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Abstract

In the paper we consider an Ω-stable 3-diffeomorphism, chain re-
current set of which consists of isolated periodic points and expanding
attractors of codimension 1, orientable or not. We estimate a mini-
mum number of isolated periodic points using information about the
structure of the attractors.

1 Introduction and formulation of results
Let Mn be a closed smooth connected n-manifold with a metric d and f :
Mn → Mn be a diffeomorphism. An invariant compact set Λ ⊂ Mn is called
hyperbolic if there is a continuous Df -invariant splitting of the tangent bundle
TΛM

n into stable and unstable subbundles Es
Λ ⊕ Eu

Λ, dimEs
x + dimEu

x = n
(x ∈ Λ) such that for natural k and for some fixed Cs > 0, Cu > 0, 0 < λ < 1

∥Dfk(v)∥ ≤ Csλ
k∥v∥, v ∈ Es

Λ,
∥Df−k(w)∥ ≤ Cuλ

k∥w∥, w ∈ Eu
Λ.

Recall that ε-chain of the length m ∈ N, joining points x, y ∈ Mn, for f is
called a collection of points x = x0, . . . , xm = y such that d(f(xi−1), xi) < ε
for 1 ⩽ i ⩽ m. A point x ∈ Mn is called chain recurrent for f if for any ε > 0
there exists m, depending on ε > 0, and an ε-chain of length m, joining x to
itself. The set of all chain recurrent points is called chain recurrent set and
is denoted by Rf .

Summarizing the results in [1], [2], [3], [4] we know that the hyperbol-
icity of Rf is equivalent to Ω-stability of f , that is small perturbations of
f preserve the chain recurrent set (equivalently non-wandering set NW (f))
structure. Thus, by [5], Rf consists of a finite number of pairwise disjoint
sets, called basic sets, each of which is compact, invariant, and topologically
transitive (contains a dense orbit). If a basic set is a periodic orbit, then it
is named trivial. In the opposite case, it is non-trivial. If dimΛ = n− 1 for
some basic set Λ then it is called a basic set of co-dimension 1.
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A stable and unstable manifolds of a point x ∈ Λ, where Λ is a basic set,
can be defined in the following way:

W s
x = {y ∈ Mn | lim

k→+∞
d(fk(x), fk(y)) = 0},

W u
x = {y ∈ Mn | lim

k→+∞
d(f−k(x), f−k(y)) = 0}.

By [5], W s
x and W u

x are injective immersions of Rq and Rn−q, accordingly, for
some q ∈ {0, 1, . . . , n}. For r > 0 we denote by W s

x,r and W u
x,r the immersions

of discs Dq
r ⊂ Rq and Dn−q

r ⊂ Rn−q.
The concept of orientability can be introduced for a basic set Λ with

dimW s
x = 1 or dimW u

x = 1, x ∈ Λ. A non-trivial basic set Λ is called
orientable if for any point x ∈ Λ and any fixed numbers α > 0, β > 0 the
intersection index1 W u

x,α ∩W s
x,β is the same at all intersection points (+1 or

−1) [7]. Otherwise, the basic set is called non-orientable.
A basic set Λ is called an if it has a compact trapping neighborhood U ,

such that f(U) ⊂ int U and
+∞⋂
n=1

fn(U) = Λ. Each hyperbolic attractor

consists of unstable manifolds of its points by [8]. If dimΛ = dimW u
x , x ∈ Λ,

for a hyperbolic attractor Λ, then it is expanding.
Any co-dimension 1 expanding attractor Λ divides its basin W s

Λ into a
finite number of connected components. Every such a component B deter-
mines a bunch b as the union of unstable manifolds of all periodic points
from Λ whose stable separatrix belongs to B. The number k of such so-
called boundary points is finite and it is called a degree of the bunch b and b
is called k-bunch with the basin B.

