular Hirshfeld [32] and Voronoi [33] surfaces 
are well-known approaches for analysis of noncovalent 
interactions in crystals of molecular compounds. Although 
these are mainly applied to monomolecular compounds, 
examples of their application to salts and solvates are also 
known [1, 34–37]. We performed the analysis of partial 
contributions of various types of noncovalent interactions 
to the surrounding of the HAbirOH+ in solid 1 by means 
of the Voronoi and Hirshfeld molecular surfaces. These 
approaches give the area of the molecular surface for the 
cation equal to, respectively, 434.5 and 370.3 Å2. Solid 1 
contains atoms of five element; hence, 15 different types 
of noncovalent interactions can theoretically be found; 

however, both methods detect nine types only (Fig. 5). Six 
of them (H…H, H…C, C…C, C…Br, C…O, and N…O) 
belong to the hydrophobic interactions, and three (H…O, 
H…N, and H…Br) to hydrophilic, and both approaches 
indicate that 85% of the molecular surface goes to hydro-
phobic interactions. This fact is in accord with previously 
reported data for abiraterone-containing solids [1]. Good 
correlation between partial contributions of noncovalent 
interactions to the molecular Voronoi and Hirshfeld sur-
faces is also typical for molecular solids [38–40]. Dif-
ference of molecular volume for two approaches is less 
pronounced; total volume of the cation is equal to 488.3 
and 464.4 Å3 for the Voronoi and Hirshfeld surfaces.

Both surfaces are depicted in Fig. 6. Note that color 
schemes for the surfaces have different advantages and 
disadvantages for analysis of noncovalent interactions. 

Fig. 5   Contribution of various 
noncovalent interactions to 
the molecular Voronoi (1) and 
Hirshfeld (2) surfaces

Fig. 6   The molecular Voronoi 
surface of HAbirOH+ colored 
in accord with the nature of a 
internal and b external atoms 
(Br, green; C, dark gray; H, 
gray; N, blue; O, red). The 
molecular Hirshfeld surface of 
HAbirOH+ colored in accord 
with the c dnorm and d curved-
ness
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The Voronoi surface allows differentiation between atom 
types external and internal towards the surface, and gives 
possibility to extract the surface corresponding towards 
any pairwise interactions. The Hirshfeld surfaces allow 
revealing the closest interactions, molecular curvedness, 
and shape index. Particularly, the N–H…Br bond mani-
fests itself as a red spot on the Hirshfeld surface colored 
with dnorm, and as a region colored with gray and green on 
the Voronoi surface colored with the nature of an internal 
and external atoms (Fig. 6a, b, respectively).

Charge density distribution in 1

The wavefunction obtained in NoSpherA2 refinement was 
utilized to rationalize the information obtained from the 
analysis of geometry and short contacts. The function of 
electrostatic potential mapped on 0.001 a.u. demonstrates 
the character of charge distribution in the unique part of 
the unit cell of 1. Bromine atoms, water molecule, hydroxyl 
group, and double bond C3–C7 appeared to be the regions 
of negative charge concentration as compared to steroid 
core that is mostly positively charged (Fig. 7). The com-
parative analysis of electron density distribution in terms 
of the QTAIM theory [41] and NCI method [42, 43] has 

revealed that hydrogen atoms in the steroid core are involved 
in intramolecular interactions that can be classified as steric 
repulsion. In most cases, the presence of isosurfaces of 
RDG function [42, 43] colored by brown and green colors 
is indicative for steric interactions between hydrogen atoms. 
Besides, the occurrence of bond critical points (bcps) is also 
observed (Fig. 8a) for three H…H interactions. Recently, we 
proposed that bonding H…H interactions can be extracted 
from all H…H contacts based on atomic Voronoi polyhedra. 
Particularly, such interactions should be characterized by 
solid angles Ω of corresponding faces above 10% of full 
solid angle (4π steradian) [44]. Among 72 faces of atomic 
Voronoi polyhedra which correspond to intramolecular 
H…H interactions, only 32 and 5 faces are characterized 
by Ω > 10 and 15%, respectively. Particularly, the interac-
tions connected by bond paths in Fig. 8a are characterized 
by Ω = 17, 16, and 16% (Fig. 8b).

Unlike H…H interactions, the N1-H1A…Br1 and O1W-
H1WA…O1 have mostly attractive nature. The energies 
of H1A…Br1 and H1WA…O1 bonds calculated using 
Espinosa, Mollins, and Lecomte correlation [45] are equal 
to − 30.2 and − 45.2 kJ/mol that correspond to weak hydro-
gen bonds. The energies of three H…H interactions are 
much weaker than hydrogen bonds (5.4–10.1 kJ/mol).

Fig. 7   Electrostatic potential 
function ranged from − 0.03 a.u. 
(blue) to 0.03 a.u. (red) mapped 
on 0.001 isosurface of electron 
density function

Fig. 8   a Molecular graph and RDG isosurface (0.4 a.u.) colored with signλ2 function and b faces of atomic Voronoi polyhedra which correspond 
to intramolecular H…H interactions (gray). The bcps and bond paths are shown by brown spheres and brown lines, respectively
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Conclusions

To sum up, the complexes of abiraterone or abiraterone ace-
tate with Fe(III) salts cannot be easily synthesized in polar 
media. Hydrolysis of abiraterone acetate to abiraterone and 
its further protonation was observed instead. The character 
of crystal packing is governed by combination of O-H…O, 
O-H…Br, and N-H…Br hydrogen bonds and hydropho-
bic H…H interactions. The hydrogen bonding between 
HAbirOH+ and anion or water molecule is too weak to affect 
molecular conformation. Large molecular surface formed by 
protons and rigid molecular conformation allow crystalliza-
tion of H…H connected chains in solids, containing AbirAc, 
AbirOH, and HAbirOH+. Good correlation of partial contri-
butions of noncovalent interactions to the molecular Voronoi 
and Hirshfeld surfaces of the cation was observed.
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