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The development of new algorithms for simulations in physics is as important as the development
of new analytical methods. In this paper we present a comparison of the recently developed micro-
canonical population annealing (MCPA) algorithm with the rather mature Wang-Landau algorithm.
The comparison is performed on two cases of the Potts model exhibiting a first order phase tran-
sition. We compare the simulation results of both methods with exactly known results, including
the finite-dimensional dependence of the maximum of the specific heat capacity. We evaluate the
Binder cumulant minimum, the ratio of peaks in the energy distribution at the critical temperature,
and the energies of the ordered and disordered phases. Both methods exhibit similar accuracy at
selected sets of modeling parameters.

INTRODUCTION

Numerical methods for investigating statistical me-
chanical models consist of a wide range approaches,
among them [47] low- and high-temperature series [1, 2],
transfer-matrix methods [3, 4], Markov Chain Monte
Carlo (MCMC) [5, 6], cluster Swendsen-Wang and Wolff
methods [7, 8], multicanonical methods [9, 10], Wang-
Landau method [11, 12], simulated annealing meth-
ods [13], population annealing methods [14, 15], etc. A
recent systematic review of methods can be found in
Ref. [16]. A common feature of these approaches is the
explicit temperature dependence of the modeling process,
with the exception of the Wang-Landau method. Tem-
perature dependence leads to a critical slowing down of
the simulation in the region around the critical point of
the continuous transition [5], which leads to a power law
dependence of the correlation time on the system size,
t∝Lz, with the value of z typically around 2 for local
MCMC [17] and an order of magnitude lower for clus-
ter algorithms [18]. The practical computation time of a
d-dimensional system, measured as the number of opera-
tions per spin, grows as Ld+z. Modeling of discontinuous
phase transitions in the critical region is determined by
the interface between the regions of ordered and disor-
dered phases. The surface energy of which is propor-
tional to the length of the interface, forming an energy
barrier that depends exponentially on the length of the
interface. This makes the simulation unpredictably slow
in the critical region.

The Wang-Landau algorithm has no temperature-
dependent probabilities and uses the current estimate of
the density of states (DoS) to calculate the probability
of transition from one energy level to another. This al-
gorithm relaxes system to the true DoS [19]. The re-
laxation process converges steadily with an appropriate
modification [20] of the original Wang-Landau algorithm
and convergences as slowly as 1/t [21], with the time t
measured in elementary steps of a single-spin flip.

Another algorithm that has no temperature-dependent
probabilities [23] was recently presented, the microcanon-
ical population algorithm. The special feature of this al-
gorithm, is that it does not use any probabilities in the
annealing part. Instead, it uses the ceiling of energy when
moving down the energy spectrum or the floor of energy
when moving up the energy spectrum [24]. The next fea-
ture is the parallel simulation of a huge number of replicas
at a given energy, which allows us to estimate the energy
dependence of thermodynamic functions. Together with
the DoS estimation, this gives their temperature depen-
dence.

It seems that there is no critical slowdown in the usual
sense in microcanonical algorithms due to the absence
of an explicit temperature dependence of the algorithm
on the temperature. In the case of the first-order phase
transition, the condensation and evaporation of droplets
in the vicinity of the critical temperature are still de-
termined by the energy barrier associated with surface
tension and depend exponentially on the surface length.
It is likely that microcanonical simulations is less sen-
sitive to this than the canonical simulations [23, 25].
There are example of the comparison of energy barriers
in the Lennard-Jones particle system showing the same
scaling behaviour but barrier height is almost six times
smaller for the microcanonical ensemble comparing with
the canonical one [26].

In this paper, a comparative study of two algorithms,
modified Wang-Landau algorithm (WL-1/t) [11, 20] and
the multicanonical population algorithm (MCPA) [23,
24], is carried out. The reason for the comparative study
is to understand accuracy of the methods. As an exam-
ple, we simulate Potts model with 10 and 20 components
that undergoes a strong discontinuous transition. We
use the elementary step of a single-spin flip as the Monte
Carlo step. The elementary step is very different in the
two models due to the intrinsic difference of the models.
We model one replica of the system with the WL-1/t al-
gorithm, and R parallel replicas of the system with the
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MCPA algorithm. So, such defined Monte Carlo steps are
more or less proportional to the simulation time. The de-
tails are discussed in the conclusion section of the paper.

MODEL

The Potts model [27, 28] with q-state is a generaliza-
tion of the Ising model consisting of N interacting spins
σi (i=1, ..., N), each of which taking values σi∈(1, ..., q).
The energy E is given by

E = −J
∑
⟨i,j⟩

δ(σi, σj) (1)

and for simplicity we set the ferromagnetic constant J
equal to unity J=1.

