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Abstract. This study focuses on statistical inference for compound models of

the form X = ξ1+. . .+ξN , where N is a random variable denoting the count of
summands, which are independent and identically distributed (i.i.d.) random

variables ξ1, ξ2, . . .. The paper addresses the problem of reconstructing the dis-

tribution of ξ from observed samples of X’s distribution, a process referred to
as decompounding, with the assumption that N ’s distribution is known. This

work diverges from the conventional scope by not limiting N ’s distribution to

the Poisson type, thus embracing a broader context. We propose a nonpara-
metric estimate for the density of ξ, derive its rates of convergence and prove

that these rates are minimax optimal for suitable classes of distributions for ξ

and N . Finally, we illustrate the numerical performance of the algorithm on
simulated examples.

1. Introduction

Consider a random variable X defined as a sum of a random number N of
independent and identically distributed (i.i.d.) random variables ξ1, ξ2, . . ., i.e.,

X =

N∑
k=1

ξk,

where N and ξ1, ξ2, . . . are independent. This model can be seen as a generalization
of Poisson random sums, which corresponds to the case when N follows the Poisson
distribution. Given a sample from this model, a natural question is how to estimate
the distribution of ξ1, assuming that the distribution of N is known. This problem
has been explored in several studies, primarily within a parametric framework and
especially when N is Poisson-distributed. A critical observation in nearly all these
studies is that the characteristic function of X equals the superposition of the
probability generating function of N and the characteristic function of ξ,

ϕX(u) = E[eiuX ] = PN (ϕξ(u)) with PN (z) =

∞∑
k=1

pkz
k, pk = P(N = k),

where ϕξ(u) = E[eiuξ] is the characteristic function of ξ. Therefore, the function
ϕξ(u) (and hence the distribution of ξ) can be recovered if the inverse function
of PN is well-defined and precisely known. In simpler cases, such as when N has
a Poisson or geometric distribution, this process is straightforward. In the case
when ξ is a discrete random variable, one can use the recursion formulas (known as
the Panjer recursions in the context of actuarial calculus, see Johnson et al., [12])
to recover the distribution of ξ. For other methods of this type, we refer to the
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monograph by Sundt and Vernic [13]. However, the problem is inherently ill-posed;
minor perturbations in ϕX (e.g., due to limited data) can result in significant errors
in ϕξ(u). In addressing the statistical aspect of this problem, the concept of Panjer
recursion was utilized by Buchmann and Grübel [4], [5], who are credited with
introducing the term “decompounding”. Subsequently, other estimation methods
were developed for the same model, including kernel-based estimates (Van Es et
al. [16]), convolution power estimates (Comte et al. [8]), spectral approach (Coca [7])
and Bayesian estimation techniques (Gugushvili et al. [10]). Let us stress that all
these methods are designed for the case whenN has a Poisson distribution. The case
of a generally distributed N was examined by Bøgsted and Pitts [3], who proposed
inverting PN via series inversion. However, they did not provide convergence rates,
and their approach requires that ξ1 be positive with probability 1 and N take the
value 1 with positive probability.

It’s worth noting that there’s a significant demand for broader classes for the
distribution of N across different applied disciplines, such as actuarial science and
queuing theory. Asmussen and Albrecher [1] suggested that the widespread use of
the Poisson distribution in actuarial models is largely attributed to its analytical
simplicity and the ease with which its results can be interpreted, rather than any
concrete evidence of its efficacy. Meanwhile, the exploration of non-Poisson arrival
processes in queuing theory has been the focus of numerous studies. For instance,
the work by Chydzinski [6] delves into these processes, offering insights that can
be contrasted with findings from Poisson-based models, as seen in the paper by
Hansen and Pitts [11] or den Boer and Mandjes [9].

Contribution. This paper makes two significant contributions. Firstly, we con-
duct an in-depth theoretical analysis of the underlying statistical inverse problem
when N , the count variable, has a general distribution. Our approach leverages the
equation

(1.1) ϕX(u) = LN
(
−ψξ(u)

)
where LN (w) = E[e−wN ] for w ∈ C, is the Laplace transform of N , and ψξ(u) =
log(ϕξ(u)), assuming the principal branch of the complex logarithm and that the
characteristic function of ξ is devoid of real zeros. The method involves estimating
ψξ by inverting LN (w) with respect to w. Following this, we apply the regular-
ized inverse Fourier transform to approximate the density of ξ. Secondly, the pa-
per establishes convergence rates for the proposed density estimate across various
distribution classes, demonstrating that these rates achieve minimax optimality.
Notably, we find that when P(N = 1) > 0, the minimax convergence rates align
with those obtained from direct observations of X. This marks the first instance of
deriving minimax rates for general N scenarios in existing literature.

Structure. The paper is organised as follows. In the next section we present
the estimation procedure and show the rates of convergence to the true density.
Subsection 2.1 is devoted to the nonasymptotic properties of the proposed estimate.
The main result of this section, Theorem 2.1, gives the upper bound of the MSE
on the sequence of events An, the probabilities of which tend to 1 rather fast
provided that some conditions are fulfilled (see corollaries 2.2 - 2.4 and examples
in subsection 2.2). Next, in subsection 2.3, we show the asymptotic upper bounds
for several classes of distributions (Theorem 2.8) and prove that these bounds are
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minimax optimal (Theorem 2.9). Section 3 contains several numerical examples
showing the efficiency of the proposed algorithm and illustrating the difference
between various classes of distributions. Finally, in section 4, we discuss the case
P(N = 1) = 0, which is significantly more difficult, as was mentioned also in
previous papers on the topic (see, e.g., discussion in the paper by Bøgsted and
Pitts [3]). The proofs are collected in section 5.

2. Main results

The key idea of the estimation procedure is to apply the inverse Laplace trans-
form of N (with respect to its complex-valued argument) to both parts of the
equality (1.1), that is,

ψξ(u) = −L−1
N (ϕX(u)), u ∈ R.(2.1)

Note that LN (w) is an analytic function for any w with Re(w) > 0 (in particular,
for w = −ψξ(u), u ∈ R), and therefore the inverse function L−1

N exists and is
analytic at the point ϕX(u), provided that

(LN )′ (−ψξ(u)) ̸= 0, u ∈ R.(2.2)

Note that if E[N ] <∞, we have

(LN )′ (−ψξ(u)) =
∞∑
k=1

k(ϕξ(u))
kpk = E[N ]ϕΛ(u),

where ϕΛ(u) is the characteristic function of the random variable Λ = ξ1 + ...+ ξτ
with τ such that P(τ = k) = kpk/E[N ], k = 1, 2, . . ., and therefore (2.2) is equiv-
alent to ϕΛ(u) ̸= 0, u ∈ R. This assumption holds under rather simple sufficient
conditions (see Appendix B). We won’t be discussing these conditions here as we
need to generalise (2.2) to determine the convergence rates in the next section.
More precisely, we will assume that (LN )′(z) ̸= 0 not only at the point −ψξ(u),
but also in some vicinity of this point, which we will specify later.

