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Abstract—Recently, a modification of the classical McEliece
cryptosystem has been proposed by introducing an auxiliary
matrix, by which an artificial error vector is multiplied. The system
was broken. In this work, we propose a simpler attack on the
system, and at the same time, we propose a generalization of the
system, free from the identified shortcomings. We assume that the
new scheme is at least as secure as McEliece’s cryptosystem.

I. DESCRIPTION OF SOME PREVIOUS CONSTRUCTIONS

Let us start by recalling the classical McEliece cryptosystem
[1]. There is an (n, k)-code C with the minimal code distance
d ≥ 2t+1, which can effectively correct t errors. In the original
paper [1] it was proposed to take an irreducible Goppa code
with the following parameters: n = 1024, k = 524, t = 50.

Alice chooses one of many irreducible Goppa (1024, 524)-
codes with a generator k×n-matrix G (it is well-known that the
number of irreducible Goppa codes grows exponentially with t,
and there is the explicit formula for this number, see [2], but
less is known about the number of nonequivalent Goppa codes,
see [3]). It is important to note that for Goppa codes there are
known decoding algorithms correcting errors and erasures with
small, i.e., polynomial, complexity.

Then Alice generates two random matrices: k×k nonsingular
matrix A and n × n permutation matrix P and made publicly
accessible the following k × n matrix Gpub = AGP . The
matrices A,G, P , as well as a particular choice of Goppa
polynomial and the corresponding (1024, 524)-code, are kept
secret.

When user Bob wants to send Alice some secret information,
represented as a binary vector m = (m1, . . . ,mk), he generates
a random vector e = (e1, . . . , en) of the Hamming weight
wt(e) = t (or at most t) and transmits over an open channel
the encrypted vector y, where

y = mGpub + e (1)

Alice can reveal m via next simple steps: firstly evaluating
y′ = yP−1, then decoding y′ = m′G+ e′, where m′ = mA,
by correcting the corresponding error e′ = eP−1, with the
result of decoding to the vector m′, and finally outputs
m = m′A−1.

So far, neither structural attacks on McEliece’s cryptosystem,
nor attacks through decoding, starting from McEliece’s proposal
to use Information Set Decoding (ISD for short), have been
successful, see [4] for a detailed review. Based on 45 years
of successful countering various attacks on the McEliece cryp-
tosystem, this system is considered secure even against attacks
by quantum computers.

A lot of papers on McEliece cryptosystem were published,
see [4], mainly in line of the original McEliece’s idea with the
usage of other families of codes, other attacks, etc., but one thing
stayed untouched, namely, introducing an artificial error e of
some limited Hamming weight into ciphertext, or, equivalently,
in “syndrome form”, introduced by H.Niedderraiter [5].

In this article, we propose a new generalization of McElice’s
cryptosystem based on Alice’s correction of not only errors,
but also erasures. In our opinion, this can strengthen the system.

Let us note that the original McEliece cryptosystem is not
symmetric with respect to the vectors m and e. Therefore the
following encryption map was proposed in [6]

y = mGpub + eEpub, (2)

where the n × n-matrix Epub should be properly chosen. We
assume that the matrix Epub is nonsingular. Then for the
attacker Eve to find m from equation (2) means to decode the
code Cpub with the generator matrix Gpub but with error vector
e′ := eEpub which Hamming weight can be much greater than
wt(e).

This modification appeared in [6] with the following choice
of public matrices:

Gpub := GM, E
(0)
pub = WD(UG+ P )M,

where M and W are random nonsingular n × n-matrices, P
is an n× n permutation matrix, U is an n× k matrix with its
rank less than k, and an n × n diagonal matrix D with r(D)
ones on its main diagonal, which plays an especially important
role in our constriction.

This Epub selection was broken pretty quickly in [7], [8].
Below we will show with much simpler arguments why the
attack from [7], [8] works, and at the same time we will
analyze how to avoid this attack and some other attacks,
which will lead us to a new, better choice of the matrix Epub
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in (2). Let’s first describe the system of [6] in its strongest form.