The critical temperature is known analytically
(see [29])

βc =
J

kBTc
= ln(1 +

√
q). (2)

For q > 4, the Potts model undergoes a first order
phase transition and a mixing of ordered and disordered
phases is observed between the respective energies eo and
ed. In the thermodynamic limit L→∞ these energies are
also known (see [29])

eo + ed
2

= −
(
1 +

1
√
q

)
(3)

and

ed − eo = 2

(
1 +

1
√
q

)
tanh

(
Θ

2

) ∞∏
n=1

tanh2(nΘ), (4)

where Θ is defined as 2 cosh(Θ)=
√
q.

DIRECT ESTIMATION OF DOS

Procedures of calculating thermodynamic quantities
from the density of states (DoS) are based on the rep-
resentation of a partition function, replacing the summa-
tion over all possible spin configurations {j}

Z =
∑
{j}

e−E({j})/kBT , (5)

where kB is the Boltzmann constant, T is the tempera-
ture, with the summation over the energy levels n

Z =
∑
{n}

g(En)e
−En/kBT . (6)

The function g(E) is the density of states (DoS), that is,
g(En) is the number of configurations with energy En.

The are two algorithms for direct estimation of DoS
(technically, the logarithm of DoS), the Wang-Landau al-
gorithm [11, 12] and the microcanonical population an-
nealing algorithm [23, 24], which are the subject of a
comparative study in this paper.

Wang-Landau algorithm

The Wang-Landau algorithm [11, 12] is applicable to
any system with a given partition function, which can be
written as a sum over n energy levels, as in Expr. (6).
This representation is key to the Wang-Landau algo-
rithm. Knowing g(E), one may calculate, for example,
the internal energy E(β) and heat capacity C(β) at any
value of inverse temperature β=1/kBT .

E(β) = ⟨E⟩ =
∑NE−1

n=0 Eng(En)e
−βEn∑NE

n=0 g(En)e−βEn
, (7)

C(β) = β2(⟨E2⟩ − ⟨E⟩2). (8)

The basic idea of the algorithm is to organize a random
walk through the energy space of the system using an ap-
propriate transition probability for a random walk jump
from level energy k to energy level m, this Wang-Landau
probability defined below in expr. (9).
During the random walk [11], two histograms H(E)

and S(E) are accumulated. The first histogram
S(E)= log(g(E)) contains the current value of the DoS
logarithm. The second is the auxiliary histogram H(E),
which contains information about the number of visits
to each energy level. At the beginning of the algorithm,
H(En) is initialized with zeros and S(En) with ones. The
initial configuration of the system is set to the ground
state. The initial value of the modification parameter
f=f0=exp(1)≃2.71828.
The further steps of the algorithm are as follows: 1)

the state of the system is changed (for the spin model it
is a flip of the random spin) and the energy of the new
state Em is calculated; 2) the transition from the state
with energy Ek to the state with energy Em takes place
with the Wang-Landau probability

PWL(Ek, Em) = min

(
1,

S̃(Ek)

S̃(Em)

)
, (9)

where S̃(Ek)= log(g̃(Ek)) is the logarithm of the current
DoS estimate. The next step is to update the auxiliary
histogram H(Ek)→H(Ek)+1, and the current estimate
S̃(Ek)→S̃(Ek)+ ln(f).
Steps 1) and 2) are repeated until the histogramH(Ek)

is sufficiently “flat”, e.g., at the 5% level [11]). The
value of the parameter f is then updated as a function
of the square root fi=

√
fi−1, and the histogram is reset

H(Ek)=0. Steps 1) and 2) are then repeated again. The
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algorithm terminates when the parameter f reaches some
desired value of fend, e.g., ffin=exp(10−8)≃1.00000001,
as proposed in [11].

1/t-Wang-Landau algorithm

The Wang-Landau algorithm is used in various fields
of science, for example, in modeling polymers [30, 31]
and protein chains [32, 33], for optimization [21]. How-
ever, it is known that as the number of steps increases,
the computational accuracy saturates at some step. This
has been observed in a number of publications such
as [34, 35]. Consequently, it affects the accuracy of
the calculation of thermodynamic functions for relatively
large systems, including in the critical region. In addi-
tion, the choice of

√
fi as the function to change the

parameter f was left open until proposed in [20] modifi-
cation.