The formula (2.1) suggests the following estimation scheme. First, we estimate
the characteristic function ϕξ(u) based on a sample X1, . . . , Xn from the distri-

bution of X using the empirical characteristic function ϕ̂X(u) = n−1
∑n
k=1 e

iuXk .

Second, we estimate the function ψξ via ψ̂ξ(u) = −L−1
N (ϕ̂X(u)) and get estimate

for the characteristic function of ϕξ as ϕ̂ξ(u) = exp(ψ̂ξ(u)). Note that L−1
N (ϕ̂X(u))

is well defined for u in some vicinity of 0 due to Re[ϕ̂ξ(0)] = 1. Finally, we use
a regularised inverse Fourier transform to estimate the distribution of ξ. So, the
scheme is as follows:

X1, . . . , Xn → ϕ̂X(u) → ψ̂ξ(u) → ϕ̂ξ(u) → Law(ξ).

Assuming that the distribution of ξ is absolutely continuous with density pξ, the
estimation scheme explained above leads to the following estimator

(2.3) p̂ξ(x) :=
1

2π

∫ Un

−Un

e−iuxϕ̂ξ(u) du =
1

2π

∫ Un

−Un

exp
{
−iux− L−1

N

(
ϕ̂X(u)

)}
du

for any x ∈ R, where Un is a sequence of positive numbers tending to infinity at a

proper rate in order to ensure that L−1
N

(
ϕ̂X(u)

)
for u ∈ [−Un, Un] is well defined

on an event of positive probability.
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2.1. Nonasymptotic bounds. Introduce the function

H(z) := exp(−L−1
N (z)), z ∈ C,

where C is the region of analyticity of the function H. The discussion above imples
that ϕX(u) ∈ C ∀u ∈ R, provided that ϕΛ doesn’t vanish on R. The first derivative
of this function is equal to

H′(z) = −
exp(−L−1

N (z))

(LN )
′ (L−1

N (z)
) = − 1∑∞

k=1 kpke
−(k−1)L−1

N (z)
, z ∈ C,(2.4)

while the direct calculation of the second derivative yields

H′′(z) = (H′(z))3
∞∑
k=2

pk(k
2 − k) exp(−(k − 2)L−1

N (z)), z ∈ C.(2.5)

At the point z = ϕX(u), u ∈ R, these derivatives are equal to

H′(ϕX(u)
)

= − ϕξ(u)

(LN )′(−ψξ(u))
= −(E[N ])−1 ϕξ(u)

ϕΛ(u)
,

H′′(ϕX(u)
)

= (H′(ϕX(u)))3
∞∑
k=2

pk(k
2 − k)

(
ϕξ(u)

)k
,

and therefore are uniformly bounded on R, provided that E[N2] < ∞, p1 > 0
and (2.2) holds. Indeed, ϕΛ doesn’t vanish on R, and in this case H′(ϕX(u)

)
is

bounded as a continuous function since its limit for u→ ∞ equals to −(E[N ]p1)
−1

. Moreover, H′′(ϕX(u)
)
is bounded due to the trivial estimate |H′′(ϕX(u)

)
| ≤

|H′(ϕX(u)
)
|3(E[N2] + E[N ]), u ∈ R.

In what follows, we need a boundedness of H′(z) and H′′(z) in some vicinity of
the point z = ϕX(u). More precisely, we introduce the following event

An(κ) :=
{
ϕX,τ (u) ∈ C, ∀τ ∈ [0, 1], ∀u ∈ [−Un, Un]

}
∩
{

max
τ∈[0,1]

max
|u|≤Un

max
{
|H′(ϕX,τ (u))|, |H′′(ϕX,τ (u))|} ≤ κ

}
,

where ϕX,τ (u) := ϕX(u)+ τ(ϕ̂X(u)−ϕX(u)) and κ > 0. Note that if this event has
positive probability for all n, then the assumption (2.2) holds.

Now let us formulate the main result of this section.

Theorem 2.1. Suppose that ϕξ ∈ L1(R) with Cϕ := ∥ϕξ∥L1(R). Let us fix some
κ > 0 such that qn = qn(κ) := P(An(κ)) > 0 for all n > n0. Assume also that
E[N2] <∞, then it holds

(2.6)

E
[
|p̂ξ(x)− pξ(x)|2

∣∣∣An

]
≲

(∫
|u|>Un

|ϕξ(u)| du
)2

+ κ2 Un
n qn

CϕE[N ] + κ2 U2
n

n2q2n

+ κ2 U
2
n

n qn
(1− qn)

1/2 + κ
U2
n

n3/2 q
1/2
n

, n > n0,

where ≲ stands for inequality up to an absolute constant not depending on n and
distributions of ξ,N.
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Let us next mention several rather general situations where the probability of
the event An can be estimated from below.

Corollary 2.2. Suppose that the distribution of ξ is symmetric, then by changing

the empirical cf ϕ̂X(u) to its real part we have that ϕX,τ (u) ∈ [−1, 1] for all u ∈ R.
Hence, with probability 1,

|H′(ϕX,τ (u))| =

[ ∞∑
k=1

k pk exp
(
−(k − 1)L−1

N (ϕX,τ (u))
)]−1

≤ 1

p1
, τ ∈ [0, 1], u ∈ R,

provided p1 > 0. Furthermore, we have that L−1
N (ϕX,τ (u)) ≥ 0 for all u ∈ R and

τ ∈ [0, 1] with probability 1 due to the fact that

LN (z) =

∞∑
k=1

pke
−zk ∈ [0, 1] iff z ≥ 0.

Therefore, from (2.5) we get

|H′′(ϕX,τ (u))| ≤ E[N2]− E[N ]

p31
=: κ,

and conclude that under this choice of κ, we have qn = P(An(κ)) = 1 for all n ≥ 1.

Corollary 2.3. Suppose that there is ρ0 > 1 such that

(2.7) |H′(z)| ≤ κ, |H′′(z)| ≤ κ, ∀ z ∈ C : |z| ≤ ρ0

for some finite κ = κ(ρ0). In this case, we obviously have P(An(κ)) = 1 since
|ϕX,τ (u)| ≤ 1 for all u and τ.