1Let Jk : Rk → M3 be immersions, Dk be open balls of finite radii in Rk, k = 1, 2.
Then the restrictions Jk : Dk → M are embeddings and their images W k = Jk(Dk) are
smooth embedded submanifolds of the manifold M3. Let Uk be a tubular neighborhood of
W k, which are images of embeddings in M3 of spaces of (3−k)-dimensional vector bundles
on W k [6, Chapter 4, par. 5]. Since the balls Dk are contractible, then these bundles are
trivial and, hence, U2 \W 2 consists of two connected components U2

+ and U2
−. It allows

to define a function σ : U2
+ ∪ U2

− → Z, such that σ(x) = 1 if x ∈ U2
+ and σ(x) = 0 if

x ∈ U2
−. If submanifolds W 1 and W 2 intersect transversally at a point x = J1(t), t ∈ D1,

then there exists a number δ > 0 such that J1((t− 2δ, t+ 2δ)) ⊂ U2. The number

Indx(W
1,W 2) = σ(t+ δ)− σ(t− δ)

is called an intersection index of submanifolds W 1 and W 2 in the point x. Notice, that
this definition does not require orientability of the manifold M3.
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If n ⩾ 3 then, by [9][Theorem 2.1], any co-dimension 1 expanding attrac-
tor Λ has 1-bunches or 2-bunches only. Moreover, the following fact takes
place.

Statement 1.1. If Λ is a hyperbolic expanding attractor of co-dimension 1
of a diffeomorphism f : Mn → Mn given on a closed smooth n-manifold Mn,
then Λ is non-orientable iff it has an 1-bunch.

In the paper we consider diffeomorphisms every non-trivial basic set of
which is an expanding attractor of codimension 1, and investigate the prop-
erties of such diffeomorphisms and the structure of their ambient manifolds.
The main result is the following theorem.

Theorem 1. Let f : M3 → M3 be an Ω-stable diffeomorphism, given on a
closed 3-manifold, Λ be a non-empty set of non-trivial basic sets of f . If Λ
consists of expanding attractors of codimension 1 having a total of k1 bunches
of degree 1 and k2 bunches of degree 2, then the number of points in the set
NW (f) \ Λ no less then 3

2
k1 + k2 and this estimate is exact.

Corollary 1. If the non-wandering set NW (f) of an Ω-stable diffeomor-
phism f : M3 → M3 consists of 2-dimensional expanding attractors with k
bunches in total and k isolated periodic points, then

• each non-trivial attractor and M3 are orientable;

• dimW u
p = 1 for every isolated saddle point p;

• each connected component of the set M3 \ Λ is homeomorphic to a
punctured 3-sphere.

It is clear from сorollary 1, that in a subclass of diffeomorphism with
orientable Λ and non-orientable M3 the estimates from Theorem 1 can not
be reached. For this case the following theorem takes place.

Theorem 2. Let an Ω-stable diffeomorphism f : M3 → M3 be given on
closed non-orientable manifold M3 and a set of non-trivial basic sets consists
of expanding orientable 2-dimensional attractors having a total of k bunches,
then the number of isolated periodic points is no less than k + 2.

A simple structure of the orbit space of the restriction of f to the set
W s

Λ \Λ gives us a way to obtain an Ω-stable system without non-trivial basic
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sets from considered one. We will describe a procedure of transition from a
cascade with codimension 1 expanding attractors to a corresponding regular
system in a section 2. A section 3 gives a proof of estimates from theorem
1 and theorem 2. A proof of corollary 1 is directly follows from the proof of
theorem 1. Finally, in the section 4 we show that estimates are exact.

2 Transition to a regular system

In this section we will show how to obtain a system f̃ : M̃3 → M̃3 with
regular dynamics from a system f : M3 → M3 with codimension 1 expanding
attractors and isolated periodic points.