Initialization stage. Alice randomly chooses the following
binary matrices and kept them secretly :

k × n matrix G, which is a generator matrix of a random
linear (n, k)-code C with the minimal distance d = d(C);

nonsingular n× n matrices M and W ;
n× n permutation matrix P ;
n× k matrix U of the rank less than k;
n × n diagonal matrix D with r(D) ones on its main

diagonal, where r(D) < d.

Based on it Alice forms two public matrices:
k × n matrix Gpub := GM and n × n matrix

E
(0)
pub := WD(UG+ P )M .

Encryption. Bob sends to Alice a k-bits plaintext message
m via the following ciphertext y = mGpub + eE

(0)
pub, where e

is an arbitrary binary vector of dimension n.

Let us show how erasure correction occurs. Alice evaluates
z := yM−1 and then solves the corresponding decoding
problem

z = mG+ eWD(UG+ P ) = c′ + e′, (3)

where c′ = (m+ eWDU)G and e′ = eWDP . The Hamming
weight of e′ is at most r(D) and moreover Alice knows r(D)
coordinates of e′, which can only be nonzero. Therefore Alice
erases these r(D) positions and then solves the corresponding
decoding problem of correction r(D) erasures, i.e. she finds
vectors c′ and e′ = eWDP what can be done for arbitrary
linear code, since correction of erasures is just to solve the
corresponding system of linear equations with r(D) unknown
variables and it can be done with at most n3 complexity. From
c′ = m′G Alice can find m′ = m + eWDU and since she
knows eWD = e′P−1 she gets m = m′ + eWDU .

But Eve can also find m, without even knowing what is M
and which positions could be erased. Namely, Eve solves the
following system of n linear equations

y = mGpub + eE
(0)
pub, (4)

with n+k unknown variables, which are coordinates of vectors
m and e. It is a priori known that this linear system has at least
one solution. The system can be solved in polynomial time, e.g.
in O(n3) time. Let m, e and m′, e′ be two solution of equation
(4) and m ̸= m′. Then both plaintexts m and m′ could be sent
by Bob as

y = mGpub + eE
(0)
pub = m′Gpub + e′E

(0)
pub, (5)

and Alice cannot resolve this Buridan’s ass paradox. It means
that there could be many solutions of the system (4) but they
can differ only in e part, not in m part. Indeed, it follows from
(5) that

mGpub + eE
(0)
pub = m′Gpub + e′E

(0)
pub

and hence

(m+m′)G = (e+ e′)WD(UG+ P )

Thus

(m+m′ + (e+ e′)WDU)G = (e+ e′)WDP (6)

Because of the matrix D the vector (e + e′)WDP has the
Hamming weight at most d − 1 and therefore the codevector
(m + m′ + (e + e′)WDU)G = 0. Thus (e + e′)WDP = 0
and then (e + e′)WD = 0 since P is a permutation. Hence
(m+m′)G = 0, or m = m′.

Thus, Eve can find the plaintext m in no more than n3

time, and the system is broken. The proposed explanation for
why the line attack works follows the ideas suggested in [7],
[8] but is much simpler. Note that introducing the constraint
wt(e) = t does not help, since Eve is not required to look only
for solution of equation (4) with a bounded Hamming weight.

II. THE NEW CODE-BASED CRYPTOSYSTEM

In this section we describe and give some cryptoanalysis
of the system, which was proposed at CBCrypto 2023. The
corresponding encryption map has the following form

y = mGpub+eEpub = mGM+e(WD(UG+P )+P ′)M, (7)

where P, P ′ are two permutation n × n matrices randomly
chosen in such a way that the matrix WDP + P ′ is
nonsingular. The error vector e is chosen as a random vector
of the Hamming weight t, where r(D) + 2t < d = d(C). As
the particular choice of system’s parameters we shall consider
t = d/3, r(D) = d

3 − 1.

Let us first show how Alice can decrypt y. Alice evaluates
z := yM−1 and then solves the corresponding decoding
problem

z = mG+ e(WD(UG+ P ) + P ′) = c′ + e′ + eeras, (8)

where c′ = m′G, m′ = m + eWDU , e′ = eP ′ and
eeras = eWDP . Alice knows r(D) coordinates of eeras, which
can only be nonzero, and by erasing these r(D) positions she
transforms solving of (9) to the decoding of the code C in
presence of r(D) erasures and at most t errors, induced by e′.
As the result of decoding Alice knows codevector c′ and hence
she knows m′ and

z+ c′ = eeras + e′ = e(WDP + P ′)

Then e = (z + c′)(WDP + P ′)−1 and Alice finds
m = m′ + eWDU .