Corollary 2.4. Assume that Re(ϕX(u)) ̸= 0 ∀u ∈ R, and

(2.8) |H′(z)| ≤ κ, |H′′(z)| ≤ κ, ∀ z ∈ C : Re(z) > −ρ1

for some ρ1 > 0 and some finite κ = κ(ρ1). Then using the fact that Re(ϕX(u)) ≥ 0
for all u ∈ R and Proposition 3.3 from [2], we derive

1− qn = P(Ac
n) ≤ P(∃τ ∈ [0, 1],∃u ∈ [−Un, Un] : Re(ϕX,τ (u)) ≤ −ρ1)

≤ P
(
∥ϕX − ϕ̂X∥[−Un,Un] ≥ ρ1

)
≲
(√
nUn

)−2
,

provided that 18
√
log(nU2

n)/n < ρ1.

2.2. Examples. In this section we discuss several important examples including
two-point distribution and Poisson like distribution for N.

Example 2.5. Let N take two values, 1 and 2, with probabilities p ∈ (0, 1) and
1− p, respectively. Then

LN (z) = pe−z + (1− p)e−2z, ∀z ∈ C.(2.9)

The inversion of the Laplace transform (2.9) leads to

L−1
N (z) = − log

(−p+√p2 + 4z(1− p)

2(1− p)

)
,
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and therefore the function H and its first and second derivatives are equal to

H(z) =
−p+

√
p2 + 4z(1− p)

2(1− p)
,

H′(z) =
1√

p2 + 4z(1− p)
,

H′′(z) = − 2(1− p)(
p2 + 4z(1− p)

)3/2 .
If ρ∗ := p2/(4(1− p)) > 1 the condition (2.7) holds with 1 < ρ0 < ρ∗ and

κ = κ(ρ0) := max
{
H′(−ρ0),−H′′(−ρ0)

}
.(2.10)

On the other hand, the condition (2.8) is also fulfilled for 0 < ρ1 < ρ∗ and κ =
κ(ρ1). As compared to (2.7), we do need to assume that ρ∗ > 1, but have to check
the condition Re(ϕX(u)) ̸= 0 ∀u ∈ R, which depends on the distribution of ξ.

Example 2.6. Let N be distributed according to the shifted Poisson law, that is,

P(N = k) = cλ
λk

k!
, k = 1, 2, . . . ,

where λ > 0 and cλ := 1/(eλ − 1). In this case,

LN (z) = cλ
(
eλe

−z

− 1
)
, L−1

N (z) = − log
( 1
λ
log (z/cλ + 1)

)
,

where the formula for the inverse function is valid for for all z ∈ C \ R≤0. Conse-
quently direct calculations yield

H(z) =
1

λ
log (z/cλ + 1) ,

H′(z) =
1

λ
(
cλ + z

) ,
H′′(z) = − 1

λ
(
cλ + z

)2 .
Again the condition (2.7) holds with 1 < ρ0 < cλ andκ = κ(ρ0) given by (2.10)

with H′,H′′ as above, provided cλ > 1. Similarly, the condition (2.8) is also fulfilled
for 0 < ρ1 < cλ and κ = κ(ρ1).

Example 2.7. Let N be geometrically distributed with parameter p ∈ (0, 1), that
is,

P(N = k) = (1− p)k−1p, k = 1, 2, . . . .

In this case, one observes that

LN (z) =
pe−z

1− (1− p)e−z
, Re(z) > log(1− p),

L−1
N (z) = − log

(
z

p+ z(1− p)

)
, z ̸= −p/(1− p).
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Direct calculations lead to the following formulas for any z ̸= −p/(1− p) :

H(z) =
z

p+ z(1− p)
,

H′(z) =
p

(p+ z(1− p))2
,

H′′(z) =
−2p(1− p)

(p+ z(1− p))3
,

and we conclude that if ρ⋆ := p/(1 − p) > 1 (that is, p > 1/2) the condition (2.7)
holds with 1 < ρ0 < ρ⋆ and κ = κ(ρ0). On the other hand, the condition (2.8) is
also fulfilled for 0 < ρ1 < ρ⋆ and κ = κ(ρ1). Compared to (2.7), here we do need
to assume that ρ⋆ > 1.

2.3. Minimax rates of convergence. Fix some β, γ > 0, M > 0 and consider
two classes of probability densities functions

C(β,M) :=

{
p ∈ L1(R), p ≥ 0 : sup

u∈R

{
(1 + |u|)1+β |ϕp(u)|

}
≤M

}
and

E(γ,M) :=

{
p ∈ L1(R), p ≥ 0 : sup

u∈R

{
exp(cγ |u|γ)|ϕp(u)|

}
≤M

}
,

where

ϕp(u) =

∫
R
eiuxp(x) dx, u ∈ R,

is the characteristic function of the random variable with the density p.

Theorem 2.8. Suppose that for some κ > 1, it holds Un
√
1− qn(κ) ≤ 1 for all

n > n0, that is, P(An) ≥ 1− U−2
n .

(i) If pξ ∈ C(β,M) for some β > 1/2,M > 0 then

max
x∈R

E
[
|p̂ξ(x)− pξ(x)|2

∣∣∣An

]
≲M2U−2β

n + C(M,κ, N)
Un
n

+ κ2 U2
n

n2q2n
, n > n0,

where C(M,κ, N) = 2κ2M
(
1 + β−1

)
E[N ]. Furthermore, under the choice Un =

n1/(1+2β) we get

max
x∈R

E
[
|p̂ξ(x)− pξ(x)|2

∣∣∣An

]
≲ max(M2, C(M,κ, N))n−2β/(1+2β), n > n0.

(ii) If pξ ∈ E(γ,M) for some γ > γ◦ with γ◦ > 0, and some γ,M > 0 then

max
x∈R

E
[
|p̂ξ(x)− pξ(x)|2

∣∣∣An

]
≲M2U2(1−γ)

n e−2cγU
γ
n +

Un
n
C(M,κ, N) + κ2 U2

n

n2q2n
,

n > n0,

where C(M,κ, N) = 2κ2ME[N ] max
(
1,Γ(γ−1

◦ + 1)
)
c
−1/γ
γ . Under the choice

Un = (log n/(2cγ))
1/γ

we get

max
x∈R

E
[
|p̂ξ(x)− pξ(x)|2

∣∣∣An

]
≲ max(M2, C(M,κ, N))

(log n)max(1,2(1−γ))/γ

n
,

n > n0.
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It follows from Corollary 2.2 that

sup
pξ∈C(α,M)

max
x∈R

E
[
|p̂ξ(x)− pξ(x)|2

]
≲ max(M2, C(M,κ, N))n−2β/(1+2β), n > n0,

provided that the distribution of ξ is symmetric and p1 > 0. As shown in the next
theorem, these rates turn out to be minimax optimal.