The 1/t-Wang-Landau algorithm is a modification [20]
that emerged as a solution to these problems. The first
step of 1/t-Wang-Landau is similar to the original [11]
method, except that criterion of histogram H(E) “flat-
ness” was replaced by the H(E)̸=0 test. It is argued
in [20] that practically the flatness criteria can be re-
placed by a weaker but still global property, which is the
requirement to visit each energy level before update the
parameter f .
The algorithm proceeds to the second stage when the

condition Fi>NE/t is satisfied, where F= ln f . From this
point on, the parameter F changes not as Fi=Fi−1/2 but
Fi=NE/t. Here, t is the number of elementary spin flips
and NE is the number of levels in the system. At the sec-
ond stage the histogram H(E) is no longer checked. The-
oretical justification of the convergence of this method
was presented in the article [21].

Criterion of convergence

In the original Wang-Landau algorithm [11] and its
modification 1/t-Wang-Landau algorithm [20] no method
was proposed to evaluate the accuracy and convergence
of the algorithm. The only argument for the applicability
of the method is to demonstrate the quality of the data by
comparing them with the exact solution known for the 2d
Ising model [36]. A possible solution to this problem was
proposed in [19], where a square matrix T (Ek, Em) was
additionally introduced instead of the histogram H(E),
and it was shown that the closeness of the matrix T to
stochastic can be used as an accuracy criterion for DoS
estimation. The matrix elements are the transition fre-
quency from configurations with energy Ek to configura-
tions with energy Em. The closer the estimated DoS is to
the true DoS, the closer the matrix T is to the stochastic
one, and the deviation of the largest eigenvalue of the

matrix from unity can be used as a criterion for the ac-
curacy of the DoS estimate. Interestingly, this property
of the matrix T is consistent with the criteria of flatness
of the histogram H(E) proposed by Wang and Landau
and with the criterion of non-zero visitation of each en-
ergy level proposed by Belardinelli and Pereyra. Thus,
the matrix T is more informative and, in addition, pro-
vides a clue for evaluating the accuracy and controlling
the convergence of DoS.

FIG. 1: Dependence of the algorithm parameter f(dotted blue
line and left axis), convergence criteria δ (solid green line and

right axis) and ∆̃ (dashed yellow line and right axis) on the
Monte-Carlo step t for 10 state Potts model (top panel) and 20
state Potts model (bottom panel). Linear lattice size L = 30.

The values of f , δ and ∆̃ are the average over 20 runs. The
vertical line is the average time t0 for which the algorithm
switches the function of the modification parameter f .

The figures 1 show the variation of the algorithm
parameter f , which is varied according to the Wang-
Landau [11] rule fi=

√
fi−1 until the Belardinelli and

Pereyra [20] criteria is met and then by the f=f0/t rule.
Also shown in the figures 1 is the difference ∆, which is
calculated as the relative difference of DoS at simulation
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time t, g(En; t) and at the final time tf , g(En; tf )

∆ =
1

NE

NE∑
n=1

(
g(En; t)

g(En; tf )
− 1

)
(10)

and the convergence criterion δ [19]

δ = |1− λ1|, (11)

where λ1 is the largest eigenvalue of the transition matrix
T , and the two simulation sets presented in Figure 1 refer
to the 10 and 20 components of the Potts model.

The parameter ∆ is well defined for models for which
we have an exact solution for DoS, such as the Ising model
in one and two dimensions. In our case with unavail-
able exact DoS, we replace the unknown exact DoS val-
ues with the final DoS values g(En; tf ) from simulations.
Time is measured in units of single-spin flip events. It can
be seen that ∆ decreases inversely with time, as shown
by Liang [21], and the control parameter δ decreases in
the same way [19]. It should be noted that the δ con-
vergence criterion can be used without knowledge of the
DoS function and at any time step in the simulation.

The 1/t dependence appears to be the optimal protocol
for changing the algorithm parameter f [19, 22? ] in the
last simulation steps. The fast convergence of the DoS
in the initial simulation steps to the neighborhood of the
exact DoS is still not understood, although the Wang-
Landau algorithm is widely used.

Calculation with modified WL-1/t algorithm

We use the Wang-Landau algorithm [11] with 1/t-
modification [20] and compute convergence criterion
δ [19] during simulation.

We simplify the protocol by fixing an interval of M be-
tween checks of the Bellardineli and Pereyra H(E)! =0
criterion with M=105, which avoids multiple and unnec-
essary computations. We also use this point to com-
pute the largest eigenvalue of T (Ek, Em) using the pro-
cedure dgeev() from the Intel oneAPI Math Kernel Li-
brary LAPACK [37]. The random number generator
mt19937.c [38, 39] was used to generate a new config-
uration state and decide whether to accept the new con-
figuration.

Equilibrium microcanonical annealing algorithm

A promising framework for simulating equilibrium
systems in a microcanonical ensemble using annealing
in an energy ceiling has been proposed by Rose and
Machta and successfully applied to the first-order ther-
mal transition in a 20-component two-dimensional Potts
model with demonstration of topological transitions in
the phase coexistence region [23].