It is rather clear that trying to solve equation (7) directly
does not look promising due to the unknown random matrix
M , what leads to decoding a random code Cpub with a random
error vector e′ := eEpub. Therefore, more feasible attacks
should try to get rid of the matrix M . Let us consider the
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following attacks of such type.

If matrix Epub is nonsingular then Eve evaluates E−1
pub =

M−1(WD(UG + P ) + P ′)−1 and considers the following
decoding problem

y′ := yE−1
pub = mG′ + e, (9)

where G′ = G(WD(UG + P ) + P ′)−1. This equation looks
very similar to the original McEliece system encryption map
with just a difference that matrix (WD(UG + P ) + P ′)−1 is
not a permutation matrix and has more complicated structure.
Nevertheless, in order to avoid this attack let us assume
additionally that the matrix Epub is singular, i.e., that the
matrix WD(UG+ P ) + P ′ is singular.

Another attack of Eve works in the following way. She
evaluates an (n−k)×n-matrix Hpub such that GpubH

T
pub=0, i.e.,

evaluates a parity-check matrix for the code Cpub with generator
matrix Gpub. It is easy to verify that HT

pub = M−1HT , where H
is some parity-check matrix for the code C. Then Eve evaluates
the syndrome s = yHT

pub and tries to solve the following
equation

s = mGpubH
T
pub + eEpubH

T
pub = eĤT , (10)

where ĤT := EpubH
T
pub = (WD(UG+P )+P ′)MM−1HT =

(WDP+P ′)HT . This equation can be considered as syndrome
equation for the code Ĉ with the parity-check matrix Ĥ . Note
that there is an obstacle for Eve in this way, namely, the code
Ĉ is not equivalent to the code C as it is for McEliece system.
The minimal distance of the code Ĉ is unknown and moreover
very probably it is approximately the same as the distance of a
random (n, k)-code what is twice less than the distance of the
initial good code, like Goppa code.

These simple attacks show that we cannot make significant
use of the fact that M is an unknown random matrix. Therefore,
we confine ourselves to the case which will be discussed in the
next section, when M is just a permutation matrix P.

III. MCELIECE TYPE CRYPTOSYSTEM BASED ON ERRORS
AND ERASURES CORRECTION

Consider the encryption map (7) in its particular and simpli-
fied form when M = P is a random permutation n× n matrix

y = mAGP+ e(WD(UG+ P ) + P ′)P, (11)

where A is a nonsingular k × k matrix (we did not use
the matrix A in our previous consideration, since because
of random matrix M we can considered G as an arbitrary
generating matrix of the code C). Recall that the error vector e
is chosen as a random vector of the Hamming weight t, where
r(D) + 2t < d = d(C). For r(D) = 0 and t = d−1

2 this is
the McEliece system, for r(D) = d − 1 and t = 0 this is the
system of [6]. We recommend to chose r(D) ≈ t ≈ d/3.

In order to make clearer the similarities and differences
between this system and the McEliece system, let us rewrite
equation (11) in the following form

y = c+ e′ + e′′ = c+ etotal, (12)

where c = mAGP ∈ P(C), e′ = eP ′P e′′ = eWD(UG+P )P
and etotal = e′ + e′′.

The Hamming weight of the error e′ is the same as of e, i.e.,
equals t, but the weight of e′′ can be large, on average about
n/2. Indeed, e′′ = eWDUG + eWDP , where the weight of
eWDP is at most r(D) (and r(D)/2 in average since matrix
W is random). Denote rows of the matrix UG, which are
codevectors of the code C, as c1, . . . , cn, and denote by C ′

the code generated by these vector, i.e. C ′ is the linear span of
c1, . . . , cn. Then the vector eWDUG =

∑
i∈I ci, where I is

the set of nonzero coordinates of the vector eWD. Hence in
average it is the sum of r(D)/2 randomly chosen codevectors
ci. We may assume that wt(eWDUG) is about n/2 in average.