Theorem 2.9 (Lower bounds). Let P(N = 1) > 0 and let Sym(R) be a class of
symmetric functions on R. Then it holds

inf
p̂

sup
pξ∈C(β,M)∩Sym(R)

max
x∈R

E
[
|p̂ξ(x)− pξ(x)|2

]
≳ n−2β/(1+2β),

where infimum is taken over all estimates, that is, measurable functions of X1, . . . , Xn.

3. Numerical examples

In the present section, we illustrate the proposed estimation procedure by a
simulation study. Let us consider the following three cases of the law of N : the one
supported on two points (see Example 2.5), the geometric distribution starting from
1 (see Example 2.7) or the shifted Poisson (as in Example 2.6). As for ξ, in what
follows we consider the case when ξ has either the Laplace distribution with zero
mean and scale equal to one, or the standard normal distribution. It can be observed
that in all these cases the c.f. ϕX(u) has the same behaviour as ϕξ(u) as |u| → ∞.
Since in case when ξ1 follows the Laplace distribution ϕξ(u) = (1+u2)−1, it can be
seen that for any Un > 0 the characteristic function ϕX(u) satisfies the condition

of Theorem 2.8 with β = 1, while in case of the normal law, as ϕξ(u) = e−u
2/2, we

get that ϕX(u) satisfies the condition of with α = 1/2 and γ = 2.
For the simulation study, we fix the parameter of the law of N as p = 0.3 in case

of the two-point and geometric distribution and λ = 1 in case of the Poisson law.
For all the considered cases — three with respect to the distribution of N and two
with respect to the law of ξ1 — we aim at analysing the behaviour of the proposed
estimator for different values of n ∈ {100, 1000, 5000}. To this end, we simulate 100
samples for every n and compute the error

(3.1)
1

J

J∑
j=1

(p̂(xj)− p(xj))
2
,

where {xj}1≤j≤J is an equidistant grid of J = 1000 points from −4 to 4, p̂ is the
proposed estimator (2.3), and p is the density of either the Laplace or the standard
normal distribution. As suggested by Theorem 2.8, in case when ξ1 is normally
distributed the truncating sequence is chosen as

Un = ((log n)/(2cγ))
1/γ .

As for the case of the Laplace distribution, Theorem 2.8 suggests that Un should
be of order n1/(2α−1) = n1/3. To speed up the numerical computations and ensure
convergence of the integrals on finite data samples, we multiply this value by a
normalising constant c = 1/3, taking Un = cn1/3.

The first row of Figures 1 and 2 represents the boxplots of errors (3.1) for the
cases of Laplace and normal ξ, respectively, with different distributions of N and
sample sizes n. It can be observed that in all the considered cases the values of
errors decline with the growth of sample size and are reasonably small, not exceeding
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Figure 1. The errors (3.1) of the estimator (2.3) (top) and esti-
mated and real densities of ξ (bottom) for N having the two point
(left), geometric (middle) and shifted Poisson (right) distributions,
and ξ following the Laplace distribution.

0.008 even for n = 100. Also, it can be seen that the case when ξ follows the normal
distribution generally leads to smaller errors than the Laplace one. This observation
is further supported by the second row of Figures 1 and 2, which depicts the true
and estimated densities of ξ, as the estimates for the normal law appear to be much
more stable than those for the Laplace distribution. It is worth mentioning that
these results are fully coherent with our theoretical findings, yielding the faster rate
of convergence in the case of the class E(γ,M). All in all, we conclude that the
proposed estimation method allows to obtain favourable results for the considered
examples, and hence can successfully be employed for the problems of this kind.

4. Discussion and extensions

Let’s delve into some discussions and extensions. A key point to consider is that
when P(N = 1) = 0, the complexity of the problem increases significantly. This
particular scenario encompasses the challenging task of inferring the distribution
of a random variable ξ from the distribution of its sum ξ1 + ξ2 + . . . + ξm for a
specified m ∈ N. This task essentially boils down to the intricate process of recon-
structing the characteristic function ϕξ from its powers, which is recognized as an
inherently difficult problem due to its ill-posed nature. An illustrative example can
demonstrate this complexity: it has been established that there exists a distribution
function F such that the distribution of the sum of any number of independent ran-
dom variables adhering to the law F does not uniquely determine F . To elucidate
this point, one might consider a distribution F defined by the density function:

F ′(x) = p(x) =
1− cos(x)

πx2
(1− cos(2x)), x ∈ R.
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Figure 2. The errors (3.1) of the estimator (2.3) (top) and esti-
mated and real densities of ξ (bottom) for N having the two point
(left), geometric (middle) and shifted Poisson (right) distributions,
and ξ following the standard normal law.

Then by defining for any m,

G′
m(x) =

1− cos(x)

πx2

(
1− cos

(
2x+

2π

m

))
it easy to show that

F ⋆ . . . ⋆ F︸ ︷︷ ︸
m

= Gm ⋆ . . . ⋆ Gm︸ ︷︷ ︸
m

.

This example underscores the nuanced challenges encountered in this problem, high-
lighting the need for careful consideration and more restrictive assumptions. In this
respect, the following result can be proved. Let us assume that the characteristic
function ϕξ doesn’t vanish on R, and therefore (ϕX)1/m is well defined. Then an
estimate of pξ can be defined as

p̂ξ(x) =
1

2π

∫ Un

−Un

e−iωx(ϕ̂X(ω))1/m dω.

Since (ϕ̂X)1/m is well defined only on the interval where ϕ̂X ̸= 0 we will consider
the event

Bn(κ) :=

{
sup

ω∈[−Un,Un]

∣∣∣∣∣ ϕ̂X(ω)− ϕX(ω)

ϕX(ω)

∣∣∣∣∣ ≤ κ

}
for some κ > 0. The following result holds.

Theorem 4.1. Suppose that

M−1 ≤ (1 + |u|)α|ϕξ(u)| ≤M
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for some α > 1 and M > 0. Assume that infn>n0
P(Bn(κ)) > 0 for some κ > 0.

Then it holds for any x ∈ R,

E
[
|p̂ξ(x)− pξ(x)|2

∣∣∣Bn] ≲ U2(1−α)
n +

U
1+α(2m−1)
n

n
(4.1)

provided Uαmn n−1/2 = o(1), n→ ∞. Here ≲ stands for inequality up to an absolute
constant not depending on n.