Rose-Machta ceiling procedure

Here, we briefly introduce the Rose and Machta ceil-
ing population algorithm presented in Section II of the
paper [23].
In Rose and Machta’s approach to simulating equilib-

rium systems in a microcannonical ensemble, there is no
relaxation on temperature decrease; instead, the inde-
pendent variable of the algorithm is energy. The MCMC
procedure consists of a single spin-flip. Moves occur in
configuration space, changing a randomly chosen spin,
and the transition probability from an α state with en-
ergy Eα to a ω state with energy Eω is defined as follows

Pceiling(α → ω) =

{
1 if Eω ≤ Ec

0 if Eω > Ec
, (12)

where Ec is the ceiling energy value, the cooling energy
value. An elementary MCMC step consists with N up-
dating of randomly chosen spins, where N is the number
of spins in the system. The number of elementary MCMC
steps ns(E) is a parameter of the algorithm.
The method is in a sense a mixture of three al-

gorithms: the simulated annealing algorithm [13], the
Wang-Landau algorithm [11, 12], and the population an-
nealing algorithm [14, 15].

Floor microcanonical procedure

A practical modification of the Rose-Machta algorithm
has been augmented [24] the floor energy in addition to
the ceiling energy, allowing the DoS to be estimated for
all energy levels of the system. Here we basically repeat
the relevant part of the paper [24]. The idea is to gen-
erate random configurations of the system that are most
likely to correspond to energy levels in the neighborhood
of the DoS maximum, which is a convex function. By ap-
plying the ceiling energy algorithm, the left wing of the
DoS can be estimated as the ceiling algorithm guides the
replicas to the ground state. An extension of the ceil-
ing algorithm, the floor algorithm [24], instead directs
replicas to a higher energy.
In the floor algorithm, the probability of transition

from the α state with energy Eα to the ω state with
energy Eω is defined as follows

Pfloor(α → ω) =

{
1 if Eω ≥ Ef

0 if Eω < Ef
, (13)

where Ef is the floor energy value.

Microcanonical population annealing algorithm

Combining the ceiling and floor procedures we get the
following algorithm.
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FIG. 2: Illustration of the entropy estimation stitching pro-
cedure for the 10-component Potts model on a square lattice
with linear size L=16. The orange squares correspond to the
ceiling process and the blue circles to the floor process. The
meaning of the vertical lines discussed in the text.

First we need to prepare a pool of replicas, for which
we generate R replicas of the system. The random dis-
tribution of spins in each replica will case the replica
energies to have a value close to the maximum of the en-
ergy probability distribution g(E), called the density of
states (DOS). The first value of the ceiling Ec will be the
highest energy in the replica pool, and the first value of
the floor Ef will be the lowest energy in the replica pool.

In general, we do not know the energy spectrum in ad-
vance, and the next energy ceiling Ec(i+1) or floor value
Ef (i+1) is chosen as the closest to the current energy
from the energies of the current replica pool. Thus, we
compute the energy spectrum of the system dynamically.

The elementary step i of algorithm is as follows [24]

1. Select the new ceiling (floor) value. This could
be the energy level down Ec(i) from the current ceiling
procedure, or the energy level up Ef (i) from the current
floor procedure.

2. Perform the ns(Ec(i)) or ns(Ef (i)) MCMC check,
thereby creating new configurations R that represent a
pool of configurations.

3. Count the number of replica in the pool R′ with
energy Ec(i) or Ef (i), and calculate the culling fraction
ϵ(Ec(i))=R′/R or ϵ(Ef (i))=R′/R. Filter these R′ con-
figurations from the pool of configurations.

4. Randomly select with repetitions new replicas R
from the filtered pool of configurations.

The process was terminated if the condition R′=R was
satisfied, which means that the annealing reached the
ground state in the ceiling protocol or the most symmet-
ric energy level in the floor protocol.

Stitching entropy parts together

To estimate the extensive part of entropy [23], the
culling fractions for the ceiling and floor are used

Sc(E) = ln(ϵ(E)) +
∑

E′>E

ln(1− ϵ(E′)), (14)

Sf (E) = ln(ϵ(E)) +
∑

E′<E

ln(1− ϵ(E′)). (15)