In the next section we give an explicit construction of the
matrix U code that guarantees that the weight of the vector
eWDUG always is large enough what allows to give enough
good lower bound on the weight of etotal, i.e., that solving the
decoding problem (12) is much more complicated than for the
original McEliece scheme.

IV. ON THE RIGHT CHOICE OF THE MATRIX U

Let us consider a vector eWDUG as gUG, where
g = eWD, and hence the Hamming weight wt(g) ≤ r(D).
Therefore it is sufficient to construct n × n-matrix UG with
property that sum (modulo 2) of any r(D) or fewer columns
UG has a sufficiently large Hamming weight, say, at least T .
Let us denote rows of UG as f1, . . . , fn. And let denote by C ′

the subcode of the code C which is their linear span.

Then the desired property can be reformulated as follows: for
any subset I such that |I| ≤ r(D) the inequality holds

wt(
∑
i∈I

fi) ≥ T (13)

This problem in fact is actually already known as superimposed
codes in Hamming space, see [9]. Below we recall the
construction of [9], which is at least asymptotically optimal.

For a chosen (n, k, d)-code C and chosen parameters r(D)
and t, such that r(D) + 2t < d, we firstly find n vectors
h1, . . . ,hn of the minimal possible dimension m with the
property that any r(D) of these vectors are linearly independent.
Saying in other words, we need to find a linear (n, n−m)-code
with the minimal distance at least r(D) + 1. Then columns
of a parity-check matrix H of this code is a desired set
{h1, . . . ,hn}.

As the next step we choose an m-dimensional subcode C ′

of the code C with sufficiently large the minimal code distance
T = d(C ′). And let vectors v1, . . . ,vm be a basis of C ′.
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It was proposed in [9] to set

fi :=
m∑
j=1

hijvj (14)

Or, saying in words, it was proposed to encode vectors fi by
the code C ′. To prove (13) consider

F :=
∑
i∈I

fi =
∑
i∈I

(
m∑
j=1

hijvj) =
m∑
j=1

(
∑
i∈I

hij)vj (15)

Then F ̸= 0 since vectors v1, . . . ,vm form a basis and at least
one of parentheses is nonzero because any of r(D) vectors hj

are linearly independent. On the other hand, F ∈ C ′ and thus
wt(F) ≥ t. Q.E.D.

Hence this construction gives us rows of UG as f1, . . . , fn,
and then U can be recovered. In fact, we do not need the matrix
U explicitly, but only the matrix UG.

V. EXAMPLES

.
Example 1. Consider as (n, k, d)-code C a primitive BCH

code with parameters n = 255, k = 191 and d = 17. Let us
choose r(D) = 6 and t = 5. Then any 6 columns of a parity-
check matrix H must be linearly independent, i.e., let H be an
24× 255 parity-check matrix of a primitive (255, 231, 7) BCH
code, correcting triple errors. Now we need to choose an 24-
dimensional subcode C ′ of the code C with sufficiently large
the minimal code distance T . Let again take a BCH code of
length 255 correcting 30 errors, i.e., the minimal code distance
T = 61. Proper calculations, see [2], show that the dimension
of the code is 25, and hence we choose 24 linearly independent
vectors of this code as v1, . . . ,v24.

Hence the Hamming weight of the vector eWDUG ≥ 61.
And the total weight of the error etotal which Eve have to
correct is at least 61 − 6 − 5 = 50, what is many times larger
than bounded-distance decoding can do. Indeed, there are
approximately 2255h(

50
255 ) = 2255×0.714 = 2172 different error

vectors of the weight 50. On the other hand, there are 264

different syndromes. Thus, in average there are 2108 different
errors of the weight 50 with the same syndrome. And all of
them looks for Eve enough good...

So, the complexity of finding plain text via decoding is
huge. On the other hand, this is only a toy example, to show
that the considered attack doesn’t work, because the number of
possible errors

(
255
5

)
is small and just a straight-forward attack

brakes the system with complexity approximately 233 × 214.
The next example allows to avoid this attack by making weight
of e larger.