(a) Bunch of degree 1 (b) Bunch of degree 2

Figure 1: Components of the boundary of a trapping neighborhood near
bunches of different degrees

Let Λ be a set of non-trivial attractors of f and UΛ be its trapping neigh-
borhood. The boundary of UΛ consists of k1 copies of RP 2 and k2 copies of
S2 ([10][lemma 2.2]) as in figure 1. Let M3 \ int UΛ = M+ ⊔M−, where M+

and M− are compact subsets of M3 (one of them can be empty) such that
∂M+ consists of k+ 2-spheres, ∂M− consists of k−

1 > 0 copies of RP 2 and k−
2

copies of S2. Notice, that each connected component of M− is non-orientable
[11] and hence there exists a double cover π : M̂− → M− [12], such that ∂M̂−
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consists of k̂− = k−
1 + 2k−

2 2-spheres. There is the following division of M̃3

on disjoint closed submanifolds M̃+ and M̃−:

• M̃+ = M+∪h+ (D×Zk+), where D = {(x, y, z) ∈ R3 | x2+y2+z2 ⩽ 1},
h+ : ∂M+ → ∂(D × Zk+) is a diffeomorphism;

• M̃− = M̂−∪h− (D×Zk̂−), h
− : ∂M̂− → ∂(D×Zk̂−) is a diffeomorphism.

Let us introduce the following designations:

• M+ =
+∞⋃
m=1

fm(M+), M− =
+∞⋃
m=1

fm(M−);

• π : M̂− → M− is a double cover of M−;

• M̂ = M+ ∪ M̂−, k = k+ + k̂−;

• f̂ : M̂ → M̂ is a diffeomorphism such that f̂ |M+ = f |M+ and f̂ |M− is
a lift of f |M− .

Let also O be the centre of the disk D.

Theorem 3. There exists a diffeomorphism f̃ : M̃3 → M̃3, which has k
sinks at the points O × Zk ⊂ M̃3 and f̃ |M̃3\(O×Zk)

is topologically conjugated
with f̂ .

Proof. Let B+ and B− be sets of the bunch basins in the sets M+ and M−

correspondingly. Let also B̂− = π−1(B−), and B̂ = B+ ∪ B̂−. Since bunch
basins are periodic, then there exists a division of the set B̂ on subsets B̂i,
i = 1, . . . , l, each of which has a minimum natural number mi such that

the set B̂i =
mi⋃
j=1

f j(B̂i), where B̂i is some connected component of B̂. Then

m1 + · · · + ml = k. It follows from [10] that each B̂i is diffeomorphic to
S2×R and hence the orbit space of f |B̂i

is diffeomorphic to S2×S1, if f̂mi |B̂i

preserves orientation, or S2×̃S1, if f̂mi |B̂i
reverses one. Notice, that periodic

hyperbolic sinks have the same orbit spaces in their basins.
Let gi : R3×Zmi

→ R3×Zmi
be a diffeomorphism with mi sinks at the ori-

gins O×Zmi
, gi = (x

2
, y

2
, z

2
, t+1 mod mi), if f̂mi |B̂i

preserves orientation, and
gi = (−x

2
, y

2
, z

2
, t+1 mod mi) otherwise. Let also hi : B̂i → (R3\O)×Zmi

be
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diffeomorphisms, conjugated f̂ |B̂i
with gi|(R3\O)×Zmi

. Then diffeomorphisms
g : R3 × Zk → R3 × Zk and h : B̂ → (R3 \ O) × Zk can be composed of
gi and hi. Moreover, h can be chosen in such a way that h(UΛ) = S2 × Zk,
where S2 ⊂ R3 is a standard 2-sphere. Then M̃3 = M̂ ⊔h (R3 × Zk) with a
natural projection q : M̂ ⊔ (R3 × Zk) → M̃3. The desired diffeomorphism
f̃ coincides with qf̂(q|M̂)−1 on the set q(M̂) and with qg(q|R3×Zk

)−1 on the
sets q(R3 × Zk). Notice, that by the construction f̃ has k sinks more then
f̂ .

3 Low estimate of trivial basic sets number
In this section we will prove the estimate from theorem 1. Let f : M3 →
M3 be an Ω-stable diffeomorphism, given on a closed connected 3-manifold.
Everywhere below in this section we will assume that all isolated periodic
points and also boundary periodic points are fixed, because it does not affect
the lower estimates: an appropriate degree of initial system satisfies these
property and has the same number of isolated periodic points. Let Rf =
Λ∪p1∪p2∪. . .∪pm, where Λ is a union of expanding attractors of codimension
1 with k1 bunches of degree 1 and k2 bunches of degree 2 in total and pi is a
fixed point, i ∈ {1, 2, . . . ,m}. Below we will prove that m ⩾ 3

2
k1 + k2.