Entropy allows us to add arbitrary constants, which we
denote as Sc

0 and Sf
0 , the entropy constants for the ceiling

and floor, respectively.
As can be observed on a model example of figure 2,

both cooling and heating run cover only one wing of the
whole spectrum. The intersection, covered by both runs,
is placed near the maximum of entropy, where random
replica normally reside. We obtain entropy in the full
energy range by stitching cooling and heating wings in
the intersecting region.
Stitching is somewhat arbitrary procedure and not sen-

sitive to the exact choice of it. We conduct it as follows:
1. Select the intersection area bounded by the red lines

in Fig. 2 from the leftmost point of the “heating” wing
to the rightmost point of the “cooling” wing.
2. The ends of the cooling and heating wings are some-

what scattered, so we cut off the outer parts of the re-
gion, leaving the region bounded by the green lines la-
beled Eleft and Eright. In this paper, we use a width
between green lines three times smaller than between red
lines, although this ratio can be changed depending on
the specific task.
3. Calculate the average ∆S=avg(Sc(E)−Sh(E)) over

all energies in last “green” area. This allows us to write
cross-linked S(E) in the form

S(E) = S0+


Sc(E) if E < Eleft

Sh(E) + ∆S if E > Eright

(Sc(E) + Sh(E) + ∆S)/2 else
(16)

4. The last free constant S0, if required, can be estab-
lished by counting the number of all states in the system,
which in the case of the q-state Potts model is qL

2

, and
S0 should be chosen from the relation∑

E

eS(E) = qL
2

. (17)

Estimation of the thermodynamic observables

An estimate of the partition function is given as a func-
tion of temperature T measured in the energy units

Z(T ) =
∑
E

e−E/T+S(E). (18)
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The estimates of the average internal energy ⟨E(T )⟩,
specific heat ⟨C(T )⟩, Binder cimulant [40], and probabil-
ity of energy distribution of P (E;T ) at temperature T
are calculated using the following expressions

⟨E(T )⟩ =

∑
E E e−E/T+S(E)

Z(T )
, (19)

⟨E2(T )⟩ =

∑
E E2 e−E/T+S(E)

Z(T )
, (20)

C(T ) =
⟨E2(T )⟩ − ⟨E(T )⟩2

T 2
, (21)

V (T ) = 1− ⟨E4(T )⟩
3⟨E2(T )⟩2

(22)

P (E;T ) =
e−E/T+S(E)

Z(T )
. (23)

Calculation with MCPA algorithm

The implementation of the MCPA algorithm is based
on a modification [23] of the accelerated population an-
nealing algorithm for GPU [41], presented in [24]. The
simulations were performed on an NVIDIA V100 GPU
with a typical replica number R=217=131072. Spins are
represented by a single number of type C ’char’.

We use the cuRAND [42] package with the Philox
random number generator from the CUDA SL pack-
age, which allows us to obtain independent sequences
of pseudo-random numbers. The largest linear lattice
size in our study is L=70, and about 2·ns·L2≈105 ran-
dom numbers per algorithm step are used to simulate
the ceiling/floor in one replica. The total number of
steps is equal to the number of energy levels, which is
2L2−3≈104. The total number of random numbers per
run of one replica is about 230, which is less than the
length of Philox stream 264.

RESULTS COMPARISON

In this section, we directly compare the simulation re-
sults of the Potts model with 10 and 20 components using
the WL-1/t algorithm [11, 20] with control of conver-
gence [19] and MCPA algorithm [23, 24].

We will present a comparison of the energy density dis-
tribution P (E), estimates of the energies in the ordered
and disordered states, estimates of the critical tempera-
ture, estimates of the maximum of the specific heat, es-
timates of the Binder cumulant minimum, and the ratio
of P (E) peaks at and near the critical temperature.

Specific heat and Binder cumulant scaling

Finite-size analysis of the specific heat and Binder cu-
mulant was carried out in [43] and extended in [44], and
we use these analytical conclusions in the following sec-
tions. We estimate critical temperature from the posi-
tion of the specific heat maximum and the Binder cumu-
lant minimum, the dependence of the magnitude of the
specific heat capacity maximum on the lattice size, and
the magnitude of the Binder cumulant minimum. Other
quantities, such as the value of the coefficients in the L−2

corrections to the above estimates, can also be evaluated,
but such a detailed analysis is beyond the scope of this
paper. A corresponding analysis was presented in [44] for
the cases of the 8- and 10-component Potts model.

Specific heat with q=10

Figure 3 shows the specific heat in the critical region of
the 10-component Potts model calculated with the WL
and MCPA methods and compares it with the analytical
estimate given in [44], expr. (3.18). The comparison is
very good, as already noted for the 10-component Potts
model in the Figure 10 of the paper [44].

FIG. 3: Specific heat as a function of inverse temperature β
in the critical region of the 10-component Potts model near
the critical value βc. Red squares are WL simulations, green
circles are MCPA simulations, and the solid line is the ana-
lytical expression (3.18) of paper [44]. The linear size of the
lattice is L=60.