Example 2. Consider BCH code of length n = 255, cor-
recting 11 errors, i.e., with the minimal code distance d = 33
and r = 132 parity-check bits. Let us choose r(D) = 10 and
t = 11. Then any 10 columns of a parity-check matrix H must
be linearly independent, hence let H be an 40 × 255 parity-
check matrix of a primitive (255, 215, 11) BCH code, correcting

five errors. Next we choose an 40-dimensional subcode C ′ of
the code C with sufficiently large the minimal code distance
T . Let again take a BCH code of length 255 correcting 28
errors, i.e., with the minimal code distance T = 57. Proper
calculations, see [2], show that the dimension of the code is
41, and then we choose 40 linearly independent vectors of this
code as v1, . . . ,v40.

Hence the Hamming weight of a vector eWDUG ≥ 57. And
the total weight of the error etotal, which Eve have to correct,
is at least 57 − 10 − 11 = 36, what is three times larger than
bounded-distance decoding can guarantee. Evaluation similar to
what was done in Example 1 shows that there are approximately
2255h(

36
255 ) = 2255×0.586 = 2149 different error vectors of

the weight 36. On the other hand, there are 2132 different
syndromes. Thus, there are at least 217 different errors of the
weight 57 with the same syndrome. Of course, these numbers
are not as impressive as in the first example. But that’s because
we’re looking at Alice’s worst case scenario. Let’s consider the
most likely case instead.

Let us do the corresponding probabilistic analysis. Namely,
return to the equation (12) and even assume that Eve knows the
permutation P (this knowledge obviously destroys the ordinary
McElice system). Then Eve can rewrite equation (12) in the
following form

y′ := yP−1 = c+E+ ê = c+ etotal, (16)

where c = mAG ∈ C, ê = e(P ′+WDP ), E = eWDUG and
etotal = E+ ê. Thus Eve needs to find the codevector c from
“received” vector y′ = c+ etotal and let us estimate the error
weight wt(etotal). It was proved that wt(E) ≥ 57. Hence we
need to estimate the intersection of supports of vectors E and
ê. Let us consider the vector e as fixed and matrices W,P, P ′

as random (recall that P, P ′ are permutations). Then the vector
ê is the sum of two random vectors, one of the them eP ′ of
weight 11 and another one eWDP of weight between 1 and
10. Let us simplify the corresponding calculations and assume
that vectors eWDP+eP ′ is a randomly permuted vector (since
permutations P and P ′ independent) of the weight 16 (what is
true in average). Then the probability

P = Pr{|supp(eWDP + eP ′) ∩ supp(E)| ≥ ∆} (17)

can be expressed in the following way

P =

∑1
i=∆ 6

(
57
i

)(
198
16−i

)(
255
16

) (18)

For example, when ∆ = 9, then P < 0.01 and hence with
probability 0.99 wt(etotal) ≥ 57 − 8 + (16 − 8) = 57.
Thus Eve typically have to search among approximately
2255h(

57
255 ) = 2255×0.7765 = 2178 different error vectors of

the weight 57. On the other hand, there are 2132 different
syndromes. Thus, there are at least 246 different errors with the
same syndrome. Additionally, checking of each vector takes
roughly n2 = 216 operations. In total it gives complexity 262,
what it is rather pessimistic estimation, we think.
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Since t = 11 then the number of possible errors of this
weight is 2255h(11/255)=265 , plus we should count that checking
of each error takes at least 11 × 255 operations, so totally it
gives complexity 276.

Remark. We prefer BCH-codes to Goppa codes, because
BCH-codes poses the nested structure when C ′ is a subcode
of the code C.

VI. CONCLUSION

Our study focuses on a recently proposed generalization
of the classical McEliece cryptosystem. We suggested a new
modification of the error vector, which is specially introduced
into the encryption procedure. Namely, the resulting error vector
is obtained by multiplying a random vector of the weight t
on the corresponding ublic matrix. The structure of this public
matrix allows to make part of the error vector as an artificial
code vector, which can easily be found by the legitimate
recipient and at the same time it is one of the main obstacles for
an attacker to decrypt a message. The given simplified analysis
shows that the new system can shorten the public key while
maintaining secrecy.
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