Corollary 4.2. By choosing Un = n1/(α−1+2mα), we derive

E
[
|p̂ξ(x)− pξ(x)|2

∣∣∣Bn] ≲ n−2(α−1)/(α−1+2mα),

where P(Bcn) ≤ (
√
nUn)

−2
.

5. Proofs

5.1. Proof of Theorem 2.1. It holds for all x ∈ R,

E [p̂ξ(x)|An]− pξ(x) =
1

2π

∫
|u|≤Un

e−iux E
[
e−L−1

N (ϕ̂X(u)) − e−L−1
N (ϕX(u))

∣∣An

]
du

− 1

2π

∫
|u|>Un

e−iux+ψξ(u) du = I1 + I2.

Applying Lemma A.1 to H(z) = exp(−L−1
N (z)) with k = 2, z = ϕ̂X(u), a = ϕX(u),

we get

E
[
e−L−1

N (ϕ̂X(u))−e−L−1
N (ϕX(u))|An

]
= E

[
Eτ [gτ (ϕ̂X(u), ϕX(u))](ϕ̂X(u)−ϕX(u))2

∣∣∣An

]
where

gτ (ϕ̂X(u), ϕX(u)) := (1− τ)H′′(ϕX,τ (u)), ϕX,τ (u) := ϕX(u)+ τ(ϕ̂X(u)−ϕX(u)).

On the event An, we have |H′′(ϕX,τ (u))| ≤ κ for all τ ∈ [0, 1] and |u| ≤ Un, and
hence

|I1| ≤ κ
2π

∫
|u|≤Un

E[(ϕ̂X(u)− ϕX(u))2|An] du

≲
κ

P(An)

∫
|u|≤Un

1− |ϕX(u)|2

n
du ≲

κUn
nqn

.

Furthermore

Var (p̂(x)|An) = Var

(∫ Un

−Un

e−iux−L−1
N (ϕ̂X(u)) du

∣∣∣An

)

= Var

(∫ Un

−Un

e−iuxH′ (ϕX(u))
(
ϕ̂X(u)− ϕX(u)

)
du

+

∫ Un

−Un

e−iuxEτ
[
gτ

(
ϕ̂X(u), ϕX(u)

)]
×
(
ϕ̂X(u)− ϕX(u)

)2
du
∣∣∣An

)
=: S1 + 2S2 + S3,
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where

S1 = Var

(∫ Un

−Un

e−iuxH′(ϕX(u))
(
ϕ̂X(u)− ϕX(u)

)
du
∣∣∣An

)
,

S2 =

∫ Un

−Un

∫ Un

−Un

e−i(u+v)xH′(ϕX(u)) cov
(
ϕ̂X(u)− ϕX(u),

Eτ
[
gτ

(
ϕ̂X(v), ϕX(v)

)](
ϕ̂X(v)− ϕX(v)

)2∣∣∣An

)
du dv,

S3 = Var

(∫ Un

−Un

e−iuxEτ
[
gτ

(
ϕ̂X(u), ϕX(u)

)](
ϕ̂X(u)− ϕX(u)

)2
du
∣∣∣An

)
.

For S1 we have

S1 =

∫ Un

−Un

∫ Un

−Un

e−i(u−v)xH′(ϕX(u))H′(ϕX(v))

×
E
[(
ϕ̂X(u)− ϕX(u)

)(
ϕ̂X(v)− ϕX(v)

)
I{An}

]
P(An)

du dv,

where

E
[(
ϕ̂X(u)− ϕX(u)

)(
ϕ̂X(v)− ϕX(v)

)
I{An}

]
= cov

(
ϕ̂X(u), ϕ̂X(v)

)
− E

[(
ϕ̂X(u)− ϕX(u)

)(
ϕ̂X(v)− ϕX(v)

)
I{Ac

n}
]
.

For the first summand in the expression above we have

cov
(
ϕ̂X(u), ϕ̂X(v)

)
=

1

n

(
ϕX(u− v)− ϕX(u)ϕX(v)

)
,

while for the second one, by the Cauchy-Schwarz inequality,

E
[(
ϕ̂X(u)− ϕX(u)

)(
ϕ̂X(v)− ϕX(v)

)
I{Ac

n}
]

≤
(
E

[∣∣∣ϕ̂X(u)− ϕX(u)
∣∣∣4]E [∣∣∣ϕ̂X(v)− ϕX(v)

∣∣∣4])1/4

(P(Ac
n))

1/2 ≲
(1− qn)

1/2

n
.

Hence, we further get

|S1| ≲
1

nqn

∫ Un

−Un

∫ Un

−Un

|H′(ϕX(u))H′(ϕX(v))ϕX(u− v)| du dv

+
(1− qn)

1/2

nqn

∫ Un

−Un

∫ Un

−Un

|H′(ϕX(u))H′(ϕX(v))ϕX(u)ϕX(v)| du dv.

Using again the Cauchy-Schwarz inequality, we get

|S1| ≲
1

nqn

∫ Un

−Un

|H′(ϕX(u)|2 du
∫
R
|ϕX(v)| dv

+
(1− qn)

1/2

nqn

(∫ Un

−Un

|H′(ϕX(u))| du

)2

≲
Unκ2

nqn
[CϕE[N ] + (1− qn)

1/2Un],
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where we also applied that
∫
R |ϕX(v)| dv ≤ E[N ]

∫
R |ϕξ(v)| dv = E[N ]Cϕ. As for

S2, we can establish the following upper bound by the application of the Hölder
inequality,

|S2| ≤ κ
∫ Un

−Un

∫ Un

−Un

∥∥ϕ̂X(u)− ϕX(u)
∥∥
L4

∥∥(ϕ̂X(v)− ϕX(v))2
∥∥
L4(P(An))

−1/2 du dv

≲
U2
nκ

q
1/2
n n3/2

.

Analogously,

|S3| ≤ κ2

∫ Un

−Un

∫ Un

−Un

∥∥(ϕ̂X(u)−ϕX(u))2
∥∥
L4

∥∥(ϕ̂X(v)−ϕX(v))2
∥∥
L4(P(An))

−1/2 du dv

≲
U2
nκ2

q
1/2
n n2

.

5.2. Proof of Theorem 2.8. The assumption qn ≥ 1−U−2
n yields that the fourth

and the fifth summands in the rhs of (2.6) are of smaller order than the first three.
(i) Using the assumption on the behaviour of ϕξ, we get(∫

|u|>Un

|ϕξ(u)| du
)2

≤ 4M2

β2
U−2β
n , Cϕ =

∫
R
|ϕξ(u)|du ≤ 2M

(
1 +

1

β

)
,

which lead to the estimate

E
[
|p̂ξ(x)− pξ(x)|2

∣∣∣An

]
≲
M2

β2
U−2β
n +

Un
n

2κ2M
(
1 +

1

β

)
E[N ] + κ2 U2

n

n2q2n
.