The maximum value of the specific heat Cmax of the
Potts model in the case of a first-order phase transition
depends on the volume of the system as [43, 44]

Cmax/L
2 ∝ (ed − eo)

2

4T 2
c

= αexact. (24)

Fitting the data in the fourth and fifth columns of
Table I yields a scaling estimate of the Cmax with
slope α≈0.2473(3) for WL and for MCPA with slope
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TABLE I: Estimation of the maximum Cmax of specific heat
and its position TCmax for q = 10.

L TCmax Cmax

L WL MCPA WL MCPA

16 0.70696 0.70696 74.0 73.7

30 0.70299 0.70299 233.3 233.5

40 0.70225 0.70225 406.3 404.7

50 0.70185 0.70190 628.9 628.6

60 0.70166 0.70166 900.6 900.4

∞ 0.70122(2) 0.70125(3)

exact 0.70123. . .

α≈0.2471(4), taking into account the correction terms in
the fit, Expr. (A23) from the paper [44]. Our estimates
agree well with the numerical estimate from earlier pa-
per [43], α≈0.250, and more closer to the exact value of
αexact=0.246355 . . ..
The critical temperature Tc can be estimated from the

position TCmax
of the the maximum of the specific heat,

and fitting the data in the second and third columns of
the table I gives the estimates shown in the penultimate
row of the table. The last row shows the exact known
temperature. The estimates match the exact value to
within four digits. Note that the estimates for the data
obtained by the WL and MCPA methods are equally
good.

Specific heat with q=20

Figure 4 shows the specific heat in the critical region of
the 20-component Potts model calculated with the WL
and MCPA methods and compares it with the analytical
estimate given in [44], expr. (4.5).

FIG. 4: Same as in Fig. 3, but for the Potts model with 20-
components.

Fitting the data in the fourth and fifth columns of

TABLE II: Estimation of the maximum Cmax of specific heat
and its position TCmax for q = 20.

L TCmax Cmax

L WL MCPA WL MCPA

30 0.58934 0.58926 930.1 931.4

40 0.58891 0.58886 1651.6 1651.7

50 0.58869 0.58866 2581.9 2577.9

60 0.58864 0.58852 3712.1 3712.6

70 0.58855 0.58845 5049.8 5052.9

∞ 0.58837(2) 0.58829(2)

exact 0.5883498. . .

TABLE III: Comparison of Bmin and βBm for q = 10.

L βBmin , WL βBmin , MCPA Bmin, WL Bmin, MCPA

16 1.4073 1.4072 0.525 0.525

30 1.4206 1.4207 0.548 0.547

40 1.4230 1.4230 0.552 0.553

50 1.4241 1.4241 0.554 0.554

60 1.4247 1.4247 0.555 0.555

∞ 1.42614(3) 1.42601(4) 0.5573(4) 0.5573(5)

exact 1.42606. . . 0.55889. . .

table II yeilds a scaling estimate of Cmax with a slope
of α≈1.0306(6) for WL and for MCPA with a slope of
α≈1.0299(4). Our estimates agree well with the an-
alytical prediction [43, 44] α=1.02987966 . . . calculated
from Expr. (24) using exactly known values of the crit-
ical temperature and energies of the ordered and disor-
dered phases for the 20 components Potts model, expres-
sions (2-4).

Binder cumulant with q=10

The inverse temperature value βBmin
at the minimum

of the Binder cumulant can be used to estimate critical
value, which is presented in the second and third columns
of Table III for the WL and MCPA methods. The mag-
nitude of the minimum value Bmin was calculated ana-
lytically in [44]

Bmin =
2

3
− (eo/ed − ed/eo)

2

12
+O(L−d) (25)

and are given in the last row of table III along with the
exact value of βc. The estimates of βBmin and Bmin given
in the last to next row and obtained with WL and MCPA
methods agree well with the exact values.
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TABLE IV: Comparison of Bmin and βBm for q = 20.

L βBmin , WL βBmin , MCPA Bmin, WL Bmin, MCPA

30 1.694792 1.695030 0.1047 0.1032

40 1.696914 1.697078 0.1100 0.1112

50 1.697963 1.698049 0.1129 0.1147

60 1.698332 1.698675 0.1154 0.1166

70 1.698727 1.699004 0.1170 0.1175

∞ 1.6995(2) 1.6999(2) 0.1189(7) 0.1209(1)

exact 1.699669. . . 0.1197. . .

Binder cumulant with q=20

The estimates of the inverse temperature value βBmin

and Binder’s cumulant minimum from the data in Ta-
ble IV agree well with the analytically known βc and
Bmin, Expr. (2) and Expr. (25) for the 20-components
Potts model.