Proof. Via the transition to a regular system, described in section 2, we
will obtain an Ω-stable diffeomorphism f̃ : M̃3 → M̃3 with a finite chain-
recurrent set on a closed manifold M̃3. Notice, that all chain-recurrent points
of f̃ are fixed. Let M be a connected component of M = M3\Λ. Notice that
M is f -invariant. There exists a connected component M̃ of M̃3 corresponded
to M .

Let us denote a number of 1- and 2-bunch basins, contained in M , as l1
and l2 correspondingly. M , and hence M̃ , can be one of 2 types (see section
2): (1) M ⊂ M+ and (2) M ⊂ M−. In the first case l1 = 0 and f̃ |M̃ has l2
sinks more than f̂ |M . In the second case l1 > 0 and even and f̃ |M̃ has l1+2l2
sinks more than f̂ |π−1(M).

Let Cj, j = 0, 1, 2, 3, be a number of fixed points p of f̃ |M̃ with dimW u
p =

j, for example, C0 be a number of sinks. Also f̃ |M̃ has at least 1 source, since
it is Ω-stable. Then by the Lefschetz formula the alternating sum of Cj is
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equal to 0:
C3 − C2 + C1 − C0 = 0.

At the same time since M̃ is connected, then C1 − C0 + 1 ⩾ 0 [13]. If M̃ of
the type (1) then C0 ⩾ l2 > 0 and there is no additional restrictions. The
finding of the minimum of the sum C0+C1+C2+C3 is a linear programming
problem, it can be solved by a simplex method. Then the minimum of fixed
points of f̃ |M̃ can be reached if C3 = 1, C2 = 0, C1 = l2 − 1, C0 = l2.
Therefore f |M has at least l2 isolated fixed points if M̃ of the type (1). It
follows from [14] that M̃ is homeomorphic to S3 in this case.

If M̃ of the type (2) then C1, C2, and C3 are even, because isolated
periodic points of f |M is doubled in this case. Also C0 ⩾ l1+2l2 > 0. Without
loss of generality we suppose that 1-dimensional separatrices of saddles do
not intersect2. Then we can arrange points in the non-wandering set of f̃ |M̃
agreed with Smale relation3. Moreover, the order can be chosen in such a
way that each saddle of index 1 comes before all saddles of index 2. Thus we
have ω1 ≺ . . . ≺ ω

C0
≺ σ1 ≺ . . . ≺ σ

C1
≺ β1 ≺ . . . ≺ β

C2
≺ α1 ≺ . . . ≺ α

C3
,

where each ωi is a sink, each σi is a saddle of index 1, each βi is a saddle of
index 2, and each αi is a source.

It follows from the paper [15] that a set A =
c1⋃
i=1

cl(W u
σi
) is 1-dimensional

and connected. The double cover π induces an involution φ on the set
A \ (ω1 ∪ . . . ∪ ω

C0
) and can be extended by continuity on the whole A.

Moreover, a set of fixed points of the extended involution φ coincides with
the set of sinks corresponded to 1-bunches.

Let A∗ = A/φ. Since a natural projection is a continuous map, then
connectedness of A implies the connectedness of A∗. A∗ contains (C0+ l1)/2
sinks and hence it is needed at least (C0 + l1)/2 − 1 saddles of index 1.
Therefore A contains at least (C0 + l1 − 2) saddles of index 1, i.e. C1 ⩾
C0 + l1 − 2.

Let us solve a linear programming task for this case:
2Each Ω-stable diffeomorphism with finite chain-recurrent set has ε-close Morse-Smale

diffeomorphism with the same amount of chain-recurrent points. Therefore we can consider
this Morse-Smale diffeomorphism instead of initial one to calculate desired estimates.