The choice Un = n1/(1+2β) yields that the first two summands are of order n−2β/(1+2β),
while the last summand converges faster, provided β > 1/2.

(ii) Similarly, using the properties of gamma and incomplete gamma functions,
we get(∫

|u|>Un

|ϕξ(u)| du
)2

≤ 4M2

γ2(cγ)2/γ
U2(1−γ)
n e−2cγU

γ
n ,

Cϕ =

∫
R
|ϕξ(u)|du ≤ 2M

γc
1/γ
γ

Γ(1/γ) ≤ 2Mc−1/γ
γ max

(
1,Γ(γ−1

◦ + 1)
)
,

and

E
[
|p̂ξ(x)− pξ(x)|2

∣∣∣An

]
≲

4M2

γ2(cγ)2/γ
U2(1−γ)
n e−2cγU

γ
n

+
Un
n

2κ2ME[N ]
max

(
1,Γ(γ−1

◦ + 1)
)

c
1/γ
γ

+ κ2 U2
n

n2q2n
.

Again, under appropriate choice of the sequence Un the first two summands yield
the required rate of convergence, while the last summand converges faster.
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5.3. Proof of Theorem 2.9. Set

K0(x) =

∞∏
k=1

(
sin(akx)

akx

)2

with ak = 2−k−1, k ∈ N. First note that K0 is a characteristic function of the

random variable Z =
∑∞
k=1 ak(Uk + Ũk) where Uk, Ũk, k ∈ N, are jointly in-

dependent random variables with the uniform distribution on [−1, 1]. Note that
the Fourier transform ϕK0

(u) = 2πpZ(−u), where pZ is the pdf of Z. Since
|Z| ≤

∑∞
k=1 2ak =

∑∞
k=1 2

−k = 1, the function ϕK0 vanishes for |u| > 1.
Furthermore, the function

K(x) =
1

π

sin(2x)

x

K0(x)

K0(0)

is well defined on R. Its Fourier transform is equal to

ϕK(u) =
1

π

1

K0(0)

∫
eiux

sin(2x)

x
K0(x) dx

=

∫ 2

−2
ϕK0(u− x) dx∫ 1

−1
ϕK0(s) ds

,(5.1)

since K0(0) = (2π)−1
∫ 1

−1
ϕK0(s) ds, and from

∫
eiux

sin(ax)

x
dx = π1{|u|≤a},

it follows that∫
eiux

sin(2x)

x
K0(x) dx = E

[
π1{|Z+u|≤2}

]
=

1

2

∫ 2

−2

ϕK0
(u− x) dx.

Formula (5.1) yields that ϕK(u) = 1 for u ∈ [−1, 1], 0 < ϕK(u) < 1 for all u ∈ R,
and ϕK(u) = 0 for |u| > 3.

Now consider a distribution of ξ which is infinitely divisible with the following
Lévy triplet:

b1 = 0, σ1 = 0, ν1(x) =
1 + β

2

|x|−1

1 + |x|
.

The characteristic exponent of this distribution is given by

ψ1(u) =
1 + β

2

∫
(eiux − 1)

|x|−1

1 + |x|
dx

= (1 + β)

∫ ∞

0

cos(ux)− 1

x

1

1 + x
dx.
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It holds, for u > 0,

ψ′
1(u) = −(1 + β)

∫ ∞

0

sin(ux)

1 + x
dx

=
1 + β

u

∫ ∞

0

1

1 + x
d cos(ux)

= −1 + β

u
+

1 + β

u

∫ ∞

0

cos(ux)

(1 + x)2
dx

= −1 + β

u
+

2(1 + β)

u2

∫ ∞

0

sin(ux)

(1 + x)3
dx.(5.2)

Hence, by integrating from 1 to s, we derive with some c1 > 0

|ψ1(s) + (1 + β) log(s)| ≤ c1, s > 1.

As a result, the corresponding characteristic function ϕ1(u) satisfies

e−c1 |u|−1−β ≤ |ϕ1(u)| ≤ ec1 |u|−1−β , |u| > 1,

while the density p1 of ξ satisfies p1(x) ≥ c2/(1 + x2) for some c2 > 0, since

p1(x) =
1

2π

∫
e−iux+ψ1(u) du.

Using the fact that

ψ
(2)
1 (u) = −(1 + β)

∫ ∞

0

x cos(ux)

1 + x
dx

= − (1 + β)δ0(u)

2
+ (1 + β)

∫ ∞

0

cos(ux)

1 + x
dx

= − (1 + β)δ0(u)

2
− (1 + β)ci(u) cos(u)− (1 + β)si(u) sin(u)

with

ci(z) = −
∫ ∞

z

cos(t)

t
dt = γ + log(z)−

∫ z

0

1− cos(t)

t
dt

and

si(z) = −
∫ ∞

z

sin(t)

t
dt,

we derive for x > 0,

p1(x) =
1

π

∫ ∞

0

cos(ux)eψ1(u) du

= − 1

π

1

x

∫
ψ′
1(u) sin(ux)e

ψ1(u) du

= − 1

π

1

x2

∫
ψ
(2)
1 (u) cos(ux)eψ1(u) du

− 1

π

1

x2

∫
(ψ′

1(u))
2 cos(ux)eψ1(u) du

=
1 + β

2π

1

x2
+R(x),

where R(x) = o(x−2) for x→ ∞ since∫ ∞

0

log(u) cos(ux)eψ1(u) du = O(log(x)/x), x→ ∞.
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Now set

ν2(x) = ν1(x) + εδh(x), δh(x) = h−1K(x/h).

One can always choose ε in such a way that ν2 stays positive on R and thus can be
viewed as the Lévy density. Denote

ψξ,i(u) =

∫
(eiux − 1)νi(x) dx, i = 1, 2.

Then it holds that ψξ,2(u) = ψξ,1(u) + εδ̂h(u) with

δ̂h(u) :=

∫
(eiux − 1)δh(x) dx = ϕK(hu)− 1.

Note that δ̂h(u) ≤ 0 for all u and

δ̂h(u) = 0, u ∈ [−1/h, 1/h], δ̂h(u) = −1, |u| > 3/h.