Probability distribution of energy

In [44] it is emphasized that in a finite system in the
vicinity of a phase transition in the temperature range
of order one, Ld(T−TC)/T≈O(1), all states contribute
significantly to the energy distribution. Therefore, the
contribution of q states to the ordered phase will give a
peak in the probability distribution of energy P (E) about
q times larger than the disordered state (the state with
maximal possible symmetry!). Figure 5 shows the prob-
ability distribution of the energy P (E) for linear lattice
sizes L = 30 and 60 for the 10-component Potts model,
estimated by the WL and MCPA methods. The ratio of
the amplitudes of the peaks r = P (E)max

o /P (E)max
d cor-

responding to the ordered and disordered phases is given
in Table V. In addition, we give estimates of the critical
ratio rc [23]

rc =

∑
E<Ec

P (E)∑
E≥Ec

P (E)
(26)

taken with the energy distribution at critical temperature
Tc and with the sums divided by the critical energy Ec =
(Eo + Ed)/2.

The results in Table V show that both computational
methods lead to reasonable estimates of this ratio. As
can be seen in Figure 6 and Table VI, this is not as good
for large lattice sizes in the case of the 20-component
Potts model. This is because at larger lattice sizes the
distributions become narrower, and the results are ex-
ponentially sensitive [46] to small variations in the com-
putations. The same effect can be seen in the figure 4
for specific heat in the case of the 20-component model,
where the maximum of specific heat is very close for the

WL and MCPA modeling case and the analytical approx-
imation, and this is noticeable despite the fact that the
difference is only in the fourth digit (see Table II) and
simply because of the tiny scale of the peak.

FIG. 5: Energy probability distribution P (E) for 10-
component Potts model for two lattice size - top: L = 30
and bottom: L = 60. The solid orange line is estimation by
the WL method, the dashed blue line - by MCPA method.

TABLE V: Comparison for peak ratio and rc at exact critical
temperature, q = 10.

L Ratio, WL Ratio, MCPA rc, WL rc, MCPA

16 10.5131 10.6(3) 7.9709 8.1(2)

30 10.2975 10.5(7) 9.2050 9.3(6)

40 10.2091 10.7(7) 9.5976 10.0(6)

50 10.0828 10.7(9) 9.6729 10.2(8)

60 10.2101 10(1) 9.9473 9.5(9)

Estimation of energies of ordered and disordered states

An estimate of the latent heat can be obtained from the
positions e0(L), ed(L) of the maximum P (e) calculated
at the exact critical temperature. Table VII and VIII
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FIG. 6: Similar to Fig. 5 for the 20-component Potts model.

TABLE VI: Comparison for peak ratio and rc at exact critical
temperature, q = 20.

L Ratio, WL Ratio, MCPA rc, WL rc, MCPA

30 23.7 18(1) 21.8 17(1)

40 24.3 20(3) 22.4 18(3)

50 20.5 20(5) 19.0 19(5)

60 39.9 12(3) 36.5 11(3)

70 31.3 60(30) 29.0 55(30)

summarize the positions of the peaks. We find that the
data fit well with ansatz of the form e0 = e0(L) + b/L
with L→∞ and ed = ed(L)+b/L with L→∞. The fitting
results give fairly good estimates of e0 and ed compared
to the exactly known results given in the last rows of the
tables.

DISCUSSION

In this paper, two methods for direct estimation of the
density of states (DOS) in the spin model of statistical
mechanics with discrete spectrum are comparatively ana-
lyzed. First, these are computational results for the mod-
ified Wang-Landau [20] algorithm, a 1/t-WL algorithm,

TABLE VII: Estimation of e0 and ed from the position of the
maximum P (e) calculated at the exact critical temperature,
q = 20. The penultimate entry in the table is a fit to data.

L E0, WL E0, MCPA Ed, WL Ed, MCPA

6 -1.74219 -1.74609 -0.89844 -0.89062

30 -1.70000 -1.70000 -0.93444 -0.92667

40 -1.69063 -1.69938 -0.94375 -0.94812

50 -1.68360 -1.68560 -0.94960 -0.93920

60 -1.67944 -1.68472 -0.95444 -0.95028

∞ -1.657(1) -1.661(4) -0.9743(5) -0.972(6)

exact -1.664 -0.968

TABLE VIII: As in the table VII for the 20-component Potts
model.