3Let Λ1 and Λ2 be basic sets of an Ω-stable diffeomorphism f : M → M . Λ1 ≺ Λ2 if
W s

Λ1
∩Wu

Λ2
̸= ∅.
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C3 − C2 + C1 − C0 = 0,
C0 ⩾ l1 + 2l2,
C1 − C0 ⩾ l1 − 2,
C3 ⩾ 2.

The optimal values are: C0 = l1 + 2l2, C1 = 2l1 + 2l2 − 2, C2 = l1, and
C3 = 2. Then there are at least l1 + l2 − 1 saddles of index 1, l1/2 saddles of
index 2, and 1 source at the component M .

Summing over all connected components of M we obtain that f has at
least 3

2
k1+k2 isolated periodic points: at least s sources, (k1+k2−s) saddles

of index 1, and k1/2 saddles of index 2, where s is a number of connected
components of M.

Below we will prove theorem 2.

Proof. If M3 is non-orientable, but Λ contains only orientable attractors,
then by [9] W s

Λ is homeomorphic to a punctured 3-torus, M− = ∅, and
there exists a non-orientable connected component M of the set M+. Then
corresponded manifold M̃ is also non-orientable, and f̃ |M̃ has saddles of
different indices [14], that is C2 > 0 and C1 > 0. There are two optimal
possibilities: 1 source, 1 saddle of index 2, l2 saddles of index 1, and l2 sinks
or 2 source, 1 saddle of index 2, l2 − 1 saddles of index 1, and l2 sinks, — for
the both possibilities a total number of points in non-wandering set of f̃ |M̃
is 2l2 + 2, so f |M has at least l2 + 2 isolated periodic points.

4 Achievability of the estimates
Realizations of diffeomorphisms with a minimum number of trivial basic sets
are given in this section, i.e. we will prove the second part of theorems 1
and 2. First of all, we will answer on a question: how to obtain an Ω-stable
cascade f : M3 → M3 with a set of expanding attractors of codimension 1
Λ with k1 ⩾ 0 bunches of degree 1 and k2 ⩾ 0 bunches of degree 2 in total
(k1 + k2 > 0) and 3

2
k1 + k2 periodic points outside of Λ.

Let f be a diffeomorphism of considered class with the following proper-
ties:

• all bunches and isolated periodic points are fixed;
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• if k2 > 0, than M+ is connected and has k2 boundary components,
otherwise M+ is empty;

• if k1 > 0, than each non-trivial attractor has 1-bunches and M− has
k1/2 connected components, each of which is homeomorphic to RP 2 ×
[−1, 1].

Corresponding regular system f̃ |M̃+ for the set M+ realizing the minimum
can be as in figure 2. It has k2 sinks, k2 − 1 saddles, and 1 source.

Figure 2: Morse-Smale system for M+, realizing low estimates

If k1 > 0, all bunches of degree 1 are divided into pairs in such a way that
after gluing the cylinders RP 2 × [−1, 1] to a trapping neighborhood of Λ we
will obtain a connected manifold M3. Let the restriction f |M of the desired
diffeomorphism f on each connected component M of M− is topologically
conjugated to a diffeomorphism (g1×g2), where g1 : RP 2 → RP 2 is on figure
3 and g2 : R → R such that g2(x) = 2x.

Achievability of the estimate from theorem 2 we will show with a diffeo-
morphism f : M3 → M3 with the following properties:

• f has only 1 non-trivial attractor Λ, which is connected and has k2
bunches of degree 2;

• all bunches and isolated periodic points of f is fixed;

• a set M+ consists of k2 connected components.

9
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ω

ω

Figure 3: Morse-Smale system on RP 2

Let a corresponded regular system f̃ : M̃3 → M̃3 be given on S3×Zk2−1⊔
S2×̃S1, the dynamics on each 3-sphere be “sink-source“ and on the S2×̃S1 be
as on the figure 4. Therefore f : M3 → M3 has exactly k2 + 2: k2 sources
and 2 saddles of different indices, - isolated chain recurrent points and M3 is
non-orientable.

Figure 4: Morse-Smale system on S2×̃S1
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