Denote by pξ,1 and pξ,2 the densities of infinitely divisible distributions with char-
acteristic exponents, where ψξ,1 and ψξ,2, respectively. Furthermore, set ϕX,i(u) =
LN (−ψξ,i(u)), i = 1, 2, and let pX,i be the density corresponding to the c.f. ϕX,i,i =
1, 2. We have

pX,1(x) =

∞∑
k=1

pk p
⋆k
ξ,1(x) ≥ p1pξ,1(x) ≥ p1/(1 + x2).

Hence

χ2 (pX,1, pX,2) =

∫
R

(pX,1(x)− pX,2(x))
2

pX,1(x)
dx

≲ p−1
1

∫
R
(1 + |x|2) (pX,1(x)− pX,2(x))

2
dx

= p−1
1

∫
R+

|ϕX,1(u)− ϕX,2(u)|2 du

+p−1
1

∫
R+

∣∣∣ϕ(1)X,1(u)− ϕ
(1)
X,2(u)

∣∣∣2 du
= p−1

1

∫
R+

(
LN (−ψξ,1(u))− LN (−ψξ,2(u))

)2
du

+p−1
1

∫
R+

(
d

du
[LN (−ψξ,1(u))− LN (−ψξ,2(u))]

)2

du.

Using the fact that δ̂h(u) = 0, u ∈ [−1/h, 1/h], we get

LN (−ψξ,1(u))− LN (−ψξ,2(u)) = 0, |u| ≤ 1/h

and

LN (−ψξ,1(u))− LN (−ψξ,2(u)) = L(1)
N (−ψξ,1(u)− θεδ̂h(u)) εδ̂h(u)

for |u| > 1/h and some θ ∈ (0, 1). Note that

L(n)
N (z) =

∞∑
k=1

(−k)npke−kz

and

L(n)
N (−ψξ,1(u)− θεδ̂h(u)) = eψξ,1(u)

∑∞
k=1(−k)npke(k−1)ψξ,1(u)+kθεδ̂h(u)(5.3)
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Hence

|LN (−ψξ,1(u))− LN (−ψξ,2(u))| ≤ eψξ,1(u)
( ∞∑
k=1

kpk

)
.

Furthermore,

d

du
[LN (−ψξ,1(u))− LN (−ψξ,2(u))] = −ψ′

ξ,1(u)L
(1)
N (−ψξ,1(u)) +

+ψ′
ξ,2(u)L

(1)
N (−ψξ,2(u))

= −ψ′
ξ,1(u)[L

(1)
N (−ψξ,1(u))− L(1)

N (−ψξ,2(u))]

+εδ̂′h(u)L
(1)
N (−ψξ,2(u))

= −εδ̂′h(u)ψ′
ξ,1(u)[L

(2)
N (−ψξ,1(u)− θ̃εδ̂h(u))]

+εδ̂′h(u)L
(1)
N (−ψξ,2(u)),

where θ̃ ∈ (0, 1). By analogue to (5.3), we have∣∣L(2)
N (−ψξ,1(u)− θ̃εδ̂h(u))

∣∣ ≤ eψξ,1(u)
( ∞∑
k=1

k2pk

)
.

Note that ∣∣δ̂′h(u)∣∣ = h
∣∣ϕ′K(hu)

∣∣ = h
|pZ(−hu+ 2)− pZ(−hu− 2)|

P
{
|Z| ≤ 1

} ≲ h,

and due to (5.2), ψ′
ξ,1(u) = O(1/u), u→ ∞. As a result,

χ2 (pX,1, pX,2) ≲ p−1
1 (E[N ])2

∫
u>1/h

e2ψξ,1(u)du

+p−1
1 (E[N ])2h2

∫
u>1/h

e2ψξ,1(u)du

+p−1
1 E[N2]h2

∫
u>1/h

|ψ′
ξ,1(u)|2e2ψξ,1(u)du

≲ p−1
1 (E[N ])2h2β+1.

Moreover

pξ,1(0)− pξ,2(0) ≥
1

π

∫
u>3/h

ϕξ,1(u)(1− e−ε) du ≳ hβ .

Using the well known Assouad’s lemma (see, e.g. Theorem 2.6 in [14]), one obtains

lim inf
n→∞

inf
p̂

sup
pξ∈C(β,M)∩Sym(R)

P

(
sup
x∈R

|p̂(x)− pξ(x)| > n−β/(2β+1)

)
> 0.

5.4. Proof of Theorem 4.1. It holds for all x ∈ R,

E [p̂ξ(x)|Bn]− pξ(x) =
1

2π

∫
|u|≤Un

e−iux E
[
(ϕ̂X(u))1/m − (ϕX(u))1/m|Bn

]
du

− 1

2π

∫
|u|>Un

e−iuxϕξ(u) du = I1 + I2.
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Applying Lemma A.1 to f(z) := z1/m with k = 2, z = ϕ̂X(u), a = ϕX(u), we get

E
[
(ϕ̂X(u))1/m − (ϕX(u))1/m|Bn

]
= E

[
Eτ [gτ (ϕ̂X(u), ϕX(u))](ϕ̂X(u)− ϕX(u))2

∣∣∣Bn]
where

gτ (ϕ̂X(u), ϕX(u)) :=
1−m

m2
(1− τ)

(
ϕX,τ (u)

)1/m−2
.

Note that |ϕX,τ (u)| > (1− κ)|ϕX(u)| on Bn and

|gτ (ϕ̂X(u), ϕX(u))| ≤ m− 1

m2
(1− τ)

(
(1− κ)|ϕX(u)|

)1/m−2
.

Hence

|I1| ≲
κ2(1− κ)1/m−2

nP(Bn)

∫
|u|≤Un

|ϕX(u)|1/m du ≲
U1−α
n

n qn
.

Trivially, |I2| ≤
∫
|u|>Un

|ϕξ(u)| du ≲ U1−α
n . As for the variance of p̂ξ, we get

Var (p̂ξ(x)|Bn) = Var

(∫ Un

−Un

e−iux(ϕ̂X(u))1/m du
∣∣∣Bn)

= Var

(∫ Un

−Un

e−iux(1/m)(ϕX(u))1/m−1
(
ϕ̂X(u)− ϕX(u)

)
du

+

∫ Un

−Un

e−iuxEτ
[
gτ

(
ϕ̂X(u), ϕX(u)

)](
ϕ̂X(u)− ϕX(u)

)2
du
∣∣∣Bn)

=: S1 + 2S2 + S3,

where

S1 = Var

(∫ Un

−Un

e−iux(1/m)(ϕX(u))1/m−1
(
ϕ̂X(u)− ϕX(u)

)
du
∣∣∣Bn) ,

S2 =

∫ Un

−Un

∫ Un

−Un

e−i(u+v)x(1/m)(ϕX(u))1/m−1 cov
(
ϕ̂X(u)− ϕX(u),

Eτ
[
gτ

(
ϕ̂X(v), ϕX(v)

)](
ϕ̂X(v)− ϕX(v)

)2∣∣∣Bn) du dv,
S3 = Var

(∫ Un

−Un

e−iuxEτ
[
gτ

(
ϕ̂X(u), ϕX(u)

)](
ϕ̂X(u)− ϕX(u)

)2
du
∣∣∣Bn) .