L e0, WL e0, MCPA ed, WL ed, MCPA

30 -1.83333 -1.83333 -0.61556 -0.61222

40 -1.82750 -1.82937 -0.62125 -0.62375

50 -1.82440 -1.82680 -0.62200 -0.61840

60 -1.82556 -1.82056 -0.62389 -0.62722

70 -1.82245 -1.81939 -0.62408 -0.62592

∞ -1.820(1) -1.8173) -0.6272(4) -0.631(3)

exact -1.82068 -0.62653

with accuracy control [19]. Second, these are computa-
tional results for the microcanonical population anneal-
ing algorithm [23, 24], the MCPA algorithm. MCPA is a
new algorithm, and not much is known about its proper-
ties. Therefore, a direct comparison of the two algorithms
is of some interest.

We stop simulation with 1/t-WL after the parameter
f reaches the value ffin=1.00000001, as proposed in the
original version of WL algorithm [11]. We control the
convergence of DoS by computing the largest eigenvalue
of the transfer matrix in the energy spectrum [19] (see
Figures 1 and 2). The number of spin update operations
ranges from 5·1010 to 72·1010 for lattice sizes from L=16
to L=60.

The MCPA simulation is completed using a ceil-
ing/floor procedure, reaching the lowest/highest energy
level. The number of operations in this case is not ran-
dom. The number of spin updates in each replica is equal
to the product of the number of spins L2, the number
of MCMC iterations ns, and the number of energy lev-
els NE=2L2−3 for the 10- and 20-component models.
For a typical number of iterations ns=10, the number of
spin flips per replica varies from 16·106 to 480·106, and
the linear size of the system varies from L=30 to L=70.
The total number of spin updates must be multiplied by
the number of replicas R=217≈1.3·105. Thus, the total
number of spin updates is comparable to an order-of-
magnitude precision.

The estimates of thermodynamic quantities computed
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with the WL and MCPA algorithms have the same accu-
racy, as shown in the paper, and the advantage of MCPA
is that it requires fewer operations per thread than the
WL algorithm. Of course, the threads in both cases are
different: WL uses CPU threads, while MCPA uses GPU
threads. Therefore, it is nor easy way to compare com-
putational effectiveness of algorithms.

In addition, MCPA can be used to estimate the mag-
netization and its moments, i.e., magnetic susceptibility
and magnetic Binder cumulant [40] from a single run and
averaging as functions of the replica pool for energy E′

(the culling pool), yielding M(E′), ξ(E′), and B(E′).
In contrast, to extract the magnetic sector of thermo-
dynamic variables using the WL algorithm, the two-
dimensional distribution function g(E,M) [45] must be
evaluated for both energy and magnetization, which sig-
nificantly increases the required computation time. This
is one of the advantages of MCPA over WL.

The research was supported by the Russian Science
Foundation grant 22-11-00259.
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computing resources of the National Research University
Higher School of Economics.
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[3] H.W.J. Blóte and M.P. Nightingale, Critical behaviour of
the two-dimensional Potts model with a continuous num-
ber of states; A finite size scaling analysis, Physica A
112A (1982) 405.

[4] B. Derrida, J. Vannimenus, Transfer-matrix approach to
percolation and phenomenological renormalization, Jour-
nal de Physique 41 (1980) 473.

[5] D. Landau and K. Binder, A Guide to Monte Carlo
Simulations in Statistical Physics (Cambridge University
Press: Cambridge, 2021).

[6] C.J. Geyer, Practical Markov chain Monte Carlo, Stat.
Sci. 7 (1992) 473.

[7] R.H. Swendsen and J.-S. Wang, Nonuniversal Critical
Dynamics in Monte Carlo Simulations, Phys. Rev. Lett.
58 (1987) 86.

[8] U. Wolff, Collective Monte Carlo updating for spin sys-
tems, Phys. Rev. Lett. 62 (1989) 361.

[9] W. Janke, Multicanonical Monte Carlo simulations,
Physica A 254 (1998) 164.

[10] P. Kar, W. Nadler, and U.H.E. Hansmann, Microcanon-
ical replica exchange molecular dynamics simulation of
proteins, Phys. Rev. E 80 (2009) 056703.

[11] F. Wang and D.P. Landau, Efficient, multiple-range ran-
dom walk algorithm to calculate the density of states,
Phys. Rev. Lett. 86 (2001) 2050.

[12] F. Wang and D.P. Landau, Determining the density of
states for classical statistical models: A random walk

algorithm to produce a flat histogram, Phys. Rev E 64
(2001) 056101.

[13] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimiza-
tion by simulated annealing, Science 220 (1983) 671.

[14] J. Machta, Population annealing with weighted averages:
A Monte Carlo method for rough free-energy landscapes,
Phys. Rev. E 82 (2010) 026704.

[15] M. Weigel, L.Yu. Barash, L.N. Shchur and W. Janke,
Understanding population annealing Monte Carlo simu-
lations, Phys. Rev. E 103 (2021) 053301.
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