Similarly to the proof of Theorem 2.1, we derive

|S1| ≲
1

nP(Bn)

∫ Un

−Un

∫ Un

−Un

|ϕX(u)|1/m−1|ϕX(v)|1/m−1|ϕX(u− v)| du dv

+
(P(Bcn))1/2

nP(Bn)

∫ Un

−Un

∫ Un

−Un

|ϕX(u)|1/m−1|ϕX(v)|1/m−1 du dv.
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Using again the Cauchy-Schwarz inequality we get

|S1| ≲
1

nP(Bn)

∫ Un

−Un

|ϕX(u)|2(1/m−1) du

∫
R
|ϕX(v)| dv

+
(P(Bcn))1/2

nP(Bn)

(∫ Un

−Un

|ϕX(u)|1/m−1 du

)2

≲
U

1+2α(m−1)
n

n qn
+

(1− qn)
1/2

n qn
U2+2α(m−1)
n .

As for S2, we can establish the following upper bound by the application of the
Hölder inequality,

|S2| ≲
1

(P(Bn))1/2n3/2
(∫ Un

−Un

|ϕX(u)|1/m−1 du
)(∫ Un

−Un

|ϕX(v)|1/m−2 dv
)

≲
1

q
1/2
n n3/2

U2+α(3m−2)
n ,

|S3| ≲
1

(P(Bn))1/2n2
(∫ Un

−Un

|ϕX(u)|1/m−2 du
)(∫ Un

−Un

|ϕX(v)|1/m−2 dv
)

≲
1

q
1/2
n n2

U2+α(4m−2)
n .

Combining all results, we arrive at the desired statement. Corollary 4.2 follows
from Proposition 3.3 in [2], because

P(Bcn) ≤ P
(
∥ϕX − ϕ̂X∥[−Un,Un] ≥ κ inf

w∈[−Un,Un]
|ϕX(w)|

)
≤ P

(
∥ϕX − ϕ̂X∥[−Un,Un] ≥ κMmU−αm

n

)
≲
(√
nUn

)−2

provided that 18Umαn

√
log(nUn)

n ≤ κMm. The last condition is fulfilled due to our

choice of the sequence Un.

Appendix A. Taylor series expansion

Lemma A.1. Let f : C → C be a function that is k times differentiable (k = 1, 2, ...)
in some vicinity of a point a ∈ C. Then

f(z) =

k−1∑
j=0

f (j)(a)

j!
(z − a)j +

1

(k − 1)!
E
[
(1− τ)k−1f (k)(a+ τ(z − a))

]
(z − a)k,

where τ is a random variable uniformly distributed on [0, 1].

Appendix B. Sufficient conditions guaranteeing 2.2

Proposition B.1. If the distribution of τ is infinitely divisible, then the function
ϕΛ doesn’t have zeros on R.

Proof. We have ϕΛ(u) = Pτ
(
ϕξ(u)

)
, where Pτ (z) = E[zτ ] is the probability-generating

function of τ. Since τ is infinitely divisible, for any n ∈ N, there exists a r.v. τn with
pgf Pn such that Pτ (z) = (Pn(z))

n ∀z ∈ C. Therefore, Λ has the same distribution
as the sum on n independent copies of ξ1 + ...+ ξτn . □
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Proposition B.2. Denote rk := P(τ = k), k = 1, 2, .... Assume that the random
variable ξ has an absolutely continuous distribution with a finite second moment.

(1) Then there exist some positive constants u◦ ≤ u◦, such that ϕΛ(u) ̸= 0 for
any |u| < u◦ and |u| ≥ u◦.

(2) u◦ = u◦ (that is, ϕΛ(u) does not have real zeros) if any of the following
conditions is fulfilled:

(a) rm > 1/2, where m = argmink=1,2,...

{
rk ̸= 0

}
;

(b) the distribution of ξ is infinitely divisible with Lévy triplet (µ, c, ν),
where c > 0, and

rm >
1

1 + α
, where α = exp

{π2

8

c2

Var(ξ)E[τ ]

}
> 1.

Proof. 1. We have

(B.1)
|ϕΛ(u)|
|ϕξ(u)|m

≥ rm −
∞∑

k=m+1

rk|ϕξ(u)|k−m.

Using the Riemann - Lebesque lemma, we get that for any ε smaller than 1, there
exists some uε such that |ϕξ(u)| < ε for all |u| > uε. Note that for any ε < 1,

|ϕΛ(u)|
|ϕξ(u)|m

≥ rm − ε

∞∑
k=m+1

rk = rm − ε(1− rm).

Therefore, ϕΛ(u) doesn’t have any zeros with absolute value larger that u◦ := uε∗ ,
where ε∗ < rm/(1− rm).

On another side, Theorem 2.10.1 from [15] yields that the characteristic function
for any (not necessary infinitely divisible) r.v. η doesn’t have zeros for |u| < π/(2σ),
where σ is the standard deviation of the distribution with cf ϕΛ. Therefore, we can

choose u◦ := min
(
π/(2σ), u◦

)
and get the required statement.

2(a). When rm > 1/2, we have

|ϕΛ(u)|
|ϕξ(u)|m

≥ rm −
∞∑

k=m+1

rk|ϕξ(u)|k−m ≥ rm −
∞∑

k=m+1

rk ≥ 2rm − 1 > 0.

2(b). Since c > 0, we can use the inequality Reψξ(u) ≤ − 1
2u

2c2 to continue the
line of reasoning in (B.1):

|ϕΛ(u)|
|ϕξ(u)|m

≥ rm −
∞∑

k=m+1

rke
−(k−m)u2c2/2.(B.2)

Since the function in the right-hand side monotonically increases, it is sufficient to
show that it is positive at ũ = π/(2σ). We have

rm −
∞∑

k=m+1

rke
−(k−m)ũ2c2/2 ≥ rm −

( ∞∑
k=m+1

rk

)
e−ũ

2c2/2 ≥ rm − (1− rm)α−1,

where the last expression is positive iff rm >
(
1+α

)−1
. This observation completes

the proof. □
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